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Question: What is model theory?

Answer: Model theory is the study ofmodels, structures which interpret

formal languages.
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Definition 1 A signatureσ is a quadruple(C,F,R,a) whereC, F , and

R are disjoint sets (called theconstant symbols, function symbols, and

relation symbols, respectively) and a: F ∪R → Z+ is a function which

assigns thearity of a function symbol or relation symbol.

Definition 2 If σ = (C,F,R,a) is a signature, then aσ -structure is a

nonempty set M given together with an interpretation ofσ . That is, for

each c∈ C one is given some cM
∈ M. For each f ∈ F one is given

f M : Ma( f )
→ M. For each R∈ R one is given RM ⊆ Ma(R).

In most cases under consideration here,σ will be the signature of

differential rings. That is,C = {0,1}, F = {+, ·, ∂},R = ∅, and

a(+) = a(·) = 2 whilea(∂) = 1. Ourσ -structures will be differential

rings and the symbols ofσ will be interpreted in the usual way.
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To each signatureσ = (C,F,R,a) there is an associated (first-order)

formal language built from the symbols inC ∪ F ∪R, a set of variable

names{xi : i ∈ N}, symbols for logical Boolean operations∧,∨,→,¬,

and quantification over elements(∃xi ) and(∀xi ).

Definition 3 If σ = (C,F,R,a) is a signature, then the set ofσ -terms is

defined by the following recursion.

• c is term for any constant symbol c∈ C.

• xi is a term for any natural number i∈ N.

• f (t1, . . . , tn) is a term if f ∈ F is a function symbol with n= a( f )

and t1, . . . , tn are all terms.
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Definition 4 If σ is a signature, then the set of formulas of language

associated toσ , L(σ ), is defined by the following recursion.

• t1 = t2 is a formula if t1 and t2 areσ -terms.

• R(t1, . . . , tn) is a formula if R∈ R is a relation symbol with

n = a(R) and t1, . . . , tn are all σ -terms.

• (ϕ ∧ ψ) [read as “ϕ andψ”] is a formula if ϕ andψ are both

formulas.

• ¬(ϕ) [read as “notϕ”] is a formula if ϕ is a formula.

• (∃xi )(ϕ) [read as “There exists xi such thatϕ.”] is a formula if ϕ is a

formula.
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If M is aσ -structure, then each formula inL(σ ) has a natural interpretion

in M .

If all the variables of the formulaψ are bound by a quantifier (such a

formula is called asentence), thenM must decide the truth value ofψ .

We write M |= ψ [read “M modelsψ”] if M interpretsψ as true.

If T is a set of sentences, then we writeM |= T iff M |= ψ for every

ψ ∈ T .

Definition 5 Thetheory ofM, Th(M), is the set of allσ -sentences which

are true in M.

A theoryis a set T of sentences for which there is some structure M with

M |= T .

If some of the variables ofψ are free, thenψ defines a subset of some

power ofM . If the free variables ofψ are amongx1, . . . , xn, then we
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writeψ(M) := {(a1, . . . ,an) ∈ Mn : M |= ψ(a1, . . . ,an)} where

ψ(a1, . . . ,an) denotes the result of substitutingai for the variablexi .

Example 1 If σ is the signature of differential rings andR is a

differential ring considered as aσ -structure in the natural way, and

ϕ := (∃x2)(x2 · ∂(x1) = 1), thenϕ(R) = {a ∈ R : ∂(a) ∈ R×
}.

Definition 6 If M is a σ -structure and A⊆ M, then we defineLA(σ ) to

be the language obtained by adjoining one new constant symbol for each

a ∈ A toσ . M has a naturalLA(σ )-structure.

Definition 7 We say that theσ -structure N is anelementary extensionof

M (written M � N) if N is a model of the theory of M inLM (σ ).

7



In Weil’s approach to the foundations of algebraic geometry, a central role

is played by the notion of a universal domain: an algebraically closed

field into which every “small” field of the same characteristic may be

embedded and for which any isomorphism between “small” subfields

may be extended to an automorphism.

Question 2 Is there an analogous notion of universal domain in

differential algebra?

For many natural theories there are no universal domains. However,

Abraham Robinson arrived at a positive answer to Question 2 by finding

themodel completionof the theory of differential fields of characteristic

zero.
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Definition 8 The theory T′ is a model companion of the theory T if

• T and T′ are co-theories: every model of T may be extended to a

model of T′ andvice versaand

• every extension of models of T′ is elementary: if M, N |= T ′ and

M ⊆ N, then M� N.

