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Abstract. Building on the abstract notion of prolongation developed in [10],

the theory of iterative Hasse-Schmidt rings and schemes is introduced, simul-
taneously generalising difference and (Hasse-Schmidt) differential rings and

schemes. This work provides a unified formalism for studying difference and
differential algebraic geometry, as well as other related geometries. As an

application, Hasse-Schmidt jet spaces are constructed generally, allowing the

development of the theory for arbitrary systems of algebraic partial differ-
ence/differential equations, where constructions by earlier authors applied only

to the finite-dimensional case. In particular, it is shown that under appropri-

ate separability assumptions a Hasse-Schmidt variety is determined by its jet
spaces at a point.
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1. Introduction

The algebraic theories of ordinary and partial differential equations, difference
equations, Hasse-Schmidt differential equations, and mixed difference-differential
equations bear many formal analogies and some of the theory may be developed
uniformly under the rubric of equations over rings with fixed additional operators.
In this paper, a continuation of [10], we propose a unified theory of rings with
stacks of compatible operators, what we call generalised iterative Hasse-Schmidt
rings, and then undertake a detailed study of the infinitesimal structure of Hasse-
Schmidt varieties showing how to define jet spaces for these Hasse-Schmidt varieties
and that the jet spaces determine the varieties under a separability hypothesis.

Before we consider Hasse-Schmidt rings in full generality, let us consider the
special case of ordinary differential rings. Here we have a commutative ring R given
together with a derivation ∂ : R→ R. At one level, to say that ∂ is a derivation is
simply to say that ∂ is additive and satisfies the Leibniz rule. On the other hand,
we could say that the exponential map R → R[ε]/(ε2) given by x 7→ x + ∂(x)ε is
a ring homomorphism. When R is a Q-algebra, this truncated exponential map
lifts to a ring homomorphism R → R[[ε]] given by x 7→

∑
1
n!∂

n(x)εn. If we define
∂n(x) := 1

n!∂
n(x), then the exponential map takes the form x 7→

∑
∂n(x)εn. Let

us note that we have a formula relating composites of the ∂n operators with single
applications. Indeed,

(
n+m

n

)
∂n+m = (n+m)!

n!m!
1

(n+m)!∂
n+m = 1

n!∂
n ◦ 1

m!∂
m = ∂n ◦ ∂m.

From the defining equation for ∂n, it is clear that it gives no more information
than is already given by the first derivative ∂. However, we could consider the
general category of Hasse-Schmidt differential rings which are rings R given together
with a sequence of additive operators ∂n : R→ R for which the function R→ R[[ε]]
given by a 7→

∑∞
n=0 ∂n(a)εn is a ring homomorphism, and the operators satisfy the

rule that ∂0 = id and
(
n+m

n

)
∂n+m = ∂n◦∂m. Dropping the hypothesis that R is a Q-

algebra, one finds Hasse-Schmidt differential rings for which the higher operators
need not be determined by the first derivative. Indeed, the language of Hasse-
Schmidt differential rings is the appropriate framework for studying differential
equations in positive characteristic.

As explained already by Matsumura (Section 27 of [8] ), the iteration rule,(
n+m

n

)
∂n+m = ∂n ◦∂m, may be expressed as a commuting diagram. Let (R, 〈∂i : i ∈

N〉) be a Hasse-Schmidt differential ring. That is to say, the map Eε : R → R[[ε]]
given by x 7→

∑
∂n(x)εn is a ring homomorphism. Extending each ∂n continuously

to R[[ε]] by defining ∂0(ε) := ε and ∂n(ε) := 0 for n > 0, we obtain a second ex-
ponential homomorphism Eη : R[[ε]] → R[[ε]][[η]]. On the other hand, there is a
natural continuous homomorphism ∆ : R[[ζ]] → R[[ε]][[η]] given by ζ 7→ (ε + η).
Expanding the powers of (ε+ η), one sees easily that the iteration rule holds if and
only if ∆ ◦ Eζ = Eη ◦ Eε. That is, the following diagram is commutative.

R
Eε−−−−→ R[[ε]]

Eζ

y yEη

R[[ζ]]
ζ 7→(ε+η)−−−−−−→ R[[ε]][[η]]

We generalise this ring-theoretic treatment of iterative Hasse-Schmidt differ-
ential rings to produce a theory of generalised Hasse-Schmidt rings by encoding
the generalised Leibniz rules via exponential maps and the iteration rules via a
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commutative diagram analogous to the one describing the iteration rule for Hasse-
Schmidt derivations. To present a notion of an iterative Hasse-Schmidt ring we need
two kinds of data. First, we need a projective system of finite free ring schemes
D := (πi,j : Di → Dj | 0 ≤ j ≤ i < ω). That is, we ask that each Di is, as an addi-
tive group scheme, simply some finite cartesian power of the usual additive group
scheme while multiplication is given by some regular functions. A D-ring structure
on R is then given by a sequence of ring homomorphisms Ei : R → Di(R) which
are compatible with the projective system. So in the differential setting Di(R)
was R[ε]/(εi+1) and Ei was a 7→

∑i
n=0 ∂n(a)εn. In this general setting, fixing the

identifications of each Di with a power of the additive group, the map Ei may be
presented as x 7→ (∂(i)

0 (x), . . . , ∂(i)
mi(x)) where each ∂

(i)
k : R → R is an additive

operator. To say that these operators give R a D-ring structure is equivalent to
imposing certain generalised Leibniz rules and identities relating the components of
Ei to those of Ej . The second kind of data we require is a collection of morphisms
of ring schemes ∆i,j : Di+j → Di ◦ Dj . For (R, 〈Ei : i ∈ N〉) to be an iterative
D-ring we require the following diagrams to commute.

R
Ej−−−−→ Dj(R)

Ei+j

y yDj(Ei)

Di+j(R)
∆i,j−−−−→ Di(Dj(R))

We were led to this notion of iteration by considering Matsumura’s presentation of
the theory for Hasse-Schmidt derivations.

This theory of generalised iterative Hasse-Schmidt rings is developed in Sec-
tion 2. In the appendix we discuss several examples, other than the differential
one, showing that this formalism captures many of the interesting cases of rings
with distinguished operators.

Our main goal is to understand algebraic equations involving Hasse-Schmidt
operators and these equations are naturally encoded by Hasse-Schmidt schemes, or
really, Hasse-Schmidt subschemes of algebraic schemes. To make the issues more
concrete, a D-equation in some D-ring R is simply an algebraic equation on the
variables and several of the operators ∂(i)

k applied to the variables. As such, the set
of solutions naturally forms a subset of the R-points of some algebraic scheme X
and the equations themselves are encoded by projective systems of subschemes of
prolongation spaces of X. We shall refer to these projective systems as D-schemes.
They are studied in some detail in Section 3.

If X is an algebraic variety over a field k, then by the nth jet space of X at a
point p ∈ X(k) we mean the space Homk

(
mX,p/m

n+1
X,p , k

)
. In Section 4 we define jet

spaces for D-varieties and show that they have enough points to distinguish between
different D-subvarieties, at least under an appropriate separability hypothesis. We
have already encountered the main difficulty in [10]; the prolongation space and jet
space functors do not commute. However, in that paper, and based on a prototype
already appearing in the work of Pillay and Ziegler (section 5 of [11]), we introduced
an interpolation map which compares the jet space of a prolongation with the
prolongation of a jet space. This is the key technical ingredient in our construction
of jet spaces for D-varieties.

To close this introduction, let us be clear about our aims in the present paper.
We develop the geometry of algebraic equations involving additional operators.
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While our setting may be regarded as a generalisation of difference, differential,
and Hasse-Schmidt differential algebra, our main goal is to unify these subjects
rather than to generalise them (though our formalism does allow for such a gen-
eralisation). This unification manifests itself not only in proofs and constructions
which apply equal well to each of the principal examples, but in a precise for-
malism for studying confluence between Hasse-Schmidt differential and difference
algebraic geometry. In terms of the geometry, our primary goal is to make sense
of the linearisation of general D-equations through a jet space construction and
then to show that these linear spaces determine the D-varieties, at least under suit-
able separability hypotheses. By the Krull intersection theorem this last point is
a tautology for algebraic varieties, but it is far from obvious even when one spe-
cialises to a well-known theory of fields with operators such as partial difference
or differential algebra. For finite-dimensional difference/differential varieties, jet
spaces were constructed by Pillay and Ziegler [11]. Our theory extends theirs to
the infinite-dimensional setting.

In the present paper, we do not develop the model theory of general D-fields
and leave such questions as the existence of model companions, simplicity, the be-
haviour of ranks, et cetera to a later work. Jet spaces were the key technical devices
of the Pillay-Ziegler geometric proofs of the dichotomy theorem for minimal types
in differentially closed fields of characteristic zero. In [9], arc spaces substituted for
jet spaces to extend the dichotomy theorem to regular types. While arc spaces did
the job in the differential case, jet spaces are preferable because they give a direct
linearisation of the equations. Provided that the foundational model-theoretic is-
sues are resolved, our theorem on D-jet spaces determining D-varieties should give
information about canonical bases of (quantifier-free) types in the corresponding
theory of D-fields.

Likewise, there are some closely allied algebraic issues we do not pursue here.
For example, jet spaces are clearly connected to a general theory of D-modules.
Moreover, we have not fleshed out the theory of specialisations of D-rings nor in
its local form a theory of valued D-fields. Each of these further developments
motivates our research into jet spaces for Hasse-Schmidt varieties and will be taken
up in future work.

We are very grateful to the referee for making some very helpful suggestions.

2. Generalised Hasse-Schmidt rings

Let us recall the following conventions and definitions from [10]. In this paper, all
our rings are commutative and unitary and all our ring homorphisms preserve the
identity. All schemes are separated. A variety is a reduced scheme of finite-type
over a field, but is not necessarily irreducible. Throughout this paper we fix a ring
A and work in the categories of A-algebras and schemes over A.

The standard ring scheme S over A is the scheme Spec
(
A[x]

)
endowed with the

usual ring scheme structure. So for all A-algebras R, S(R) = (R,+,×, 0, 1). An
S-algebra scheme E over A is a ring scheme together with a ring scheme morphism
sE : S → E over A. We view S as an S-algebra via the identity id : S → S. A
morphism of S-algebra schemes is then a morphism of ring schemes respecting the
S-algebra structure. Similarly one can define S-module schemes and morphisms.

Definition 2.1. By a finite free S-algebra scheme with basis we mean an S-algebra
scheme E together with an S-module isomorphism ψE : E → S`, for some ` ∈ N.
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The data of a finite free S-algebra scheme with basis is really nothing more than
a finite free A-algebra with an A-basis. Indeed, fixing ψE means that we have a

canonical choice of basis {1, e1, . . . , e`−1} for E(A) over A. Write eiej =
`−1∑
k=1

ai,j,kek

where ai,j,k ∈ A. So for any A-algebra R, E(R) is the R-algebra R[X1, . . . , X`−1]/I

where I is generated by polynomials of the form XiXj −
`−1∑
k=1

ai,j,kXk. This means

that we can canonically identify E(R) with R ⊗A E(A), both as an R-algebra
and an E(A)-algebra. In particular, E is determined by E(A). Conversely, ev-
ery finite free A-algebra with an A-basis naturally determines a finite free S-
algebra scheme with basis. Indeed, if the given A-basis of B is {b0, . . . , b`−1}

then write bibj =
`−1∑
k=0

ai,j,kbk and let E be the S-algebra scheme whose underying

scheme is A`
A, addition is co-ordinatewise, and comultiplication A[Z0, . . . , Z`−1]→

A[Z0, . . . , Z`−1] ⊗A A[Z0, . . . , Z`−1] is given by Zk 7→
∑
i,j

ai,j,k(Zi ⊗ Zj). Then

E(A) = B.

Given a finite free S-algebra scheme E , an E-ring is an A-algebra k together with
an A-algebra homomorphism e : k → E(k). A detailed study of E-rings was carried
out in [10], and we will assume the results of that paper in what follows. We are
interested here in rings equipped with an entire directed system of E-ring structures
for various E . The following definition of a Hasse-Schmidt system is a variation on
Definition 2.1.1 of the second author’s PhD thesis [12], differing in a few important
details.

Definition 2.2 (Hasse-Schmidt system). A generalised Hasse-Schmidt system over
A is a projective system of finite free S-algebra schemes with bases over A,

D = (πm,n : Dm → Dn | n ≤ m < ω),

such that D0 = S and the transition maps πm,n are surjective ring scheme mor-
phisms over A. We denote by sn : S → Dn the S-algebra structure on Dn and by
ψn : Dn → S`n the S-module isomorphisms witnessing a basis for Dn.

Remark 2.3. The use of scheme-theoretic language for describing Hasse-Schmidt
systems is mostly a matter of taste and convenience; it can easily be avoided.
Indeed, by the discussion following Definition 2.1 above, evaluating at A yields a
bijective correspondence between Hasse-Schmidt systems and projective systems of
finite free A-algebras equipped with A-bases.

Definition 2.4 (Hasse-Schmidt ring). Suppose D is a Hasse-Schmidt system over
A. A generalised Hasse-Schmidt ring (or D-ring) over A is an A-algebra equipped
with a system of Dn-ring structures that are compatible with π. That is, a D-ring
is a pair (k,E) where k is an A-algebra and E = (En : k → Dn(k) | n ∈ N) is a
sequence of A-algebra homomorphisms such that

(i) E0 = id,
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(ii) the following diagram commutes for all m ≥ n

Dm(k)
πk

m,n // Dn(k)

k

Em

bbEEEEEEEEE En

<<zzzzzzzzz

Remark 2.5. (a) One may equally well describe aD-ring by giving a collection
of maps (∂i,n : k → k | n ∈ N, i ≤ `n) via the correspondence ψn ◦ En =
(∂1,n, . . . , ∂`n,n). That the collection (∂i,n) so defines a D-ring structure on
k is equivalent to the satisfaction of a certain system of functional equations.

(b) Our choice of a natural-number-indexing for Hasse-Schmidt systems is con-
venient but not absolutely necessary. Indeed, some contexts may be more
naturally dealt with by considering Hasse-Schmidt systems indexed by Nr

or even Zr. However, indexing by N does simplify the exposition somewhat,
and all our examples can be made to fit into this setting.

The first example of a Hasse-Schmidt system is where each Dn = S and πm,n =
ψn = id. Then for any A-algebra k, the only D-ring structure on k is the trivial one
with En = id. This example captures the context of rings without any additional
structure. Our main example, that of Hasse-Schmidt differential rings, is discussed
below. See the Appendix for a discussion of several other examples including dif-
ference rings, an analogue of q-iterative difference rings, and difference-differential
rings.

Example 2.6 (Hasse-Schmidt differential rings). Here A = Z. Consider the Hasse-
Schmidt system HSDe = (πm,n : Dm → Dn | n ≤ m < ω) where for any ring R

• Dn(R) = R[η1, . . . , ηe]/(η1, . . . , ηe)n+1, where η1, . . . , ηe are indeterminates;
• sR

n : R→ Dn(R) is the natural inclusion;
• ψR

n : Dn(R)→ R`n is an identification via a fixed ordering of the monomial
basis of R[η1, . . . , ηe]/(η1, . . . , ηe)n+1 over R; and,
• for m ≥ n, πR

m,n : Dm(R)→ Dn(R) is the quotient map.

Note that this does uniquely determine a Hasse-Schmidt system (even considering
only R = Z, see Remark 2.3). Writing En(x) =

∑
α∈Ne,|α|≤n

∂α(x)ηα, an HSDe-ring is

a ring k together with a sequence of additive maps (∂α : k → k | α ∈ Ne) satisfying
∂α(xy) =

∑
β+γ=α

∂β(x)∂γ(y), ∂0 = id, and ∂α(1) = 0 for |α| > 0.

The principal example of an HSDe-ring is a ring equipped with e Hasse-Schmidt
derivations. Recall that a Hasse-Schmidt derivation on a ring k is a sequence of
additive maps from k to k, D = (D0, D1 . . . ), such that

• D0 = id and
• Dn(xy) =

∑
a+b=n

Da(x)Db(y).

(cf. Section 27 of [8], for example.) Suppose D1, . . . ,De is a sequence of e Hasse-
Schmidt derivations on k and set E(x) =

∑
α∈Ne

D1,α1D2,α2 · · ·De,αe(x)η
α. Then

E : k → k[[η1, . . . , ηe]] is a ring homomorphism and we can view it as a system
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(En | n < ω) where En is the composition of E with the quotient k[[η1, . . . , ηe]]→
k[η1, . . . , ηe]/(η1, . . . , ηe)n+1. Then (k,E) is an HSDe-ring.

This example specialises further to the case of partial differential fields in charac-
teristic zero. Suppose k a field of characteristic zero and ∂1, . . . , ∂e are derivations

on k. Then Di,n :=
∂n

i

n!
, for 1 ≤ i ≤ e and n ≥ 0, defines a sequence of Hasse-

Schmidt derivations on k. The HSDe-ring structure on k is given in multi-index

notation by En(x) :=
∑

α∈Ne,|α|≤n

1
α!
∂α(x)ηα where ∂ := (∂1, . . . , ∂e).

On the other hand we can specialise in a different direction to deal with fields of
finite imperfection degree. The following example is informed by [14]: suppose k is
a field of characteristic p > 0 with imperfection degree e. Let t1, . . . , te be a p-basis
for k. Consider Fp[t1, . . . , te] and for 1 ≤ i ≤ e and n ∈ N, define

Di,n(tα1
1 · · · tαe

e ) :=
(
αi

n

)
tα1
1 · · · t

αi−n
i · · · tαe

e .

and extend by linearity to Fp[t1, . . . , te]. Then (D1, . . . ,De) is a sequence of Hasse-
Schmidt derivations on Fp[t1, . . . , te]. Moreover, they extend uniquely to Hasse-
Schmidt derivations on k (see Lemma 2.3 of [14]). This gives rise to an HSDe-ring
structure on k.

It is not the case that every HSDe-ring is a Hasse-Schmidt differential ring.
In section 2.2 below we will introduce the notion of iterativity for Hasse-Schmidt
systems, which when applied to this example will allow us to capture exactly the
(commuting and iterative) Hasse-Schmidt differential rings.

2.1. Hasse-Schmidt prolongations. A generalised Hasse-Schmidt structure on
a ring k induces, for every algebraic scheme X over k, a sequence of (abstract)
prolongations of X in the sense of [10]. We recall the construction here.

Fix a generalised Hasse-Schmidt system D over A, and a D-ring (k,E).

Definition 2.7 (The exponential algebra structure). For each n, by the exponential
k-algebra structure on the underlying ring of Dn(k) we mean the k-algebra structure
coming from the ring homomorphism En : k → Dn(k). We denote this k-algebra
by DEn

n (k). More generally, given any k-algebra a : k → R, DEn
n (R) denotes the

exponential k-algebra given by

k
En // Dn(k)

Dn(a) // Dn(R)

Note that as A-algebras, DEn
n (R) and Dn(R) are identical.

Definition 2.8 (Prolongations). Suppose X is a scheme over k. The nth prolonga-
tion of X, τ(X,Dn, En), or just τnX for short, is the Weil restriction ofX×kDEn

n (k)
from Dn(k) to k (when it exists). We usually write τX for τ1X. Note that the base
extension is with respect to the exponential k-algebra, while the Weil restriction is
with repect to the standard k-algebra.

See §2 of [10] for details on the Weil restriction functor. In particular, it fol-
lows from the discussion there (and it is well known) that the Dn(k) over k Weil
restriction functor takes affine schemes over Dn(k) to affine schemes over k. As the
base change functor also preserves affine schemes, we see that the prolongation of
an affine scheme over k is again an affine scheme over k.
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But what is the prolongation really? By Lemma 4.5 of [10], its characteristic
property is that for any k-algebra R, there is a canonical identification

(1) τnX(R) = X
(
DEn

n (R)
)
.

Indeed, recall that coming from the definition of prolongations via Weil restrictions
we have an nth canonical morphism rX

n : τnX ×k Dn(k) → X for each n ∈ N.
The identification τnX(R) = X

(
DEn

n (R)
)

is then by p 7→ rX
n ◦

(
p ×k Dn(k)

)
. See

Definition 4.3 of [10] for details. One thing to remark is that rX
n is not over k in

the usual manner, rather we have the commuting diagram

τnX ×k Dn(k)
rX

n //

((PPPPPPPPPPPP X

��

Spec
(
Dn(k)

)
Spec(En) &&NNNNNNNNNNN

Spec(k)

where Spec(En) is the morphism of schemes induced by En : k → Dn(k). Put
another way, working at the level of co-ordinate rings, rX

n induces a k-algebra
morphism from k[X] to DEn

n

(
k[τnX]

)
.

Remark 2.9. The prolongation functor thus induces a functor on k-algebras, as-
signing to the co-ordinate ring of an affine k-scheme X the co-ordinate ring of the
affine k-scheme τnX, which is left-adjoint to the functor R 7→ DEn

n (R). Indeed, this
is exactly what the displayed identity (1) above asserts.

Definition 2.10 (The nabla map). For X a scheme over k, under the above iden-
tification, En : k → DEn

n (k) induces a map ∇n : X(k)→ τnX(k).

Remark 2.11. (a) It is not always the case that the Weil restriction, and
hence the prolongation, exists. However, if X is such that every finite set
of points in X is contained in an affine open subscheme, then τnX does
exist. In particular prolongations of quasi-projective schemes always exist.
For more details on Weil restrictions see Section 2 of [10].

(b) Definition 2.8 is just the definition of an abstract prolongation (Defini-
tion 4.1 of [10]), specialised to the finite free S-algebra schemes Dn. It
follows from the work in that paper that τn is a covariant functor which
preserves étale morphisms, smooth embeddings, and closed embeddings (cf.
Proposition 4.6 of [10]).

(c) The nabla map is only defined on k-points, or more generally on points
lying in D-ring extension of (k,E), and not in arbitrary k-algebras. It is a
“D-algebraic” map.

Example 2.12. In our main examples the prolongation spaces specialise to the
expected objects. So for pure rings (when Dn = S) we get τnX = X. For rings
equipped with endomorphisms σi (this is Example 5.1 of the Appendix, when D =
End), τnX = X × Xσ1 × · · · × Xσn , and ∇n(x) =

(
x, σ1(x), . . . , σn(x)

)
. In the

Hasse-Schmidt differential case of Example 2.6, the τnX and ∇n are the usual
differential prolongations with their differential sections. For example, if (k, δ) is an
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ordinary differential field of characteristic zero, then ∇n(x) =
(
x, δ(x), . . . , δn(x)

n!

)
.

See Example 4.2 of [10] for more details on these particular cases. It is also worth
pointing out that if we take δ = 0 then τnX is the nth arc space of X, ArcnX,
and ∇n is the zero section. See [4] for a survey on arc spaces. (They are the higher
tangent bundles; Arc1X is the tangent bundle of X.)

For m ≥ n, the morphisms πm,n : Dm → Dn induce morphisms π̂m,n : τmX →
τnX. Indeed, since k is a D-ring, we have that πk

m,n : DEm
m (k) → DEn

n (k) is a k-
algebra homomorphism, and so, for any fixed k-algebra R, so is the corresponding
πR

m,n : DEm
m (R) → DEn

n (R). Now on R-points, using the identification (1) above,
π̂m,n is just the map induced by πR

m,n. See section 4.1 of [10] for more details on
the morphism between prolongations induced by a morphism of finite free S-algebra
schemes. Setting m = 0 we see that the nth prolongation obtains the structure of
a scheme over X; namely, π̂n,0 : τnX → X.

Lemma 2.13. Suppose X is a scheme over k. For each n < ω, ∇n is a section to
π̂k

n,0 : τnX(k)→ X(k) and satisfies π̂n+1,n ◦ ∇n+1 = ∇n.

Proof. Immediate from the definitions. �

Proposition 2.14. Suppose k is a field and X is a variety (so reduced and of
finite-type). For all m ≥ n, π̂m,n : τmX → τnX is a dominant morphism.

Proof. This is well known in our main examples, including arc spaces (cf. [4]),
difference- and differential prolongations. The usual proofs in those cases extend
to this setting, but we nevertheless give some details.

Let K = kalg be the algebraic closure of k. On K-points π̂m,n is the map
X

(
DEm

m (K)
)
→ X

(
DEn

n (K)
)

induced by πm,n : DEm
m (K) → DEn

n (K). Hence the
proposition will follow from the following general claim:

Claim 2.15. If ρ : R→ S is a surjective map of artinian K-algebras and P ∈ X(S)
is a smooth S-point of X, then there is an R-point Q ∈ X(R) sent to P by the map
induced by ρ.

Proof of Claim 2.15. First of all, we can decompose R and S as products of artinian
K-algebras, R ∼= (

∏n
i=1Ai)×C and S ∼=

∏n
i=1Bi, where the Ais and Bis are local,

and there exist local surjective homomorphisms ρi : Ai → Bi, such that for all
x = (a1, . . . , an, c) ∈ R, ρ(x) = (ρ1(a1), . . . , ρn(an)

)
. Now for each i ≤ n, let

Pi ∈ X(Bi) be the image of P under the map X(S) → X(Bi) induced by the
projection S → Bi. Since Ai is artinian and ρi : Ai → Bi is local, ker(ρi) is
nilpotent. Hence we can lift the smooth Bi-point Pi of X, to a point Qi ∈ X(Ai).
Indeed, if ker(ρi) were square zero this would be the definition of smoothness; by
induction it holds for nilpotent kernel also. As K is algebraically closed, we can find
QC ∈ X(C). Now, letting Q ∈ X(R) be the point which projects to QC ∈ X(C)
and Qi ∈ X(Ai) for i ≤ n, we get that ρ maps Q to P as desired. �

We complete the proof of Proposition 2.14. Using the functoriality of the pro-
longations, we may assume that X is irreducible over k. Now, by the claim, every
smooth point ofX

(
DEn

n (K)
)

is in the image ofX
(
DEm

m (K)
)
→ X

(
DEn

n (K)
)
. Let Y

be the proper k-closed subvariety of singular points ofX. Then under the identifica-
tion X

(
DEn

n (K)
)

= τnX(K), the set Y
(
DEn

n (K)
)

is identified with τnY (K), which
is a proper k-closed subset of τnX(K). Hence π̂m,n : τmX → τnX is dominant, as
desired. �
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We record the following fact from [10] for later use:

Fact 2.16 (Proposition 4.7(b) of [10]). Suppose f : X → Y is a morphism of
schemes over k and a ∈ Y (k). Then (τnX)∇n(a), the fibre of τn(f) : τnX → τnY
over ∇n(a), is τn(Xa). �

2.2. Iterativity. As explained in Section 4.2 of [10] we can compose finite free
S-algebra schemes. Specialising to Hasse-Schmidt systems, for all m,n ∈ N we get
finite free S-algebra schemesD(m,n) := DmDn. So for anyA-algebraR, D(m,n)(R) =
Dm

(
Dn(R)

)
where the R-algebra structure is given by

R
sR

n // Dn(R)
sDn(R)

m // Dm

(
Dn(R)

)
.