If relative to T′ every nonsentence is equivalent to a quantifier free

formula, then T′ is called amodel completionof T .

If T has a model companion, then it has only one.
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Example 3 • The theory of algebraically closed fields is the model

completion of the theory of fields.

• The theory of real closed fields is the model companion of the theory

of formally real fields. Considered with the signature

({0,1}, {+, ·}, {<}) it is the model completion of the theory of

ordered fields.

Theorem 9 The model completion of the theory of differential fields of

characteristic zero is the theory of differentially closed fields of

characteristic zero,DCF0.

The fact that DCF0 eliminates quantifiers takes a geometric form.

Proposition 4 If K |= DCF0, X ⊆ K n is Kolchin-constructible, and

f : K n
→ K m is a differential rational function, then f(X) ⊆ K m is

also Kolchin-constructible.
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There are a few reasonable ways to axiomatize DCF0. Definition 10 is

due to Lenore Blum.

Definition 10 A differential field of characteristic zero K is differentially

closed if for each pair f, g ∈ K {x} of differential polynomials with f

irreducible and g simpler than f , there is some a∈ K with f (a) = 0 and

g(a) 6= 0.

Ehud Hrusovski provided geometric axioms. Before we can state the

geometric axioms, we need to recall the definition of jet spaces.
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Definition 11 If (K , ∂) is a differential field of characteristic zero, X is a

scheme over K , and n∈ N is a natural number, then the n-th jet space of

X is the scheme∇nX which represents the functor K− ∂ − Sch→ Sets
given on affines by(R, ∂) 7→ XR[ε]/(εn+1)(R[ε]/(εn+1)) where X is made

into a scheme over R[ε]/(εn+1) via the map x7→
∑n

i =0
1
n! ∂

n(x).

Concretely, ifX = SpecK [x1, . . . , xn]/( f1, . . . , fm), then

∇1X = SpecK [x1, . . . , xn; x′

1, . . . , x′
n]/( f1, . . . , fm,d fx · Ex′ − Ef ∂)

whereg∂ denotes the result of applying∂ to the coefficients ofg.

The reduction mapR[ε]/(εn+1) → R[ε]/(εm+1) corresponds to a
projectionπ : ∇nX → ∇mX.

Proposition 5 A differential field of characteristic zero K is differentially

closed if and only if for any irreducible affine variety X over K and

Zariski constructible set W⊆ ∇1X withπ �W: W → X dominant, there

is some point a∈ X(K ) with (a, ∂a) ∈ W(K ).
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The theory of differentially closed fields of characteristic zero is atotally

transcendentaltheory.

Definition 12 A theory T in the languageL is totally transcendentalif

for every M|= T every consistentLM formula has ordinal valuedMorley

rank. The Morley rank of a formulaψ(Ex) ∈ LM (Ex) is defined by the

following recursion.

• RM(ψ) = −1 if ψ(M) = ∅

• RM(ψ) ≥ 0 if ψ(M) 6= ∅

• RM(ψ) ≥ α + 1 if there is some N� M and a sequence{ϕi (Ex)}∞i =1

ofLN-formulas such thatϕi (N) ⊆ ψ(N) for each i,

ϕi (N) ∩ ϕ j (N) = ∅ for i 6= j , andRM(ϕi ) ≥ α for all i

• RM(ψ) ≥ λ for λ a limit ordinal if RM(ψ) ≥ α for all α < λ.

• RM(ψ) := min{α : RM(ψ) ≥ α butRM(ψ) 6≥ α + 1} ∪ {+∞}.
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Totally transcendental theories carry many other ranks (Lascar, Shelah,

local,et cetera). These ranks are all distinct in differentially closed fields.

Many deep theorems have been proven about general totally

transcendental theories, but for all practical purposes, the theory of

differentially closed fields is the only known mathematically significant

theory to which the deeper parts of the general theory apply.

Definition 13 Let T be a theory, M|= T a model of T and A⊆ M a

subset. Aprime modelof T over A is a model P|= T with A⊆ P ⊆ M

having the property that ifι : A ↪→ N is an embedding of A into any

other model N|= T , thenι extends to an embedding of P into N.