By Remark 4.10 of [10] we know that D(m,n) = DmDn is canonically isomorphic to
Dm ⊗S Dn. There are also the A-algebra homomorphisms E(m,n) : k → D(m,n)(k),
given by

k
Em // Dm(k)

Dm(En) // Dm

(
Dn(k)

)
.

What Proposition 4.12 of [10] tells us is that τn(τmX) = τ(X,D(m,n), E(m,n)) and
∇n ◦ ∇m = ∇D(m,n),E(m,n) . Note that in this context, for m′ ≤ m and n′ ≤ n,
we have the ring scheme morphisms π(m,n),(m′,n′) : D(m,n) → D(m′,n′) given by the
composition

Dm

(
Dn(R)

) Dm(πR
n,n′ ) // Dm

(
Dn′(R)

) π
D

n′ (R)

m,m′ // D′m
(
Dn′(R)

)
.

It is a matter of fact that all the examples of Hasse-Schmidt rings corresponding
to the various Hasse-Schmidt systems that we are particularly interested in sat-
isfy some further relations not implied by the definition of being a Hasse-Schmidt
ring. These further relations can be viewed as certain iterativity conditions relating
E(m,n) with Em+n. We formalise this as follows.

Definition 2.17. An iterative Hasse-Schmidt system is a Hasse-Schmidt system D
together with a sequence of closed embeddings of ring schemes

∆ =
(
∆(m,n) : Dm+n → D(m,n)

)
m,n∈N

such that:
(a) ∆ is compatible with π. That is, for all m′ ≤ m and n′ ≤ n, the following

diagram commutes:

Dm+n

πm+n,m′+n′

��

∆(m,n) // D(m,n)

π(m,n),(m′,n′)

��
Dm′+n′

∆(m′,n′) // D(m′,n′)

(b) ∆ is associative in the sense that for all `,m, n, and any A-algebra R,

D`

(
Dm+n(R)

) D`(∆
R
(m,n)) // D`

(
Dm(Dn(R))

)

D`+m+n(R)

∆R
(`,m+n)

OO

∆R
(`+m,n) // D`+m

(
Dn(R)

)∆
Dn(R)
(`,m)

OO
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commutes.
(c) ∆(m,0) = ∆(0,n) = id for all m,n ≥ 0.

We say that (k,E) is an iterative Hasse-Schmidt ring (or more accurately ∆-
iterative) if it is a D-ring and

Dm+n(k)
∆k

(m,n) // Dm (Dn(k))

k

Em+n

ccHHHHHHHHH E(m,n)

::tttttttttt

commutes for all m,n ∈ N. That is, ∆k
(m,n) : DEm+n

m+n (k)→ DE(m,n)

(m,n) (k) is a k-algebra
map for all m,n ∈ N.

Our definition of an iterative Hasse-Schmidt system was inspired by the pre-
sentation of the iteration rules for higher derivations in [8]. Other authors have
considered similar (and in some cases even more general) notions. If one were to
replace our system of ring functions by their projective limit D∞ := lim←−Dn and the
iteration system by a single natural transformation ∆ : D∞ → D∞ ◦ D∞, then our
axioms may be read as saying that D∞ is a comonad on the category of k-algebras
and an iterative Hasse-Schmidt ring would be an Eilenberg-Moore D∞-coalgebra.
This point of view is taken, for example, in the work of Borger and Wieland on
plethories [3] and of Keigher [6] in the study of algebraic D-modules. While there
are some conceptual simplifications to be gained by passing to the inverse limit and
using the theory of (co)monads, we have consciously avoided this move, partly for
the sake on concreteness, and partly because for us it is very important that the
prolongation spaces associated to finite type schemes be themselves of finite type.

Remark 2.18. For all schemes X over a D-ring (k,E), the iteration maps induce
morphisms ∆̂(m,n) : τm+nX → τnτmX such that the following diagram commutes:

τm+nX(k)
∆̂(m,n) // τnτmX(k)

X(k)
∇m+n

eeKKKKKKKKKK ∇n◦∇m

99sssssssss

(cf. Propositions 4.8(a) and 4.12 of [10]). Moreover, since the iteration maps
are closed embeddings, these induced morphisms are also closed embeddings (cf.
Proposition 4.8(c) of [10]).

We will need the following lemma later:

Lemma 2.19. Suppose (D,∆) is an iterative Hasse-Schmidt system. Then for all
m,n ∈ N, and all A-algebras R, the following diagram commutes:

Dm

(
Dn+1(R)

) Dm(πR
n+1,n)

// Dm

(
Dn(R)

)

Dm+n+1(R)

∆R
(m,n+1)

OO

∆R
(m+1,n) // Dm+1

(
Dn(R)

)πDn(R)
m

OO
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Proof. This is a combination of the associativity of ∆ together with its compatibility
with π. We will prove that the desired diagram commutes by proving that three
other diagrams commute. First of all,

Dm

(
Dn+1(R)

) Dm(∆R
(1,n)) // Dm

(
D1

(
Dn(R)

))

Dm+n+1(R)

∆R
(m,n+1)

OO

∆R
(m+1,n) // Dm+1

(
Dn(R)

)∆
Dn(R)
(m,1)

OO
(2)

commutes as it is an instance of Definition 2.17(b) (associativity). Next, note that
the following diagram is an instance of Definition 2.17(a) with (1, n) and (0, n),
using also 2.17(c), and hence commutes:

Dn+1(R)
∆R

(1,n) //

πR
n+1,n

��

D1

(
Dn(R)

)
π
Dn(R)
0uullllllllllllll

Dn(R)

Applying the functor Dm we get that

Dm

(
Dn+1(R)

) Dm(∆R
(1,n)) //

Dm(πR
n+1,n)

��

Dm

(
D1

(
Dn(R)

))
Dm

(
π
Dn(R)
0

)
ttiiiiiiiiiiiiiiii

Dm

(
Dn(R)

)
(3)

commutes. Finally, the following is also an instance of Definition 2.17(a) with (m, 1)
and (m, 0) applied to the ring Dn(R), using also 2.17(c)

Dm

(
D1

(
Dn(R)

))
Dm

(
π
Dn(R)
0

)
ttjjjjjjjjjjjjjjj

Dm

(
Dn(R)

)
Dm+1

(
Dn(R)

)∆
Dn(R)
(m,1)

OO

πDn(R)
m

oo

(4)

Putting the commuting diagrams (2), (3), and (4) together proves the lemma. �

We now point out that the Hasse-Schmidt system coming from our main example
admits a natural iteration such that the corresponding iterative Hasse-Schmidt rings
form exactly the intended class: rings equipped with commuting iterative Hasse-
Schmidt derivations. See the appendix for a discussion of iterativity for other
examples.

Consider the Hasse-Schmidt system HSDe from Example 2.6. So, for R any ring,
Dn(R) = R[η1, . . . , ηe]/(η1, , . . . , ηe)n+1. We define ∆ so that for all R, ∆R

(m,n) from

Dm+n(R) = R[η1, . . . , ηe]/(η1, , . . . , ηe)m+n+1

to
Dm

(
Dn(R)

)
= R[ζ1, . . . , ζe, ε1, . . . , εe]/(ζ1, . . . , ζe)n+1(ε1, . . . , εe)m+1

is given by ηi 7→ (ζi + εi).
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Proposition 2.20. The system ∆ = (∆(m,n) : m,n ∈ N), above, makes HSDe into
an iterative Hasse-Schmidt system. The ∆-iterative HSDe-rings in this case are
exactly the rings equipped with e commuting Hasse-Schmidt derivations satisfying
the additional identities

DaDb =
(
a+ b
b

)
Da+b

for all a, b,∈ N. (Hasse-Schmidt derivations satisfying these identities are called
iterative Hasse-Schmidt derivations.)

Proof. We first observe that (HSDe,∆) is an iterative system. Indeed, ∆m,n is a
closed embedding of ring schemes, it is compatible with π, and it is associative (the
latter is just the associativity of +), and ∆(m,0) = ∆(0,n) = id.

Now suppose (k,E) is an HSDe-ring. For each n, write En(x) =
∑

α∈Ne,|α|≤n

∂α(x)ηα.

Let Di,n := ∂(0,...,n,...,0), where here the multi-index has n in the ith co-ordinate
and 0 everywhere else. So D1 := (D1,0, D1,1, . . . ), . . . ,De := (De,0, De,1, . . . ) form
a sequence of e Hasse-Schmidt derivations. Now, writing out ∆(m,n) ◦Em+n using
the binomial coefficients, we see that ∆-iterativity in this case is equivalent to

∂α∂β =
(
α+ β
β

)
∂α+β(5)

for all multi-indices α and β. In particular it implies that each Di is an iterative
Hasse-Schmidt derivation and that they all commute (indeed all the ∂α commute).
Conversely, suppose ∂α = D1,α1 · · ·De,αe

for each α, and D1, . . . ,De form a se-
quence of e iterative commuting Hasse-Schmidt derivations. Then it is not hard to
see that (5) holds and so (k,E) is ∆-iterative. �

2.3. Jets and interpolation for Hasse-Schmidt prolongations. For a scheme
X over a ring k, by the nth jet space of X, denoted by JetnX → X, we mean the
linear space1 associated to the (coherent) sheaf of OX -modules I/In+1, where I is
the kernel of the map OX ⊗k OX → OX given on sections by f ⊗ g 7→ fg. This
is a covariant functor, its action on morphisms f : X → Y being the natural one
induced by f ] : f−1OY → OX . More concretely, if k is a field and p ∈ X(k) then
JetnXp(k) = Homk

(
mX,p/m

n+1
X,p , k

)
, and Jetn(f)p : JetnXp → Jetn Yf(p) is given

by precomposing with f ]
p : mY,f(p)/m

n+1
Y,f(p) → mX,p/m

n+1
X,p . For details we refer the

reader to section 5 of [10], which is dedicated to a review of the relevant properties
of this functor.

Jet spaces serve to linearise algebraic varieties in the sense that they can be used
to distinguish subvarieties of a given variety: Suppose Z and Z ′ are irreducible
subvarieties of an algebraic variety X over a field k, and p ∈ Z(k) ∩ Z ′(k) with
Jetn(Z)p = Jetn(Z ′)p for all n, then Z = Z ′.

One of the main purposes of our work in [10] was the introduction of a certain
map between the jet space of an abstract prolongation and the prolongation of the
jet space. In fact, a prototype for this map already appears in the work of Pillay
and Ziegler (cf. Section 5 of [11]). We now recall the interpolating map specialised
to our current setting. Fix an iterative Hasse-Schmidt system D, an iterative D-
ring (k,E), m ≥ 1, and n ≥ 0. Coming from the Weil restriction of scalars functor

1The linear space associated to a coherent sheaf of OX -modules F is Spec(Sym∗ F). When F
is locally free the linear space associated to F is dual to the vector bundle associated to F .
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there is a canonical morphism, r : τnX ×k Dn(k)→ X ×k DEn
n (k), of schemes over

Dn(k). Applying the jet functor (which commutes with base change) we get

Jetm(r) : (Jetm τnX)×k Dn(k)→ (JetmX)×k DEn
n (k).

Applying the restriction of scalars from Dn(k) to k, we get

ResDn(k)/k

(
Jetm(r)

)
: ResDn(k)/k

(
Jetm τnX ×k Dn(k)

)
→ τn JetmX

a morphism of schemes over k. Now for any scheme Y over k and any k-algebra R
there is a natural “zero section” Y → ResR/k

(
Y ×k R

)
coming from the identity

morphism on Y ×k R. Applying this to Y = Jetm τnX and R = Dn(k) gives us a
k-morphism Jetm τnX → ResDn(k)/k

(
Jetm τnX ×k Dn(k)

)
. Composing this with

ResDn(k)/k

(
Jetm(r)

)
yields a morphism

φX
m,n : Jetm τnX → τn JetmX

of schemes over k. This is the interpolating map of section 6 of [10].2 It is a
morphism of linear spaces over τnX and it satisfies the following properties:

Proposition 2.21. (a) The interpolating map is compatible with π. That is,
for all n ≥ n′, the following diagram commutes:

Jetm τnX

φm,n

��

Jetm(π̂n,n′ ) // Jetm τn′X

φm,n′

��
τn JetmX

π̂Jetm X
n,n′

// τn′ JetmX

(b) The interpolating map is compatible with ∆ in the sense that for all n, n′

the following diagram commutes:

Jetm τn+n′X

φm,n+n′

��

Jetm(∆̂(n,n′)) // Jetm τn′τnX

φm,D(n,n′),E(n,n′)

��
τn+n′ JetmX

∆̂Jetm X
(n,n′)

// τn′τn JetmX

(c) The following diagram commutes for all n, n′

Jetm τn′τnX

φm,D(n,n′),E(n,n′)

��

φτnX

m,n′

((QQQQQQQQQQQQ

τn′ Jetm τnX

τn′ (φ
X
m,n)vvnnnnnnnnnnnn

τn′τn JetmX

Proof. Part (a) is Proposition 6.4(c) of [10], applied to α = πn,n′ . Part (b) is
Proposition 6.4(c) of [10], applied to α = ∆n,n′ . Part (c) is Proposition 6.4(b)
of [10], applied to (E , e) = (Dn, En) and (F , f) = (Dn′ , En′). �

2In fact the interpolating map was defined differently in [10] where we instead describe its action
on points, but it is a straightforward exercise to see that the above description is an equivalent

characterisation.
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Besides the above foundational properties of the interpolating map, the main
observation from [10] is the following fact:

Fact 2.22 (Corollary 6.8 of [10]). Suppose k is a field and X is of finite-type. If
p ∈ X(k) is smooth, then for all m,n ∈ N, φX

m,n restricts to a surjective linear map
between the fibres of Jetm τnX and τn JetmX over ∇n(p) ∈ τnX(k). �

3. Generalised Hasse-Schmidt subschemes

Fix an iterative Hasse-Schmidt system (D,∆) over A and an iterative D-ring (k,E).
It is possible to develop a theory of D-schemes in analogy with algebraic schemes

starting with a theory of sheaves of D-rings. This would generalise, for example,
the approach taken by Kovacic in [7] and Benoist in [2] in differential-algebraic
geometry. As their work exhibits, there are a number of subtle and interesting
foundational problems that arise in doing so. Moreover, for the D-jet space theory
we wish to develop here, it seems essential that our D-schemes come equipped
with a fixed embedding in an algebraic scheme. So we will restrict ourselves to
the following approach: we fix an algebraic scheme X over k and introduce only a
theory of Hasse-Schmidt subschemes of X.

Definition 3.1 (Generalised Hasse-Schmidt subschemes). Suppose X is a scheme
over k. A D-subscheme of X over k is a collection of closed subschemes over k,

Z =
(
Zn ⊆ τnX : n ∈ N

)
such that:

(1) For all n ∈ N, the structure morphism π̂n : τn+1X → τnX restricts to a
morphism from Zn+1 to Zn.

(2) For all m ∈ N, the morphism ∆̂(m,1) : τm+1X → τ(τmX) induced by
iterativity, restricts to a morphism from Zm+1 to τ(Zm).

By the k-rational points of Z we mean the subset of X(k) given by

Z(k) :=
{
p ∈ X(k) : ∇n(p) ∈ Zn(k), for all n ∈ N

}
We will also utilise the following terminology:

• Z is dominant if each projection Zn+1 → Zn is dominant.
• Z is separable if each projection Zn+1 → Zn is separable.
• Z is irreducible if each Zn is irreducible.
• If k is a field and each Zn is reduced and of finite-type over k, then we say

that Z is a Hasse-Schmidt subvariety of X.

Note that every closed subscheme Y ⊆ X can be viewed as a dominant Hasse-
Schmidt subscheme by considering Y :=

(
τnY : n ∈ N

)
; so that Y (k) = Y (k).

(Domination is by Proposition 2.14.)
We now establish a few lemmas which clarify the definitions.

Lemma 3.2. Suppose Z is a D-subscheme of a scheme X over k. For all m,n ∈ N,
the morphism ∆̂(m,n) : τm+nX → τnτmX induced by iterativity, restricts to a
morphism from Zm+n to τn(Zm). In particular, Zn ⊆ τn(Z0) for each n ∈ N.

Proof. Note that part (2) of Definition 3.1 is just the n = 1 case of this lemma.
The ‘in particular’ clause follows from the m = 0 case of the main clause using the
fact that ∆(0,n) = id.
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We prove the lemma by induction on n, the case of n = 0 being trivially true as
∆̂(m,0) = id. Now, for any n, consider the following diagram which commutes by
the associativity of ∆ (part (b) of Definition 2.17):

τm+n+1X
∆̂X

m,n+1 //

∆̂X
m+n,1

��

τn+1τmX

∆̂τmX
n,1

��
ττm+nX

τ(∆̂X
m,n)

// ττnτmX

Let us chase Zm+n+1 from the top left to the bottom right, counter-clockwise. By
part (2) of Definition 3.1, ∆̂m+n,1 takes Zm+n+1 to τ(Zm+n). By the induction
hypothesis, ∆̂(m,n) takes Zm+n to τn(Zm). Applying the functor τ we get that
τ(∆̂m,n) takes τ(Zm+n) to ττnZm. So, counter-clockwise, Zm+n+1 gets sent to
ττnZm. So, from the above diagram, we get that ∆̂m,n+1 restricts to a morphism
from Zm+n+1 to

(
∆̂τmX

n,1

)−1(ττnZm). Now, as ∆̂τmX
n,1 is a closed embedding (Re-

mark 2.18), and ∆̂τmX
n,1 � τn+1Zm = ∆̂Zm

n,1 : τn+1Zm → ττnZm (this is the functorial-

ity of ∆̂, cf. Proposition 4.8(b) of [10]), we get that
(
∆̂τmX

n,1

)−1(ττnZm) = τn+1Zm.
So ∆̂m,n+1 restricts to a morphism from Zm+n+1 to τn+1Zm, as desired. �

Hasse-Schmidt subschemes, as we have defined them, are given by a compatible
sequence of algebraic conditions on the prolongation spaces. It might be more
natural to consider arbitrary algebraic conditions. The following lemma describes
how to produce an iterative D-subscheme from a given system of D-equations.

Lemma 3.3. Suppose X is a scheme over k and Yn ⊆ τnX is a sequence of closed
subschemes. Then there exists a dominant Hasse-Schmidt subscheme Z = (Zn)
such that for any D-ring k′ extending k,

Z(k′) = {p ∈ X(k′) : ∇n(p) ∈ Yn(k′), n < ω}.

Proof. Let C be the set of all sequences of closed subschemes Wn ⊆ τnX such that
for all D-ring extensions k′ of k,

{p ∈ X(k′) : ∇n(p) ∈Wn(k′), n < ω} = {p ∈ X(k′) : ∇n(p) ∈ Yn(k′), n < ω}.
Note that if (Wn) and (W ′

n) are in C then so is (Wn∩W ′
n). So C has a least element

(Zn). We claim that Z := (Zn) is a dominant Hasse-Schmidt subscheme of X.
Fixing m we show that π̂m+1,m restricts to a map from Zm+1 to Zm. Indeed let

(Wn) be defined by Wn := Zn for n 6= m + 1 and Wm+1 := π̂−1
m+1,m(Zm) ∩ Zm+1.

Then, since by Lemma 2.13 π̂
(
∇m+1(p)

)
= ∇m(p), (Wn) is again in C and (Wn) ⊆

(Zn). By minimality we have Wm = Zm. So π̂m+1,m restricts to a map from Zm+1

to Zm, as desired.
Next, we show that π̂m+1,m restricts to a dominant map from Zm+1 to Zm. Let

Wm := π̂m+1,m(Zm+1) and Wn := Zn for all n 6= m. Again Lemma 2.13 implies
that (Wn) is in C and so by minimality Wm = Zm, as desired.

Finally, fixing m we need to show that ∆̂(m,1) restricts to a morphism from
Zm+1 to τ(Zm). Define (Wn) so that Wn = Zn for each n 6= m+ 1 and Wm+1 :=
Zm+1 ∩ ∆̂−1

(m,1)

(
τ(Zm)

)
. Since ∆̂(m,1)

(
∇m+1(p)

)
= ∇

(
∇m(p)

)
by Remark 2.18,

(Wn) is in C. By minimality we get Wm+1 = Zm+1, which means that ∆̂(m,1)

restricts to a morphism from Zm+1 to τ(Zm), as desired. �
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Example 3.4 (Kolchin closed sets). Consider the iterative Hasse-Schmidt system
HSDe of Example 2.6 and Proposition 2.20. If (k, ∂1, . . . , ∂e) is a (partial) differen-
tial field of characteristic zero (viewed in the natural way as an iterative HSDe-field)
then every system of differential-polynomial equations over k, in say ` differential
variables, gives rise to a dominant HSDe-subscheme of A` whose k-points are exactly
the solutions to the system in k`. Indeed, such differential-polynomial equations
correspond to algebraic conditions on the prolongation spaces – and thus give rise
to a system of closed subschemes Yn ⊆ τn(A`). Now apply Lemma 3.3. So our
D-subschemes generalise Kolchin closed sets from differential algebra.

Before moving on, let us briefly discuss the issue of irreducibility for Hasse-
Schmidt subvarieties. The definition we have given, namely that each Zn is irre-
ducible, is rather strong. For example, one cannot expect that every Hasse-Schmidt
subvariety can be written as a finite union of irreducible Hasse-Schmidt subvarieties.
However, we do have the following:

Lemma 3.5. Suppose k is a field and X is a variety (so reduced and of finite-
type) over k, and Z is a dominant Hasse-Schmidt subvariety of X over k. Then
for each N < ω there exists finitely many dominant Hasse-Schmidt subvarieties
Y 1, . . . , Y ` ⊆ Z such that

• for any D-ring k′ extending k, Z(k′) = Y 1(k′) ∪ · · · ∪ Y `(k′), and
• for all m ≤ N , Y i

m is k-irreducible for i = 1, . . . , `.

Proof. The proof is by Noetherian induction on ZN . If ZN is k-irreducible then so
are all the Zm for m ≤ N by dominance – and hence we are done. Suppose we
can decompose ZN as a union of two proper k-closed sets, say U and V . Replacing
ZN by U and then by V in the sequence (Zn), and then applying Lemma 3.3
to the these two sequences, we get dominant Hasse-Schmidt subvarieties ZU and
ZV over k such that Z(k′) = ZU (k′) ∪ ZV (k′) for any D-ring extension k′ of k.
Now ZU

N ⊆ U ( ZN and ZV
N ⊆ V ( ZN . By induction there exists Y 1, . . . , Y `

satisfying the lemma for ZU , and W 1, . . . ,W s satisfying the lemma for ZV . But
then {Y i,W j : i = 1, . . . , `, j = 1, . . . , s} works for Z. �

Iterating the above construction, every dominant Hasse-Schmidt subvariety can
be written as a union of 2ℵ0-many k-irreducible Hasse-Schmidt subvarieties.

3.1. Some D-algebra. While it is our intention to avoid developing the algebraic
side of this theory in detail, we will now present the “D-co-ordinate ring” associated
to an (affine) D-subscheme.

The D-co-ordinate ring that we will define will be an iterative D-ring extension
of (k,E); that is, a k-algebra a : k → R with an iterative D-ring structure E′ on R
such that the following diagram commutes:

R
E′n // Dn(R)

k

a

OO

En // Dn(k)

Dn(a)

OO

for all n ∈ N. Equivalently, each E′n : R → DEn
n (R) will be a k-algebra homomor-

phism. Given a k-algebra R, the following proposition explains how to recognise
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an iterative D-ring structure E′ on R extending (k,E), in terms of the morphism
on spectra induced by E′.3

Proposition 3.6. Suppose R is a k-algebra, Y := Spec(R), and we are given
a sequence of morphisms over R, u = (un : Y → τnY | n ∈ N), satisfying the
following properties:

(i) u0 = id
(ii) u is compatible with π. That is, for all m ≥ n ∈ N, the following commutes:

τmY
π̂m,n // τnY

Y

um

aaDDDDDDDD un

=={{{{{{{{

(iii) u is compatible with ∆. That is, for all m,n ∈ N, the following commutes:

τm+nY
∆̂(m,n) // τnτmY

Y

um+n

ccFFFFFFFFF τn(um)◦un

;;xxxxxxxxx

Note that un ∈ τnY (R) for each n ∈ N. Let ũn be the corresponding DEn
n (R)-point

of Y , and let E′n : R → DEn
n (R) be the corresponding k-algebra homomorphism.

Then, E′ := (E′n | n ∈ N) makes R into an iterative D-ring extension of (k,E).

Proof. First of all, let us recall that the identification τnY (R) = Y
(
DEn

n (R)
)

is by
p 7→ rY

n ◦
(
p×k Dn(k)

)
, where rY

n : τnY ×k Dn(k)→ Y is the canonical morphism
associated to a prolongation, viewed as a morphism over k in the appropriate way.
See the discussion on page 8.

The fact that E′n is a k-algebra homomorphism from R to DEn
n (R) says exactly

that it is an A-algebra homomorphism from R to Dn(R) extending En : k → Dn(k).
So it suffices to check that (R,E′) is an iterative D-ring. That (R,E′) is a D-ring
is more or less immediate from conditions (i) and (ii) on u. That condition (iii)
implies iterativity of E′ requires a little more work; namely, we need to show that
the DEm

m

(
DEn

n (R)
)
-point of Y corresponding to τn(um) ◦ un agrees with E′(m,n) =

E′m ◦ Dm(E′n) : R → Dm

(
Dn(R)

)
. In terms of u, what we need to prove is the

commuting of the following diagram:

Y ×k Dm(k)
um×kDm(k) // τmY ×k Dm(k)

rY
m

))TTTTTTTTTTTTTTTTTT

τnY ×k DmDn(k)
τn(um)×kDmDn(k)

//

rY
n ×kDm(k)

OO

τnτmY ×k DmDn(k)
rY
(n,m)

// Y

(6)

Here, strictly speaking, rY
n ×k Dm(k) is the isomorphism from τnY ×k DmDn(k) to

τnY ×k Dn(k)×k Dm(k) followed by rY
n base changed up from k to Dm(k).