Theorem 6 (Shelah) If T is a totally transcendental theory, then for any

model M|= T and subset A⊆ M there is prime model over A. Moreover,

the prime model is unique up to isomorphism over A.
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Corollary 14 If K is a differential field of characteristic zero, then there

is a differentially closed differential field extension Kdi f /K, called the

differential closure of K , which embeds over K into any differentially

closed extension of K and which is unique up to K -isomorphism.

The theory of algebraically closed fields is also totally transcendental and

the prime model over a fieldK is its algebraic closureK alg. The

algebraic closure is alsominimal. That is, if K ⊆ L ⊆ K alg with L

algebraically closed, thenL = K alg.

Theorem 7 (Kolchin, Rosenlicht, Shelah)If K is a differential closure

of Q, then there areℵ0 differentially closed subfields of K .

Trivial differential equations are responsible for Theorem .Trivial does

not meaneasyor unimportant. Rather, it means that an associated

combinatorial geometry is degenerate.

15



Definition 15 A combinatorial pregeometry is a set S given together with

a closure operatorcl : P(S) → P(S) satisfying universally

• X ⊆ cl(X)

• X ⊆ Y ⇒ cl(X) ⊆ cl(Y)

• cl(cl(X)) = cl(X)

• if a ∈ cl(X ∪ {b}) \ cl(X), then b∈ cl(X ∪ {a}).

• if a ∈ cl(X), then there is some finite X0 ⊆ X such that a∈ cl(X0).

If (S, cl) satisfiescl(∅) = ∅ andcl({x}) = {x}, then we say that(S, cl) is

a combinatorial geometry.

16



Example 8 • If S is any set and cl(X) := X, then(S, cl) is a

combinatorial geometry.

• If S is a vector space over a fieldK and cl(X) := the K -span ofX,

then(S, cl) is a combinatorial pregeometry.

• If S is an algebraically closed field and cl(A) is the algebraic closure

of the field generated byA, then(S, cl) is a combinatorial

pregeometry.
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Definition 16 The pregeometry(S, cl) is trivial if for any X ∈ P(S) one

hascl(X) =
⋃

x∈X
cl({x}).

Definition 17 If (S, cl) is a pregeometry, then a set X⊆ S isindependent

if for any x ∈ X one has x/∈ cl(X \ {x}).

Proposition 9 If (S, cl) is a pregeometry, A⊆ S, and X,Y ⊆ A are two

maximal independent subsets of A, then||X|| = ||Y||. We define

dim(A) := ||X||.

Definition 18 A combinatorial pregeometry(S, cl) is locally modularif

whenever X,Y ⊆ S anddim(cl(X) ∩ cl(Y)) > 0 we have

dim(cl(X) ∩ cl(Y))+ dim(cl(X ∪ Y)) = dim(cl(X))+ dim(cl(Y)).
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Definition 19 Let M be aσ -structure for some signatureσ . Let

ψ(x1, . . . , xn) be someσ -formula with free variables among x1, . . . , xn.

We say that the set D:= ψ(M) is strongly minimalif ψ(M) is infinite

and for any N� M and any formulaϕ(x1, . . . , xn) ∈ LN(σ ) either

ψ(N) ∩ ϕ(N) is finite orψ(N) ∩ (¬ϕ)(N) is finite.

Definition 20 Let M be aσ -structure for some signatureσ . Let A⊆ M.

We say that a∈ M is model theoretically algebraicover A if there is a

formulaψ(x) ∈ LA(σ ) such that M|= ψ(a) butψ(M) is finite. We

denote byacl(A) the set of all elements of M which are algebraic over M.

Example 10 If K is a differentially closed field andA ⊆ K , then
acl(A) = Q〈A〉

alg.

Proposition 11 Let D be a strongly minimal set. Define

cl : P(D) → P(D) by X 7→ acl(X)∩ D. Then(D, cl) is a combinatorial

pregeometry.
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Conjecture 21 (Zilber) If D is a strongly minimal set whose associated

pregeometry is not locally modular, then D interprets an algebraically

closed field.

Theorem 22 (Hrushovski) Zilber’s conjecture is false in general.

Theorem 23 (Hrushovski, Zilber) Zilber’s conjecture holds forZariski
geometries(strongly minimal sets satisfying certain topological and

smoothness properties.)

Theorem 24 (Hrushovski, Sokolovíc) Every strongly minimal set in a

differentially closed field is a Zariski geometry after finitely many points

are removed. Hence, Zilber’s conjecture is true for strongly minimal sets

in differentially closed fields. In fact, if D is a non-locally modular

strongly minimal set defined in some differentially closed field K , then

there is a differential rational function f for which f(D) ∩ K ∂ is infinite,

where K∂ := {c ∈ K : ∂c = 0}.
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Theorem 24 is instrumental in the analysis of the structure of differential

algebraic groups.

Theorem 25 (Hrushovski, Pillay) Suppose that D1, . . . , Dn are locally

modular strongly minimal sets, G is a definable group, and

G ⊆ acl(D1 ∪ · · · ∪ Dn). Then every definable subset of any power of G

is a finite Boolean combination of cosets of definable subgroups.

We call a group satisfying the conclusion of Theorem 25weakly normal.

Definition 26 Anabelian varietyis a projective connected algebraic

group. A semi-abelian variety is a connected algebraic group S having a

subalgebraic group T which (over an algebraically closed field) is

isomorphic to a product of multiplicative groups with S/T being an

abelian variety.
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Theorem 27 (Manin, Buium) If A is an abelian variety of dimension g

defined over a differentially closed field of characteristic zero K , then

there is a surjective differential rational homomorphism

µ : A(K ) → Ga(K )g.

The kernel ofµ is denoted byA] and is called theManin kernelof A.

Theorem 28 (Buium, Hrushovski) If A is an abelian variety defined

over a differentially closed field K and A admits no non-zero algebraic

homomorphisms to abelian varieties defined over K∂ , then A(K ) is

weakly normal.
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Corollary 29 (Function field Manin-Mumford conjecture) If A if an

abelian variety defined over a field K of characteristic zero, A does not

admit any nontrivial algebraic homomorphisms to abelian varieties

defined overQalg, and X⊆ A is an irreducible variety for which

X(K ) ∩ A(K )tor is Zariski dense, then X is a translate of an algebraic

subgroup of A.

The function field Mordell-Lang conjecture follows from Theorem 28

together with a general result of Hrushovski on the structure of finite rank

groups.
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Definition 30 If G is a group of finite Morley rank, then thesocleG[ of

G is the maximal connected definable subgroup of G for which

G[
⊆ acl(D1, . . . , Dn) for some strongly minimal sets D1, . . . , Dn.

Example 12 If G = A] is a Manin kernel, thenG[
= G.

Definition 31 Let G be a group defined over some set A. We say that G is

rigid if every subgroup of G is definable overacl(A).

Example 13 If G is an abelian variety, thenG] is rigid.

Proposition 14 (Hrushovski) Let G be a group of finite Morley rank.

Suppose that G[ is rigid. If X ⊆ G is a definable set of finite rank with

trivial (generic) stabilizer, then X is contained (up to a set of lower rank)

in a coset of G[.
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Theorem 15 (Buium, Hrushovski) If G is a semiabelian variety defined

over a differentially closed field K , X⊆ G is an irreducible subvariety,

0 ⊆ G(K ) is a subgroup withdimQ 0 ⊗ Q < ∞, and X(K ) ∩ 0 is

Zariski dense in X, then there is an algebraic subgroup H≤ G of G, an

algebraic group homomorphismψ : H → H0 from H to an algebraic

group H0 defined over the constants K∂ , an algebraic variety X0 ⊆ H0

defined over K∂ and a point a∈ G(K ) such that X= a + ψ−1X0.

Remark Of course, a stronger form of Theorem 15 (due to Faltings,

Vojta, McQuillen, Bombieri,et al) in which one concludes thatX is a

translate of an algebraic subgroup ofG holds.

25



As a consequence of the geometric axioms for differentially closed fields,

Proposition 14, and intersection theory, Ehud Hrushovski and Anand

Pillay derived explicit bounds on the number of generic points on

subvarieties of semiabelian varieties.

Theorem 32 (Hrushovski, Pillay) Let K be a finitely generated field

extension ofQalg. Let G be a semiabelian variety defined overQalg.

Suppose that X⊆ G is an irreducible subvariety defined overQalg which

cannot be expressed as X1 + X2 for some positive dimensional

subvarieties X1 and X2 of G. If0 < G(K ) is a finitely generated group

with 0 ∩ G(Qalg) finite, then the number of points in

0 ∩ (X(K ) \ X(Qalg)) is finite and may be bounded by an explicit

function of geometric data.
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There is a general theory ofliaisonor bindinggroups in stable theories.
When specialized to the case of differentially closed fields, these liaison
groups give a differential Galois theory which properly extends the
Picard-Vessiot and Kolchin stronlgy normal Galois theories.