3We are grateful to the referee for suggesting this formulation, which substantially clarifies our
original exposition.
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Now, Lemma 4.14 of [10] tells us how the canonical morphisms compose, allowing
us to reduce the commuting of (6) to that of

Y ×k Dm(k)
um×kDm(k) // τmY ×k Dm(k)

τnY ×k DmDn(k)
τn(um)×kDmDn(k)

//

rY
n ×kDm(k)

OO

τnτmY ×k DmDn(k)

rτmY
n ×kDm(k)

OO

Dropping the final base change to Dm(k) everywhere, we further reduce the problem
to verifying the commutativity of

Y
um // τmY

τnY ×k Dn(k)
τn(um)×kDn(k)

//

rY
n

OO

τnτmY ×k Dn(k)

rτmY
n

OO

which is just the functoriality of the prolongations and the associated canonical
morphisms. �

Remark 3.7. We pointed out in Remark 2.9 that the functor on k-algebras that
takes the co-ordinate ring of an affine k-scheme to the co-ordinate ring of its nth
prolongation is left-adjoint to DEn

n . For any k-algebra R, the adjoint transpositions
witnessing the above fact take ∆̂R

(m,n) to the R-dual of ∆R
(m,n). From this point of

view, Proposition 3.6 becomes the adjoint version of the definition of a ∆-iterative
D-ring (Definition 2.17). In particular, while we will not make use of it, the converse
of Proposition 3.6 is also true and similarly verified: all iterative D-ring structures
on R extending (k,E) are obtained from such a sequence u.

Suppose X is an affine scheme over (k,E). Let k〈X〉 denote the direct limit
of the co-ordinate rings k[τmX] under the homomorphisms induced by π̂m+1,m :
τm+1X → τmX. Proposition 3.6 gives us a natural D-ring structure on k〈X〉: Let
Y := Spec

(
k〈X〉

)
and set un : Y → τnY to be the inverse limit of the morphism

∆̂(m,n) : τm+nX → τnτmX as m goes to infinity. The defining properties of ∆
ensure that the hypotheses of Proposition 3.6 are satisfied by the sequence u =
(un | n ∈ N). The main point is that ∆ is compatible with itself; the associativity
of ∆ expressed by part (b) of Definition 2.17 implies condition (iii) is true of the
sequence u. We thus obtain an iterative D-ring (k〈X〉, EX) extending (k,E). This
is the D-co-ordinate ring of the affine scheme X.

Now let Z be a D-subscheme of X over k, and denote by k〈Z〉 be the direct limit
of the k[Zm]. Then since ∆̂X

m,n restricts to a morphism from Zm+n to τnZm (by
definition of D-subscheme), taking inverse limits shows that un restricts to a mor-
phism from Spec

(
k〈Z〉

)
→ τn Spec

(
k〈Z〉

)
also satisfying the hypotheses of Proposi-

tion 3.6. Hence EX induces an iterative D-ring structure on k〈Z〉 extending (k,E).
We denote the D-ring structure by EZ , and call

(
k〈Z〉, EZ

)
the D-co-ordinate ring
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of Z. Note that the quotient map ρ : k〈X〉 → k〈Z〉 is a D-homomorphism; that is,

k〈X〉

ρ

��

EX
n // Dn

(
k〈X〉

)
Dn(ρ)

��
k〈Z〉

EZ
n // Dn

(
k〈Z〉

)
commutes for each n.

Remark 3.8. The maps EX
n : k〈X〉 → Dn

(
k〈X〉

)
can also be seen as the direct

limit as m goes to infinity of certain k-algebra homomorphisms

EX,m
n : k[τmX]→ DEn

n

(
k[τm+nX]

)
The EX,m

n are the maps on co-ordinate rings associated to the morphisms

rτmX
n ◦

(
∆̂m,n ×k Dn(k)

)
: τm+nX ×k Dn(k)→ τmX

Similarly, EZ
n on k〈Z〉 is the direct limit as m goes to infinity of the k-algebra

homomorphisms
EZ,m

n : k[Zm]→ DEn
n

(
k[Zm+n]

)
induced by rτmX

n ◦
(
∆̂(m,n) ×k Dn(k)

)
restricted to Zm+n ×k Dn(k).

3.2. Generic points in fields. Let us now specialise to the case when k is a field.
The geometric theory of D-subvarieties over k goes much more smoothly if we can
be guaranteed that in some D-field extension our D-subvariety has a generic point.
This will not always be the case. In this section we introduce a condition on the
Hasse-Schmidt system which will guarantee us the existence of generic points in
D-field extensions.

Definition 3.9. Suppose (R,E) is an iterative D-ring and S ⊆ R \ {0} is a mul-
tiplicatively closed set. We say that E localises to S−1R if for every n ∈ N,
En : R→ Dn(R) extends to a ring homomorphism Ẽn such that

R
En //

ι

��

Dn(R)

Dn(ι)

��
S−1R

Ẽn // Dn(S−1R)

commutes. We say that the Hasse-Schmidt system D extends to fields if whenever
(R,E) is an iterative D-integral domain, and K is the fraction field, then E localises
to K.

Remark 3.10. Suppose E localises to S−1R. Then each Ẽn is uniquely determined
and

(
S−1R, Ẽ := (Ẽn : n ∈ N)

)
is an iterative D-ring. Indeed, if ιa

ιb ∈ S
−1R then as

Ẽn is a ring homomorphism, Ẽn(ιb) is a unit in Dn(S−1R) and Ẽn( ιa
ιb ) = En(ιa)

En(ιb) =
Dn(ι)

(
En(a)

)
Dn(ι)

(
En(b)

) . This gives uniqueness. Two straighforward diagram chases now show

that Ẽ := (Ẽn : n ∈ N) is compatible with π and ∆ (since E is), hence making
S−1R into an iterative D-ring.
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Proposition 3.11. Suppose that for all n ∈ N, the kernel of πn,0 : Dn(A) →
A is a nilpotent ideal. Then for any iterative D-ring (R,E) over A, and any
multiplicatively closed set S ⊆ R \ {0}, E localises to S−1R. In particular, D
extends to fields.

Proof. Fix n ∈ N and let In ⊆ Dn(A) be the kernel of πn,0.
By the universal property of localisations, the existence of such Ẽn will follow

once we show that Dn(ι)
(
En(s)

)
is a unit in Dn(S−1R), for each s ∈ S. Consider

the commuting square

R

ι

��

Dn(R)
πR

n,0oo

Dn(ι)

��
S−1R Dn(S−1R)

πS−1R
n,0oo

Now, the kernel of the surjective homomorphism πn,0 : Dn(S−1R) → S−1R is the
nilpotent ideal S−1R ⊗A In, and hence the units of Dn(S−1R) are just the pull-
backs of the units of S−1R. In particular, as πn,0

(
Dn(ι)(En(s))

)
= ι(s) is a unit in

S−1R, we get that Dn(ι)
(
En(s)

)
is a unit in Dn(S−1R), as desired. So the required

extensions Ẽn : S−1R→ Dn(S−1R) exist. �

Corollary 3.12. The iterative Hasse-Schmidt system HSDe used to study Hasse-
Schmidt differential rings in Example 2.6 extends to fields. �

Let us return to our study of Hasse-Schmidt subvarieties over the iterative D-field
(k,E). The following proposition ensures that if D extends to fields then Hasse-
Schmidt varieties over k will always have many rational points in D-field extensions
of (k,E). More precisely,

Proposition 3.13. Suppose D extends to fields. Let X be an algebraic variety over
k and Z a dominant irreducible Hasse-Schmidt subvariety of X over k. Then there
exists an iterative D-field extension (K,E) of (k,E) and a point b ∈ Z(K) such
that ∇n(b) is k-generic in Zn for all n ∈ N. We say that b is k-generic in Z.

Proof. Suppose Z is a dominant irreducible Hasse-Schmidt subvariety of X over k.
We construct a D-extension K of k such that Z(K) contains a “k-generic” point.
By irrreducibility each k[Zn], and hence the D-co-ordinate ring k〈Z〉, is an integral
domain. Let K be the fraction field of k〈Z〉, the Hasse-Schmidt rational function
field of Z. Since D extends to fields, the iterative D-ring structure on k〈Z〉 extends
to an iterative D-field structure on K.

Let f : k〈Z〉 → K be the inclusion of the integral domain in its fraction field.
For each n ∈ N, let fn : k[Zn] → K be the homomorphism obtained from a by
precomposing with the direct limit map from k[Zn] to k〈Z〉. The dominance of the
maps Zm+1 → Zm imply that fn factors through k(Zn), the rational function field
of Zn. That is, the point an = Spec(fn) ∈ Zn(K) is k-generic in Zn.

We prove that for each n ∈ N, ∇n(a0) = an. This will suffice as it implies that
a0 is the k-generic point of Z(K) that we want. Under the standard identification,
∇n(a0) is a DEn

n (K) point of Z0. As Zn ⊆ τnZ0, we can also view an as a DEn
n (K)

point of Z0. It is as such that we prove they agree.
From the fact that En on K extends En on k〈Z〉, and taking spectra, we get
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Spec(K)

Spec(f)

��

Spec(K)×k Dn(k)

Spec
(
Dn(f)

)
��

Spec(En)oo

Spec
(
k〈Z〉

)
Spec(k〈Z〉)×k Dn(k)

Spec(En)oo

On the other hand we know that En on k〈Z〉 is the direct limit as m goes to
infinity of the k-algebra homomorphisms EZ,m

n : k[Zm] → DEn
n

(
k[Zm+n]

)
induced

by rτmX
n ◦

(
∆̂(m,n)×kDn(k)

)
: τm+nX×kDn(k)→ τmX restricted to Zm+n×kDn(k)

– see Remark 3.8. It follows, setting m = 0, that

Spec
(
k〈Z〉

)
��

Spec(k〈Z〉)×k Dn(k)
Spec(En)oo

��
Z0 Zn ×k Dn(k)

rX
n |Zn×kDn(k)oo

commutes. Note that rX
n |Zn×kDn(k) is the restriction of rZ0

n : τnZ0 ×k Dn(k)→ Z0

to Zn ×k Dn(k). Putting the two diagrams together we get

Spec(K)

a0

��

Spec(K)×k Dn(k)

an⊗kDn(k)

��

Spec(En)oo

Z0 τnZ0 ×k Dn(k)
rZ0

noo Zn ×k Dn(k)
⊇oo

Top-right to bottom-left counter-clockwise is exactly ∇(a0) viewed as a DEn
n (K)-

point of Z0, whereas top-right to bottom-left clockwise is an viewed as a DEn
n (K)-

point of Z0 Hence ∇n(a0) = an.
We have shown that a0 ∈ Z(K) and that it is k-generic in Z. �

Definition 3.14. We say that (k,E) is rich if whenever X is an algebraic variety
over k and Z is a dominant irreducible Hasse-Schmidt subvariety of X over k, then
∇n

(
Z(k)

)
is Zariski-dense in Zn for all n ∈ N.

Corollary 3.15. Suppose D extends to fields. Then every iterative D-field extends
to a rich iterative D-field.

Proof. Suppose (k,E) is an iterative D-field. We build a rich D-field, L, as a direct
limit of an ω1-chain of D-field extensions of k. Start with L0 = k. Given Lm, list
all of the dominant irreducible D-varieties over Lm, (Zα : α < κ). We build Lm+1,β

by transfinite recursion on β < κ. At stage β, if β > 0 then let M = Mm,β be the
union of Lm+1,γ for γ < β. If β = 0 then let M = Lm. Let Z be an M -irreducible
component of Zβ . Let Lm+1,β ⊇ M and a = am,β ∈ Zβ(Lm+1,β) be an M -generic
point of Z, as given by Proposition 3.13. We then let Lm+1 be the union of the
Lm+1,α, α < κ. At limit stages we take unions, and we set L := Lω1 .

Suppose now that Z = (Zn) is a dominant irreducible Hasse-Schmidt variety
over L and W a proper subvariety of some Zn. Then Z and W are defined over
some countable subfield of L and as such are defined over (and irreducible over)
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some Lm. So, for some β, Z = Zβ for the listing of the dominant irreducible Hasse-
Schmidt varieties over Lm. We have Lm ⊆ Mm,β ⊆ Lm+1,β ⊆ Lm+1 ⊆ L. As Z is
irreducible over L, it was already irreducible over Mm,β . Thus, am,β ∈ Z(Lm+1,β)
is Mm,β-generic, and hence Lm-generic. In particular, ∇n(am,β) is not an element
of W . Thus, ∇n(Z(L)) is not contained in W (L). We have shown that ∇n

(
Z(L)

)
is Zariski-dense in Zn, for all n ∈ N. �

We make immediate use of the existence of sufficiently many rational points in
the following proposition, which we will need later, and which says that applying ∇
to the rational points of a Hasse-Schmidt subvariety produces the rational points
of another Hasse-Schmidt subvariety.

Proposition 3.16. Suppose (k,E) is a rich D-field, X is a variety over k, and Z is
a dominant irreducible Hasse-Schmidt subvariety of X over k. Then for each m ∈ N
there exists a dominant Hasse-Schmidt subvariety Y of Zm with ∇m

(
Z(k)

)
= Y (k).

We denote this Hasse-Schmidt subvariety by ∇mZ.

Proof. There is an obvious candidate for Y : set Y = (Yn) where Yn is the image of
Zm+n in τn(Zm) under ∆̂(m,n). Since ∆̂(m,n) is a closed embedding Yn is a closed
subvariety of τn(Zm).