Definition 33 Let K be a differential field and X a Kolchin constructible

set defined over K . LetU ⊇ K be a universal domain for differentially

closed fields extending K . A differential field extension K⊆ L ⊆ U is

called X-strongly normalif

• L is finitely generated over K as a differential field,

• X(K ) = X(Ldi f ), and

• If σ ∈ Aut(U/K ) is a differential field automorphism ofU fixing K ,

thenσ(L) ⊆ L〈X(U)〉.

The extension is calledgeneralized strongly normalif it is X-strongly

normal for some X.
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Kolchin’s strongly normal extensions are exactly theU∂ -stongly normal

extensions.

Theorem 16 (Pillay, Poizat) If L/K is an X-strongly normal extension,

then there is a differential algebraic group GL/K defined over K and a

group isomorphismµ : Aut(L〈X(U)〉/K 〈X(U)〉) → GL/K (U).
Moreover, there is a natural embedding

Aut(L/K ) ↪→ Aut(L〈X(U)〉/K 〈X(U)〉) and with respect to this

embedding we haveµ(Aut(L/K )) = GL/K (K ).

As with Kolchin’s differential Galois theory, we have a Galois

correspondence between intermediate differential fields betweenK ⊆ L

and differential algebraic subgroups ofGL/K defined overK .
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Moreover, every differential algebraic group may be realized as the

differential Galois group of some generalized strongly normal differential

field extension. Thus, as every differential Galois group of a Kolchin

strongly normal extension is a group of constant points of an algebraic

group over the constant and there are other differential algebraic groups

(Manin kernels, for example) differential Galois theory of generalized

strongly normal extensions properly extends Kolchin’s theory.

However, there are many finitely generated differential field extensions

which are not generalized strongly normal. Trivial equations produce this

phenomenon as well.
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Definition 34 Let X and Y be strongly minimal sets. Denote by

π : X × Y → X andν : X × Y → Y the projections to X and to Y ,

respectively. We say that X and Y are non-orthogonal if there is an

infinite definable set0 ⊆ X × Y such thatπ �0 andν �0 are finite-to-one

functions.

Theorem 24 may be restated asIf X is a non-locally modular strongly

minimal set in a universal domainU for DCF0, then X 6⊥ U∂ .

Theorem 25 together with a general group existence theorem of

Hrushovski implies that ifX is a nontrivial, locally modular, strongly

minimal set in a differentially closed field, thenX is non-orthogonal to

the Manin kernel of some simple abelian variety. Moreover,A] 6⊥ B] if

and only if A andB are isogenous abelian varieties.

Question 17 How can one classify trivial strongly minimal sets in

differentially closed fields up to nonorthogonality?
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Question 18 Is there a structure theory for trivial strongly minimal sets

in differentially closed fields analogous to the structure theory for locally

modular groups?

It is possible for a general trivial strongly minimal set to have no structure

whatsoever, but it is also possible for it to carry some structure. For

example, the natural numbersN given together with the successor

functionS : N → N defined byx 7→ x + 1 is a trivial strongly minimal

set.

The answers to Questions 17 and 18 are unknown in general. In

particular, it is not known whether there is some trivial strongly minimal

setX definable in a differentially closed field having a definable function

f : X → X with infinite orbits.

However, fororder onetrivial strongly minimal sets defined over the

constants, there are satisfactory answers to these questions.
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Definition 35 Let K ⊆ U be a countable differential subfield of the

universal domain. Let X⊆ Un be a constructible set defined over K . We

define theorderof X to be the maximum oftr.degK K 〈x〉 as x ranges over

X.

Definition 36 Let X be a strongly minimal set defined over the set A. We

say that X istotally degenerateif every permutation of X is induced by an

element ofAut(U/A).

Theorem 19 (Hrushovski, Itai) If X is a trivial order one set defined

over the constants, then there is some totally degenerate X′ with X 6⊥ X′.

Corollary 37 Let f(x, y) ∈ U∂ [x, y] be a nonzero polynomial with

constant coefficients. If{a ∈ U : f (a,a′) = 0} ⊥ U∂ , then the number of

solutions to f(a,a′) = 0 in a differential field K is bounded by a function

of tr.deg(K ).
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There has been significant development of the model theory of differential

fields of positive characteristic.

Carol Wood showed that the theory of differential fields of characteristic

p admits a model companion DCFp, the theory of differentially closed

fields of characteristicp.

However, differential fields satisfying fewer equations have proved to be

more useful. The theory of separably closed fields of finite imperfection

degree underlies Hrushovski’s proof of the positive characteristic

Mordell-Lang conjecture.
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Differential algebra has played a crucial role in the model theoretic
analysis of well-behaved real-valued functions.

Definition 38 Ano-minimalexpansion ofR is aσ -structure onR for

some signatureσ having a binary relation symbol< interpreted in the

usual manner such that for anyLR(σ )-formulaψ(x) with one free

variable x the setψ(R) is a finite union of intervals and points.

Example 20 • R considered just as an ordered set is o-minimal.
[Cantor]

• R considered as an ordered field is o-minimal. [Tarski]

Theorem 21 (Wilkie) The expansion ofR by the field operations and the

exponential function is o-minimal.

Behind the proof of Theorem 21 is another theorem of Alex Wilkie on
expansions ofR by restricted Pfaffian functions.
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Definition 39 Let f1, . . . , fn be a sequence of differentiable real valued

functions on[0,1]m. We say that this sequence is aPfaffian chainif
∂ fi
∂x j

∈ R[x1, . . . , xm, f1, . . . , fi ] for each i≤ n and j ≤ m. We say that

f is aPfaffian functionif f belongs to some Pfaffian chain.

Example 22 ex restricted to the interval [0,1] is Pfaffian.

Theorem 23 (Wilkie) If f1, . . . , fn is a Pfaffian chain, then

(R,+, · · · , <, f1, . . . , fn) is o-minimal.

Patrick Speisseger has generalized Wilkie’s result to the case where the

base structure is an arbitrary o-minimal exapansion ofR rather than

simply the real field.
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Definition 40 A Hardy fieldis a subdifferential field H of the germs at

+∞ of smooth real-valued functions on the real line which is totally

ordered by the relation f< g ⇔ (∃R ∈ R)(∀x > R) f (x) < g(x).

If R is an o-minimal expansion ofR, then the set of germs at+∞ of

R-definable functions forms a Hardy fieldH(R).

Hardy fields carry a natural differential valuation with the valuation ring

being the set of germs with a finite limit and the maximal ideal being the

set of germs which tend to zero.
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Definition 41 Let (K , ∂) be a differential field. Adifferential valuation

on K (in the sense of Rosenlicht) is a valuationv on K for which

• v(x) = 0 for any nonzero constant x∈ (K ∂)×,

• for any y withv(y) ≥ 0 there is someε with ∂(ε) = 0 and

v(y − ε) > 0, and

• v(x), v(y) > 0 ⇒ v(
y∂(x)

x ) > 0.
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Angus Macintyre, Dave Marker, and Lou van den Dries introduced the

logarithmic-exponential series,R((t))L E, by closingR((t)) under

logarithms, exponentials, and generalized summation.

R((t))L E carries a natural derivation and differential valuation.

For all known examplesR of o-minimal expansions ofR, there is a

natural embeddingH(R) ↪→ R((t))L E.

These embeddings, which may be regarded as divergent series

expansions, can be used to show that certain functions cannot be

approximated by other more basic function. In answer to a question of

Hardy, they show the following theorem.

Theorem 24 The compositional inverse to(logx)(log logx) is not

assymptotic to any function obtained by repeated composition of

semi-algebraic functions, ex, andlogx.
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The empirical fact that many interesting Hardy fields embed into

R((t))L E suggests the conjecture that the theory ofR((t))L E is the model

companion of the universal theory of Hardy fields.

Joris van der Hoeven has announced a sign change rule for differenial

polynomials over (his version of)R((t))L E. This result would go a long

way towards proving the model completeness ofR((t))L E.

Matthias Aschenbrenner and Lou van den Dries have isolated a class of

ordered differential fields with differential valuations,H -fields, to which

every Hardy field belongs. They show, among other things, that the class

of H -fields is closed under Liouville extensions.
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The model theory of valued differential fields serves as a framework for

studying perturbed equations has also been developed.

Definition 42 A D-ring is a commutative ring R together with an element

e ∈ R and an additive function D: R → R satisfying D(1) = 0 and

D(x · y) = x · D(y)+ y · D(x)+ eD(x)D(y).

If (R, D,e) is a D-ring, then the functionσ : R → R defined by

x 7→ eD(x)+ x is a ring endomorphism.