We first show that Y is a dominant Hasse-Schmidt subvariety. For the first
condition we need to check that τn+1(Zm) → τn(Zm) induces a dominant map
from Yn+1 to Yn. But this follows from the fact that τm+n+1X → τm+nX induces
a dominant map from Zm+n+1 to Zm+n, and from the compatibility of ∆ with π
(cf. the commuting diagram in Definition 2.17(a)). The second condition requires
us to confirm that ∆̂Zm

(n,1) : τn+1(Zm) → τ
(
τn(Zm)

)
induces a map from Yn+1 to

τ(Yn). Unravelling definitions we see that it suffices to show that the following
diagram commutes:

τm+n+1X

∆̂X
(m,n+1)

��

∆̂(m+n,1) // ττm+nX

τ
(
∆̂X

(m,n)

)
��

τn+1τmX
∆̂τmX

(n,1) // ττnτmX

Reading the above diagram at the level of rings we see that it is a case of the
associativity of ∆ (cf. the commuting diagram in part (b) of Definition 2.17).
Therefore, Y so defined is a dominant Hasse-Schmidt subvariety of Zm.

Next we need to show that ∇m

(
Z(k)

)
= Y (k). First fix p ∈ Z(k). Then

∇m(p) ∈ Zm ⊆ τmX and so ∇n

(
∇m(p)

)
∈ τnτmX for all n. But ∇n

(
∇m(p)

)
=

∆̂(m,n)

(
∇m+n(p)

)
. Since ∇m+n(p) ∈ Zm+n, ∇n

(
∇m(p)

)
∈ Yn for all n. Hence

∇m(p) ∈ Y (k). We have shown that ∇m

(
Z(k)

)
⊆ Y (k).

So far we have not used the assumption that Z has many k-rational points. One
consequence of this assumption is that Yn is the Zariski closure of ∇n

(
∇mZ(k)

)
,

for all n. Indeed, Yn is the image of Zm+n under the closed embedding ∆̂(m,n),
∇n

(
∇m(Z(k))

)
is the image of∇m+n

(
Z(k)

)
under the same map, and∇m+n

(
Z(k)

)
is Zariski-dense in Zm+n by assumption.

It remains to show that if q ∈ Y (k) then q ∈ ∇m

(
Z(k)

)
. First note that it suffices

to show that q ∈ ∇m

(
X(k)

)
. Indeed, if q = ∇m(p) then ∆̂(m,n)

(
∇m+n(p)

)
=

∇n(q) ∈ Yn for all n, so that ∇m+n(p) ∈ Zm+n for all n, which implies that
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p ∈ Z(k). So we need to find p ∈ X(k) such that ∇m(p) = q. This will follow from
the following claim

Claim 3.17. If q ∈ τmX(k) has the property that ∇m(q) is contained in the Zariski
closure of ∇m

(
∇m(X(k))

)
, then q = ∇m(p) for some p ∈ X(k).

Proof. Consider the commuting diagram

τmτmX
τm(π̂X

m,0) //

π̂τmX
m,0

��

τmX

π̂X
m,0

��
τmX

π̂X
m,0 // X

By the functoriality of∇ (cf. Proposition 4.7(a) of [10]) we have that τm(π̂X
m,0)

(
∇m(q)

)
=

∇m

(
π̂X

m,0(q)
)
. So q ∈ ∇m

(
X(k)

)
if and only if τm(π̂X

m,0)
(
∇m(q)

)
= q. But the lat-

ter identity says that ∇m(q) satisfies a certain Zariski closed condition on τm(τmX),
namely the condition

τm(π̂X
m,0)(u) = π̂τmX

m,0 (u).

Since this condition is satisfied by all u ∈ ∇m

(
∇m(X(k))

)
, and since ∇m(q) is in

the Zariski closure of ∇m

(
∇m(X(k))

)
, we get that q ∈ ∇m

(
X(k)

)
, as desired. �

Now fix q ∈ Y (k). So ∇m(q) ∈ Ym, and the latter is in the Zariski closure
of ∇m

(
∇m(X(k))

)
– as it is the Zariski closure of ∇m

(
∇m(Z(k))

)
. So by the

claim, ∇m(p) = q for some p ∈ X(k), as desired. This completes the proof of
Proposition 3.16. �

4. Generalised Hasse-Schmidt jet spaces

We intend to define a “jet space” associated to a point in a Hasse-Schmidt sub-
scheme; it will be a linear Hasse-Schmidt subscheme of the jet space of the ambient
algebraic variety at that point. In the differential case, for finite-dimensional sub-
varieties, this was done by Pillay and Ziegler [11], but their construction does not
extend to infinite-dimensional differential varieties. Staying with the differential
setting for the moment, one might consider imitating the algebraic construction
by defining the nth differential jet space of a differential variety at a point p as
the “differential dual” to the maximal differential ideal at p modulo the (n + 1)st
power of that ideal. This approach fails however, first because such a space is not
naturally represented by a definable set in the langauge of differential rings, but
also because they can be too small: they may not determine the differential variety.
This latter difficulty stems from non-noetherianity, or more specifically from the
fact that there exist differential varieties with points that have the the property
that the intersection of all the powers of the maximal ideal at the point is not triv-
ial.4 So neither the algebraic construction, nor the finite-dimensional differential
construction of Pillay-Ziegler suggest extensions. Our approach is to take the alge-
braic jet spaces of the sequence of algebraic schemes that define the Hasse-Schmidt
subscheme, and then use this sequence to define a Hasse-Schmidt jet space. In
order to do so we make essential use of the interpolating map, which we discussed
in Section 2.3, and which was developed in [10].

4Phyllis Cassidy communicated to us the example of xδ2x− δx = 0 at x = 0.
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Fix an iterative Hasse-Schmidt system D, an iterative D-ring (k,E), a scheme
X of finite-type over k, a Hasse-Schmidt subscheme Z = (Zn) of X over k, and
a natural number m. For each n ∈ N, note that Jetm Zn is a closed subscheme
of Jetm τnX, and hence we can consider its scheme-theoretic image in τn

(
JetmX

)
under the interpolating map, which we denote by Tn := φX

m,n(Jetm Zn). Recall that
the scheme-theoretic image is just the smallest (with respect to closed embeddings)
closed subscheme of the target through which the morphism factors. Our “overline”
notation is justified by the fact that when dealing with reduced schemes the scheme-
theoretic image coincides with the induced reduced closed subscheme structure on
the topological closure of the set-theoretic image.

Lemma 4.1. T :=
(
Tn := φX

m,n(Jetm Zn) : n ∈ N
)

is a Hasse-Schmidt subscheme
of JetmX.

Proof. By functoriality, Jetm(π̂n+1,n) : Jetm
(
τn+1X

)
→ Jetm(τnX) restricts to

a map Jetm(Zn+1) → Jetm Zn. Transforming this by the interpolating map (cf.
part (a) of Proposition 2.21) yields that π̂Jetm X

n+1,n : τn+1 JetmX → τn JetmX re-
stricts to a map from Tn+1 to Tn. This proves the first condition of being a Hasse-
Schmidt subscheme.

It remains to prove that for all n ∈ N, ∆̂Jetm X
n,1 : τn+1 JetmX → ττn JetmX

restricts to a map from Tn+1 to τ(Tn). Parts (b) and (c) of Corollary 2.21 together
give us the following compatibility of the interpolating map with ∆:

∆̂Jetm X
n,1 ◦ φX

m,n+1 = τ(φX
m,n) ◦ φτnX

m,1 ◦ Jetm(∆̂X
n,1).

Hence, to see where ∆̂Jetm X
n,1 takes Tn+1 = φX

m,n+1(Jetm Zn+1), we can apply the
right-hand-side of the above equality to Jetm Zn+1. We have

Jetm(∆̂X
n,1) : Jetm Zn+1 → Jetm τZn.

By functoriality of the interpolating map (Proposition 6.4(a) of [10]),

φτnX
m,1 : Jetm τZn → τ Jetm Zn.

Finally, since φX
m,n : Jetm Zn → Tn,

τ(φX
m,n) : τ Jetm Zn → τTn.

Hence, ∆̂Jetm X
n,1 : Tn+1 → τTn, as desired. �

Definition 4.2 (Hasse-Schmidt jet space). Suppose Z is a Hasse-Schmidt sub-
scheme of X. The mth Hasse-Schmidt jet space (or D-jet space) of Z is the Hasse-
Schmidt subscheme of JetmX given by Lemma 4.1. That is,

Jetm
D (Z) :=

(
φX

m,n(Jetm Zn) : n ∈ N
)
.

Given a ∈ Z(k) the mth Hasse-Schmidt jet space of Z at a is the Hasse-Schmidt
subscheme of Jetm(X)a given by

Jetm
D (Z)a :=

(
φX

m,n(Jetm Zn)∇n(a)
: n ∈ N

)
.

Let us point out that for a ∈ Z(k), Jetm
D (Z)a is indeed a Hasse-Schmidt sub-

scheme of Jetm(X)a. As before, let Tn := φX
m,n(Jetm Zn) and let (Tn)∇n(a) be the

fibre over ∇n(a) of τn JetmX → τnX restricted to Tn. So Jetm
D (Z)a is given by

the sequence
(
(Tn)∇n(a) : n ∈ N

)
. First of all, (τn JetmX)∇n(a) = τn(Jetm(X)a)
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by Fact 2.16, and so (Tn)∇n(a) is a closed subscheme of the nth prolongation of
Jetm(X)a. Moreover, the structure morphism τn+1(Jetm(X)a) → τn(Jetm(X)a)
is just the restriction of π̂n+1,n : τn+1 JetmX → τn JetmX. Hence, as we have
already shown that Tn+1 is sent to Tn, it follows from the functoriality of π̂ (this
is Proposition 4.8(b) of [10]) that (Tn+1)∇n+1(a) is sent to (Tn)∇n(a). A similar
argument shows that

(
(Tn)∇n(a) : n ∈ N

)
satisfies the second condition of being a

Hasse-Schmidt subscheme, namely that (Tn+1)∇n+1(a) is sent to τ
(
(Tn)∇n(a)

)
under

the iterativity map ∆̂(n,1).

Remark 4.3. Suppose a ∈ Z(k).

(a) Jetm
D (Z)a(k) is the fibre of Jetm

D (Z)(k) over a. That is

Jetm
D (Z)a(k) =

{
λ ∈ Jetm(X)a(k) : (a, λ) ∈ Jetm

D (Z)(k)
}
.

Indeed, ∇n(a, λ) ∈ Tn(k) if and only if ∇n(λ) ∈ (Tn)∇n(a)(k).
(b) Jetm

D (Z)a is an irreducible Hasse-Schmidt subvariety of Jetm(X)a. Indeed,
note that as Jetm Zn is a linear subspace of (Jetm τnX)|Zn over Zn, and
φX

m,n is a morphism of linear spaces over τnX, the scheme-theoretic image
φX

m,n(Jetm Zn) is a linear subspace of (τn JetmX)|Zn
over Zn. It follows

that even though Jetm Zn and φX
m,n(Jetm Zn) are not necessarily reduced

or irreducible, their fibres above points in Zn, being vector groups, are
necessarily reduced and irreducible.

(c) If k is a field and a ∈ X(k) is smooth, then Jetm
D (X)a = Jetm(X)a. Or

more precisely, Jetm
D (X)a = Jetm(X)a. Indeed, by definition Jetm

D (X)a =(
φX

m,n

(
Jetm(τnX)

)
∇n(a)

: n ∈ N
)
. But

φX
m,n

(
Jetm τnX

)
∇n(a)

= (τn JetmX)∇n(a) = τn
(
Jetm(X)a

)
where the first equality is by the surjectivity of the interpolating map at
smooth points of X (Fact 2.22) and the second is Fact 2.16.

4.1. Main results. We establish in this section some fundamental properties of
Hasse-Schmidt jet spaces, and prove also that they can be used to linearise Hasse-
Schmidt subvarieties. For these results we specialise to the case of varieties over
fields and fix the following data: an iterative Hasse-Schmidt system D, an iterative
D-field (k,E), an algebraic variety X over k, a Hasse-Schmidt subvariety Z = (Zn)
of X over k, and m ≥ 1.

Lemma 4.4. For sufficiently general a ∈ Z(k), and all n ≥ 0, φX
m,n restricts to

a surjective (linear) morphism from Jetm(Zn)∇n(a) to φX
m,n(Jetm Zn)∇n(a)

. More
precisely, there exists a sequence of dense Zariski-open subsets Ur ⊆ Zr, such that
the above holds if ∇r(a) ∈ Ur(k) for all r.

In particular, for such a ∈ Z(k),

Jetm
D (Z)a(k) =

{
λ ∈ Jetm(X)a(k) : ∇n(λ) ∈ φX

m,n

(
Jetm(Zn)∇n(a)(k)

)
,∀n ∈ N

}
.

Proof. As discussed earlier, the set of kalg-points of φX
m,n(Jetm Zn) is the Zariski-

closure of φX
m,n

(
Jetm Zn(kalg)

)
. As the latter is a constructible set, the Un can

be chosen so as to ensure that φX
m,n(Jetm Zn)∇n(a)

(kalg) is the Zariski closure
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of φX
m,n

(
Jetm(Zn)∇n(a)(kalg)

)
. But φX

m,n

(
Jetm(Zn)∇n(a)(kalg)

)
is already Zariski-

closed since φX
m,n is linear on Jetm

(
τnX

)
∇n(a)

and Jetm(Zn)∇n(a) is a linear sub-

variety of Jetm
(
τnX

)
∇n(a)

. We thus have

φX
m,n(Jetm Zn)∇n(a)

(kalg) = φX
m,n

(
Jetm(Zn)∇n(a)(kalg)

)
.

As these are reduced schemes, this means that φX
m,n restricts to a surjective mor-

phism from Jetm(Zn)∇n(a) to φX
m,n(Jetm Zn)∇n(a)

, as desired. Moreover, by linear-

ity over k, φX
m,n restricts to a surjective map between their sets of k-rational points

also, so that

φX
m,n(Jetm Zn)∇n(a)

(k) = φX
m,n

(
Jetm(Zn)∇n(a)(k)

)
.