If e = 0, then aD-ring is just a differential ring. Ife ∈ R× is a unit, then

Dx =
σ(x)−x

e so that aD-ring is just a difference ring in disguise.

Definition 43 A valued D-field is a valued field(K , v) which is also a

D-ring (K , D,e) and satisfiesv(e) ≥ 0 andv(Dx) ≥ v(x) for all x ∈ K.
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Example 25 • If (k, D,e) is a D-field andK = k((ε)) is the field of

Laurent series overk with D extended byD(ε) = 0 and continuity,

thenK is a valuedD-field.

• If (k, ∂) is a differential field of characteristic zero,

σ : k((∂)) → k((ε)) is the mapx 7→
∑

∞

i =0
1
n! ∂

n(x)εn, andD is

defined byx 7→
σ(x)−x

ε
, then(k((ε)), D, ε) is a valuedD-field.

• If k is a field of characteristicp > 0 andσ̄ : k → k is any

automorphism, then there is a unique lifting ofσ̄ to an autmorphism

σ : W(k) → W(k) of the field of quotients of the Witt vectors ofk.

DefineD(x) := σ(x)−x
p , then(W(k), D, p) is a valuedD-field.
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Definition 44 A valued D-field(K , v, D,e) is D-henselian if

• K has enough constants:(∀x ∈ K )(∃ε ∈ K ) v(x) = v(ε) and

Dε = 0 and

• K satisfies D-hensel’s lemma: if P(X0, . . . , Xn) ∈ OK [X0, . . . , Xn]
is polynomial withv-integral coefficients and for some a∈ OK and

integer i we havev(P(a, . . . , Dna)) > 0 = v( ∂P
∂Xi
(a, . . . , Dna)),

then there is some b∈ OK with P(b, . . . , Dnb) = 0 and

v(a − b) > 0.

Theorem 26 The theory of D-henselian fields withv(e) > 0, densely

ordered value group, and differentially closed residue field of

characteristic zero is the model completion of the theory of

equicharacteristic zero valued D-fields withv(e) > 0.

There are refinements (with more complicated statements) of Theorem 26
with v(e) ≥ 0 and restrictions on the valued group and residue field.
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The relative theorem in the case of a lifting of a Frobenius on the Witt

vectors may be the most important case.

Theorem 27 (B́elair, Macintyre, Scanlon) In a natural expansion of the

language of valued difference fields, the theory of the maximal unramified

extension ofQp together with an automorphism lifting the p-power

Frobenius map eliminates quantifiers and is axiomatized by

• the axioms for D-henselian fields of characteristic zero,

• the assertion that the residue field is algebraically closed of

characteristic p and that the distinguished automorphism is the map

x 7→ xp, and

• the assertion that the valued group satisfies the theory of(Z,+,0, <)
with v(p) being the least positive element.
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Model theorists have also analyzeddifference algebrain some depth.

Definition 45 A difference ringis a ring R given together with a

distinguished ring endomorphismσ : R → R.

Difference algebra admits universal domains in a weaker sense than does
differential algebra.

Proposition 28 The theory of difference fields admits a model

companion,ACFA. A difference field(K ,+, ·, σ,0,1) satisfiesACFA if

and only if K = K alg, σ : K → K is an automorphism, and for any

irreducible variety X defined over K and irreducible Zariski constructible

set W⊆ X × σ(X) projecting dominantly onto X and ontoσ(X), there is

some a∈ X(K ) with (a, σ (a)) ∈ W(K ).

Unlike DCF0, the theory ACFA isnot totally transcendental, but it is
supersimple. In fact, the analysis of ACFA preceeded the development of
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the general theory of simple theories.

Zoé Chatzidakis, Ehud Hrushovski, and Ya’akov Peterzil have proved an

analogue of Theorem 24 for ACFA.

As a consequence of these theorems, Ehud Hrushovski derived an

effective version of the Manin-Mumford conjecture.

While it is essentially impossible to actually construct differentially

closed fields, limits of Frobenius automorphisms provide models of

ACFA.

Theorem 29 (Hrushovski, Macintyre) Let R :=
∏

n∈ω,p primeFalg
pn . Let

σ : R → R be defined by(apn) 7→ (apn

pn ). If m ⊆ R is a maximal ideal

for which R/m is not locally finite, then(R/m, σ̄ ) |= ACFA.
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