Now the “in particular” clause follows since

Jetm
D (Z)a(k) =

{
λ ∈ Jetm(X)a(k) : ∇n(λ) ∈ φX

m,n(Jetm Zn)∇n(a)
(k),∀n ∈ N

}
by definition �

It is convenient at this point to formalise what we mean by “sufficiently general”.

Definition 4.5 (Good locus). By the good locus of Z(k) let us mean those points
a ∈ Z(k) satisfying the following three properties:

(1) a is smooth point of X,
(2) for all n ≥ 0, π̂X

n+1,n restricted to Zn+1 is smooth at ∇n+1(a), and
(3) the conclusion of Lemma 4.4 holds.

Our jet spaces are only (provably) well-behaved at points in the good locus.
Loosely speaking, at least in the well-behaved contexts that we are most interested
in, a “generic” point on a “generic” Hasse-Schmidt subvariety of X will be in the
good locus. To make this precise, note first of all that as long as Z0 has nonempty
intersection with the smooth locus of X, there exists a sequence of dense Zariski-
open subsets Ur ⊆ Zr such that a ∈ X(k) is in the good locus of Z(k) if and only if
∇r(a) ∈ Ur(k) for all r ≥ 0. So, if in addition (k,E) is rich (Definition 3.14), then
the good locus is not empty. Recall that if D extends to fields then we can achieve
richness by passing to an extension (Corollary 3.15).

We have not yet dealt with the question of when the Hasse-Schmidt jet space
is a dominant Hasse-Schmidt subvariety. Without dominance our jet spaces may
not have enough rational points in any extension of (k,E). Unfortunately, Hasse-
Schmidt jet spaces of dominant Hasse-Schmidt subvarieties need not themselves be
dominant, as the following example demonstrates.

Example 4.6. We consider (ordinary) iterative Hasse-Schmidt differential fields.
That is, we are working in the Hasse-Schmidt system HSD1 and we have an itera-
tive Hasse-Schmidt differential field

(
k,D = (D0, D1, . . . )

)
. (See Example 2.6 and

Proposition 2.20). Suppose char(k) = p > 0 and consider the Hasse-Schmidt sub-
variety of the affine line defined by

(
D1(x)

)p = x. That is, let Z be the dominant
Hasse-Schmidt subvariety of A1 obtained by applying Lemma 3.3 to the sequence
(Yn) where Y1 is given by yp = x in τ1(A1) = Spec(k[x, y]), and Yi = τi(A1) for
all i 6= 1. Then Z0 = Y0 = Spec(k[x]) and Z1 = Y1 = Spec

(
k[x, y]/(yp − x)

)
.

Note that Z1 → Z0 is inseparable. Now, since the algebraic tangent space coincides
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with the first algebraic jet space, and since the interpolating map from the pro-
longation of a tangent space to the tangent space of a prolongation is the identity
(i.e. prolongations commute with tangent spaces), we get that Jet1D(Z) is given by
the sequence of tangent spaces (TZn : n < ω). A straightforward calculation shows
that TZ1 → TZ0 is not dominant, and so Jet1D(Z) is not a dominant Hasse-Schmidt
subvariety of TA1. In fact, for any nonzero a ∈ k, the Hasse-Schmidt jet space at
a, Jet1D(Z)a, is not a dominant Hasse-Schmidt subvariety of (TA1)a. This is ulti-
mately due to the inseparability of the morphism π̂1,0 : Z1 → Z0. The following
proposition explains that such inseparability is the only obstacle.

Proposition 4.7. Suppose Z is a dominant and separable D-subvariety over k.
Then Jetm

D (Z) is dominant. Moreover, for a ∈ Z(k) in the good locus, Jetm
D (Z)a is

dominant.

Proof. As before let Tn := φX
m,n(Jetm Zn) be the scheme-theoretic image of Jetm Zn

under φX
m,n. The commuting diagram in part (a) of Corollary 2.21 restricts to

Jetm Zn+1

φX
m,n+1

��

Jetm(π̂X
n+1,n)

// Jetm Zn

φX
m,n

��
Tn+1

π̂Jetm X
n+1,n // Tn

Now π̂n+1,n : Zn+1 → Zn is dominant and separable by assumption. It follows that
Jetm(π̂n+1,n) : Jetm Zn+1 → Jetm Zn is dominant (cf. Lemma 5.9 of [10]). As the
two vertical arrows are also dominant by definition, so is Tn+1 → Tn, as desired.

For the “moreover” clause, we restrict the above diagram to a ∈ Z(k):

Jetm(Zn+1)∇n+1(a)

φX
m,n+1

��

Jetm(π̂X
n+1,n)

// Jetm(Zn)∇n(a)

φX
m,n

��
(Tn+1)∇n+1(a)

π̂Jetm X
n+1,n // (Tn)∇n(a)

Now, the separability and dominance of π̂n+1,n : Zn+1 → Zn imply not only the
dominance of Jetm(π̂n+1,n) : Jetm Zn+1 → Jetm Zn, but also the surjectivity of that
map restricted to fibres above smooth points of π̂n+1,n (see for example the proof
of Lemma 5.9 of [10]). This smoothness is also guaranteed by being in the good
locus (condition (2) of Definition 4.5). So the top horizontal arrow is surjective. On
the other hand, Lemma 4.4 tells us that the two vertical arrows are also surjective.
Hence (Tn+1)∇n+1(a) → (Tn)∇n(a) is surjective for all n, implying that Jetm

D (Z)a is
a dominant Hasse-Schmidt subvariety. �

The following theorem says that the Hasse-Schmidt jet spaces do indeed accom-
plish the task for which they were constructed.

Theorem 4.8. Hasse-Schmidt subvarieties are determined by their jets: Suppose
• (k,E) is a rich iterative D-field,
• X is an algebraic variety over k,
• Z and Z ′ are irreducible separable dominant D-subvarieties of X over k,
• and a ∈ Z(k) ∩ Z ′(k) is in the good locus of both Z and Z ′.

If Jetm
D (∇rZ)∇r(a)(k) = Jetm

D (∇rZ
′)∇r(a)(k) for all m ≥ 1 and r ≥ 0, then Z = Z ′.
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Note that if D extends to fields, as it does in the differential and difference cases
(cf. Corollary 3.12 and Proposition 5.1), then by Corollary 3.15 the hypothesis of
richness in the above theorem can always be satisfied by passing to an extension.

Proof of Theorem 4.8. Recall that ∇rZ is a dominant Hasse-Schmidt subvariety
of τrX whose k-points are ∇r

(
Z(k)

)
. Its existence and dominance is ensured by

Proposition 3.16 (this already requires richness of (k,E) and dominance of Z),
and by construction it’s defining sequence is

(
∆̂(r,n)(Zr+n) ⊆ τnτrX : n ∈ N

)
.

These subvarieties, together with the morphisms obtained by restricting π̂τrX
n+1,n,

are isomorphic to (Zr+n : n ∈ N) with the restrictions of π̂X
r+n+1,r+n. Hence ∇rZ

is also separable, and ∇r(a) is also in the good locus of ∇rZ.
Fixing r and taking jet spaces at ∇r(a), we have that Jetm

D (∇rZ)∇r(a) is a
dominant Hasse-Schmidt subvariety by Proposition 4.7. We have already pointed
out, in Remark 4.3(b), that it is irreducible. Hence, k being rich, the k-points of
Jetm

D (∇rZ)∇r(a) are Zariski-dense in[
Jetm

D (∇rZ)∇r(a)

]
0

= Jetm
(
(∇rZ)0

)
∇r(a)

= Jetm(Zr)∇r(a)

where the first equality is by definition of the Hasse-Schmidt jet space (as φτrX
m,0 =

id). So Jetm
D (∇rZ)∇r(a)(k) is Zariski-dense in Jetm(Zr)∇r(a). Similarly for Z ′.

Since Jetm
D (∇rZ)∇r(a)(k) = Jetm

D (∇rZ
′)∇r(a)(k) by assumption, taking Zariski-

closures, we get Jetm(Zr)∇r(a) = Jetm(Z ′r)∇r(a), for all m ∈ N. Since the (alge-
braic) jet spaces of an irreducible algebraic subvariety at a point determine that
subvariety, Zr = Z ′r for all r ∈ N. Hence Z = Z ′. �

Question 4.9. Can the assumption that a lies in the good locus be dropped?

4.2. Canonical bases in differentially closed fields. Let us specialise to the
differential context and extract the model-theoretic content of the above theorem.
For this section we assume familiarity with basic notions and notations from sta-
bility theory such as those of canonical bases and definable closure.

First recall the setting. We work with the generalised Hasse-Schmidt system
HSDe of Example 2.6, which extends to fields by Corollary 3.12. As a model-
theoretic structure an iterative HSDe-field is just a field equipped with e commut-
ing iterative Hasse-Schmidt derivations (Proposition 2.20). Note that if K is such
a field, then the Kolchin closed subsets of Kn, or rather the countable intersections
of such, are exactly the sets of the form Z(K) where Z is a dominant affine HSDe-
variety (see Example 3.4). The class of existentially closed iterative Hasse-Schmidt
differential fields of characteristic p is elementary, and is axiomatised by the com-
plete theory SCHp,e (see [14]). We allow the possibility of p = 0, in which case this
is just the theory of differentially closed fields of characteristic zero in e commuting
(usual) derivations. It is not hard to see that if K |= SCHp,e is an ℵ1-saturated
model then it is rich, and so dominant HSDe-subvarieties are uniquely determined
by their K-points. If k ⊆ K is an HSDe-subfield and a ∈ Kn, then the HSDe-locus
of a over k is the irreducible dominant HSDe-subvariety Z = (Zr) of An

K where Zr is
the Zariski-locus of ∇r(a) over k. By quantifier elimination, tp(a/k) just says that
a is in Z(K) but not in any proper Kolchin closed subset over k. If k is relatively
algebraically closed in K then this type is stationary, and the stability-theoretic
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canonical base of tp(a/k) is nothing other than the HSDe-subfield of k generated
by the minimal fields of definition of all the Zr.

Corollary 4.10. Suppose K |= SCHp,e is saturated, k ⊆ K is a relatively al-
gebraically closed HSDe-subfield of cardinality less than |K|, a ∈ Kn, and Z =
HSDe -locus(a/k) ⊆ An

K . If Z is separable then

Cb(a/k) ⊆ dcl

{a} ∪ ⋃
m≥1,r≥0

Jetm
HSDe

(∇rZ)∇r(a)(K)


When p = 0 only one jet space is required: there exist m ≥ 1 and r ≥ 0 such that
Cb(a/k) ⊆ dcl

(
a, Jetm

HSDe
(∇rZ)∇r(a)(K)

)
.

Proof. We work in the rich iterative HSDe-field K. Note first of all that a is in the
good locus of Z(K); indeed, being in the good locus is a k-definable Zariski-dense
open condition on each Zr, a condition which is therefore met by the k-generic point
∇r(a) ∈ Zr. Note also that automorphisms of K (as an iterative Hasse-Schmidt
differential field) act on HSDe-subvarieties by acting on their K-points, and they
preserve irreducibility, separability, dominance, and the good locus. It follows that,
if Z ′ is a conjugate of Z over a, that is if Z ′ := σ(Z) where σ is an automorphism
of K fixing a, then Z ′ is also an irreducible separable dominant HSDe-subvariety of
An

K with a in its good locus. We may therefore apply Theorem 4.8. That is, if Z ′ is
any conjugate of Z over a with Jetm

HSDe
(∇rZ)∇r(a)(K) = Jetm

HSDe
(∇rZ

′)∇r(a)(K),
for all m ≥ 1 and r ≥ 0, then Z = Z ′. So all automorphisms fixing a and
each Jetm

HSDe
(∇rZ)∇r(a)(K) also fix Z, and hence, by the discussion preceding

the statement of the corollary, must fix Cb(a/k). It follows (using saturation and
stability) that Cb(a/k) ⊆ dcl

(
{a} ∪

⋃
m≥1,r≥0 Jetm

HSDe
(∇rZ)∇r(a)(K)

)
.

When the characteristic is zero the canonical base is in fact a finitely gener-
ated differential field (by ω-stability), and so only finitely many jet spaces are
needed. But then by choosing m and r sufficiently large, we get Cb(a/k) ⊆
dcl

(
a, Jetm

HSDe
(∇rZ)∇r(a)(K)

)
in that case. �

The above corollary generalises to possibly infinite-rank types the main results of
Pillay and Ziegler on canonical bases of finite-rank types in SCHp,e (see Theorem 1.1
and Proposition 6.3 of [11] for the characteristic zero and positive characteristic
cases respectively). Indeed, as we will see in the next section, if tp(a/k) is of finite-
rank then our jet spaces Jetm

HSDe
(∇rZ)∇r(a)(K) agree with the ones constructed by

Pillay and Ziegler, and are thus finite-dimensional vector spaces over the constants
of K. Hence, in the finite-rank case, Corollary 4.10 says that if c = Cb(a/k) then
tp(c/a) is internal to the constants.

4.3. Hasse-Schmidt jets via D-modules. The differential jet spaces of finite-
dimensional differential varieties constructed by Pillay and Ziegler [11] were given
explicitly in terms of the δ-module structure on the algebraic jet space of the ambi-
ent algebraic variety. Their description uses the finite-dimensionality in an essential
manner, and no exact analogue can be expected in our setting. Nevertheless, it is
possible to give a characterisation of the Hasse-Schmidt jets that is of a similar
flavour, and that is the goal of this final subsection. The characterisation, Theo-
rem 4.17 below, also shows that for finite-dimensional Kolchin closed sets our jet
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spaces coincide with those of Pillay and Ziegler (at least at points in the good lo-
cus). The use of the term “D-modules” in the title of this subsection is meant to
be suggestive; we do not formally develop the theory of D-modules here.

Let us fix an iterative Hasse-Schmidt system D over A, a rich D-field (k,E), a
variety X over k, and a Hasse-Schmidt subvariety Z of X over k. Fix also a point
a ∈ Z(k) and m ∈ N.

For each r ≥ 0 the morphism π̂r : Zr+1 → Zr induces a k-linear map

mZr,∇r(a)/m
m+1
Zr,∇r(a) → mZr+1,∇r+1(a)/m

m+1
Zr+1,∇r+1(a).

Setting Vr := mZr,∇r(a)/m
m+1
Zr,∇r(a) for brevity, we obtain a directed system

V0 → V1 → V2 → · · ·

Taking k-duals we have a corresponding inverse system of restriction maps

V ∗0 = Jetm(Z0)a(k)← V ∗1 = Jetm(Z1)∇(a)(k)← V ∗2 = Jetm(Z2)∇2(a)(k)← · · ·

Lemma 4.11. For each r ≥ 0, the canonical morphism rZ0
r : τrZ0 ×k Dr(k)→ Z0

induces an additive map er : V0 → Vr ⊗k Dr(k).

Proof. Since Zr ⊆ τrZ0, rZ0 restricts to a morphism Zr ×k Dr(k) → Z0. On the
other hand, we have

Spec(k) a // Z0

Spec
(
DEr

r (k)
) ∇r(a)×kDr(k) //

Er

OO

τrZ0 ×k Dr(k)

rZ0
r

OO

Indeed, ∇r(a) is by definition the unique morphism that makes the above square
commute. So rZ0

r maps∇r(a)×kDr(k) to a. Hence it induces V0 → Vr⊗kDr(k). �

The maps er : V0 → Vr⊗kDr(k) endow V0 with something resembling a “Hasse-
Schmidt module” structure. For example, while these maps are not k-linear they
do satisfy

er(a · α) = Er(a) · er(α)

for all a ∈ k and α ∈ V0.

Remark 4.12. Note that in the case when X is affine, er is just the map induced
by the homomorphism EZ0,0

r : k[Z0]→ k[τrZ0]⊗k Dr(k) discussed in section 3.1.

Proposition 4.13. Suppose λ ∈ Jetm(Z0)a(k) = V ∗0 and γ ∈ Jetm(Zr)∇r(a)(k) =
V ∗r . Then the following are quivalent:

(i) ∇r(a, λ) = φX
m,r

(
∇r(a), γ

)
(ii) The following diagram commutes

V0
λ //

er

��

k

Er

��
Vr ⊗k Dr(k)

γ⊗kDr(k) // Dr(k)
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Proof. This proof will require some further familiarity with the construction of the
interpolating map in [10].

Note that (i) makes sense: (a, λ) ∈ Jetm Z0(k) and(
∇r(a), γ

)
∈ Jetm Zr(k) ⊆ Jetm τrZ0(k) ⊆ Jetm τrX(k)

so that both ∇r(a, λ) and φX
m,r

(
∇r(a), γ

)
lie in τr Jetm Z0(k). In fact, under

the usual identifications, they both live in Jetm(Z0)∇̂r(a)

(
DEr

r (k)
)
, where ∇̂r(a) :

Spec
(
DEr

r (k)
)
→ Z0 is the DEr

r (k)-point of Z0 associated to ∇r(a) ∈ τrZ0(k).

Claim 4.14. Jetm(Z0)∇̂r(a)

(
DEr

r (k)
)

= HomDEr
r (k)

(
V0 ⊗k DEr

r (k),DEr
r (k)

)
Proof. We have Jetm(Z0)∇̂r(a)

(
DEr

r (k)
)

= HomDEr
r (k)

(
∇̂r(a)

∗
(I/Im+1) , DEr

r (k)
)

where I is the kernel of the map OZ0 ⊗k OZ0 → OZ0 given by f ⊗ g 7→ fg (cf.
section 5 of [10]). On the other hand,

Spec(k) a // Z0

Spec
(
DEr

r (k)
)Er

ggNNNNNNNNNNN ∇̂r(a)

99sssssssssss

commutes. So ∇̂r(a)
∗
(I/Im+1) = Er

∗a∗(I/Im+1). But

a∗(I/Im+1) = a−1(I/Im+1)⊗OZ0,a
k = OZ0,a/m

m+1
Z0,a = V0.

Hence, ∇̂r(a)
∗
(I/Im+1) is (the sheaf of DEr

r (k)-modules) V0 ⊗k DEr
r (k). �

Claim 4.15. As an element of Jetm Z0

(
DEr

r (k)
)
, φ

(
∇r(a), γ

)
=

(
∇̂r(a), α

)
where

α : V0 ⊗k DEr
r (k)→ DEr

r (k) is given by

α =
(
[γ ⊗k Dr(k)] ◦ er

)
⊗k idDEr

r (k)

Proof. We can view γ⊗kDr(k) as a (not k-linear) map from Vr×kDr(k) to DEr
r (k).

Precomposing with (the not k-linear) er : V0 → Vr ×k Dr(k), we get a map [γ ⊗k

Dr(k)] ◦ er : V0 → DEr
r (k). This map is k-linear. Indeed, one can check this

by tracing through the map (using, for example, (8) below). So the claim makes
sense;

(
[γ ⊗k Dr(k)] ◦ er

)
⊗k idDEr

r (k)

)
: V0 ⊗k DEr

r (k) → DEr
r (k) is a well-defined

DEr
r (k)-linear map.
To prove the claim we first describe φ

(
∇r(a), γ

)
using Claim 4.14 and the

construction of the interpolating map in [10]. Applying Jetm functor to rZ0
r �

Zr ⊗k Dr(k) induces a map

v : Jetm
(
Zr ×k Dr(k)

)
∇r(a)×kDr(k)

(
Dr(k)

)
→ Jetm(Z0)∇̂r(a)

(
DEr

r (k)
)

by Lemma 6.2 of [10]. Since DEr
r (k) = Dr(k) as rings, Claim 4.14 tells us

Jetm(Z0)∇̂r(a)

(
DEr

r (k)
)

= HomDr(k)

(
V0 ⊗k DEr

r (k),Dr(k)
)
.

On the other hand

Jetm
(
Zr ×k Dr(k)

)
∇r(a)×kDr(k)

(
Dr(k)

)
= HomDr(k)

(
Vr ⊗k Dr(k),Dr(k)

)
.
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Hence v is dual to a Dr(k)-linear map f : V0⊗kDEr
r (k)→ Vr⊗kDr(k). By definition

of the interpolating map in section 6 of [10],

φ
(
∇r(a), γ

)
=

(
∇̂r(a), [γ ⊗k Dr(k)] ◦ f

)
(7)

On the other hand, f is induced by the Weil representing morphism τrZ0×kDr(k)→
Z0 ×k DEr

r (k). Since er : V0 → V0 ×k Dr(k) is induced by rZ0
r , which is the above

morphism composed with the projection X ×k DEr
r (k)→ X, it follows that

er = f ◦ (idV0 , 1DEr
r (k))(8)

where (idV0 , 1DEr
r (k)) : V0 → V0 ⊗k DEr

r (k). It is then not hard to see that(
[γ ⊗k Dr(k)] ◦ er

)
⊗k idDEr

r (k)

)
=

(
γ ⊗k Dr(k)

)
◦ f.

Claim 4.15 now follows from (7). �

Claim 4.16. As an element of Jetm Z0

(
DEr

r (k)
)
,

∇r(a, λ) =
(
∇̂r(a), (Er ◦ λ)⊗k idDEr

r (k)

)
.

Proof. We are are viewing ∇r(a, λ) as a DEr
r (k)-point of Jetm Z0. As such we have

Spec(k)
(a,λ) // Jetm(Z0)

Spec
(
DEr

r (k)
)Er

ggNNNNNNNNNNN ∇r(a,λ)

77ooooooooooo

Claim 4.16 follows. �

Finally, we have

∇r(a, λ) = φ
(
∇r(a), γ

)
⇐⇒ (Er ◦ λ)⊗k idDEr

r (k) =
(
[γ ⊗k Dr(k)] ◦ er

)
⊗k idDEr

r (k)

⇐⇒ Er ◦ λ = [γ ⊗k Dr(k)] ◦ er

where the first equivalence is by Claims 4.15 and 4.16. This completes the proof of
Proposition 4.13. �

We now have a “D-module” characterisation of the Hasse-Schmidt jet spaces.

Theorem 4.17. Suppose Z is a D-subvariety of an algebraic variety X over a rich
D-field k, and a ∈ Z(k) is in the good locus. An algebraic jet λ ∈ Jetm(X)a(k)
is in Jetm

D (Z)a(k) if and only if for all r ≥ 0 there exists γr ∈ Jetm(Zr)∇r(a)(k)
extending λ, such that Er ◦ λ = [γr ⊗k Dr(k)] ◦ er.

Proof. This is just the “in particular” clause of Lemma 4.4 together with Proposi-
tion 4.13 combined. �

Let us use this characterisation to see that our jet spaces for finite-dimensional
Kolchin closed sets in the differential context agree with those of Pillay and Ziegler [11].
For ease of exposition, we will focus on the ordinary differential setting in charac-
teristic zero. Suppose (K, δ) is a saturated model of DCF0, the theory of differ-
entially closed fields in characteristic zero, viewed as a rich HSD1-field (see Sub-
section 4.2). Suppose (X, s) is an affine D-variety; that is, X ⊆ An

K is an irre-
ducible algebraic subvariety and s = (s1, . . . , sn) is a tuple of regular functions on
X such that s̄ = (id, s) : X → τX is a regular section to π̂1,0 : τX → X. Let
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Z ⊆ An
K be the irreducible dominant HSD1-subvariety whose K-points form the

finite-dimensional Kolchin closed set (X, s)] := {a ∈ X(K) : δ(a) = s(a)}. We
explain how Jetm

HSD1
(Z)(K) agrees with the “mth differential jet space of (X, s)]

at a” in the sense of Pillay and Ziegler (cf. 3.9 of [11]).
By the Zariski-denseness of Z(K) in Z0 and of ∇1

(
Z(K)

)
in Z1, it follows that

X = Z0 and s̄ is an isomorphism between X and Z1. Applying the algebraic jet
functor at a fixed point a ∈ Z(K), we get an isomorphism Jetm(s̄)a : Jetm(X)a →
Jetm(Z1)∇(a). Hence, if λ ∈ V ∗0 = Jetm(X)a(K) then Jetm(s̄)a(λ) is the unique
element of V ∗1 = Jetm(Z1)∇(a)(K) extending λ. Moreover, because the differential
equations here are of order 1, it can be shown that the criterion given by Theo-
rem 4.17 need only be checked for r = 1. That is, assuming a is in the good locus
of Z(K), λ ∈ Jetm

HSD1
(Z)a(K) if and only if

E1 ◦ λ =
[
Jetm(s̄)a(λ)⊗K K[η]/(η2)

]
◦ e1(9)

as maps from V0 to K[η]/(η2). Note that by definition, E1λ(v) = λ(v) +
(
δλ(v)

)
η

for all v ∈ V0. On the other hand, in section 3 of [11] Pillay and Ziegler explain
how s induces a δ-module structure δ′ on V0 = mX,a/m

m+1
X,a . It is not hard to verify

that the map
[
Jetm(s̄)a(λ) ⊗K K[η]/(η2)

]
◦ e1 is given by v 7→ λ(v) +

(
λδ′(v)

)
η.

Hence (9) is equivalent to δλ(v) = λδ′(v) for all v ∈ V0. But this is exactly the
defining criterion for the Pillay-Ziegler mth differential jet space of (X, s)] at a.

5. Appendix: Other Examples

Throughout the main text of the paper we have carried along at least one mo-
tivating example, namely that of Hasse-Schmidt differential rings (cf. 2.6, 2.12,
2.20, 3.4, 3.12, 4.6, and 4.10). In this appendix we outline several other motivating
examples.

5.1. Rings with endomorphisms. Consider the Hasse-Schmidt system End =
(Dn | n ∈ N) where Dn is Sn+1 with the product ring scheme structure, the S-
algebra structure given by the diagonal sn : S → Sn+1, and πm,n the natural co-
ordinate projection. Then an End-ring (k,E) is a ring k together with a sequence
of endomorphisms (σi : k → k | i ∈ Z+), where En := (id, σ1, σ2, . . . , σn).

A special case of this is when, for each n > 0, σ2n = τn
1 and σ2n+1 = τn

2 , where
τ1 and τ2 are a pair of endomorphisms of k, possibly commuting, and possibly even
satisfying the relation τ2 = τ−1

1 . In this way one can make any difference ring – a
ring equipped with a distinguished automorphism – into an End-ring.

A rather more convenient Hasse-Schmidt system for dealing with rings equipped
with e commuting automorphisms would be to set Dn to be S(2n+1)e

with sn still
the diagonal embedding and πn+1,n the natural co-ordinate projection. Then a ring
k with commuting automorphisms τ1, . . . , τe can be viewed as a End-ring by setting

En(x) =
(
τα1
1 τα2

2 · · · ταe
e (x)

)
{α∈Ze: each |αi|≤n}

We can now impose an iterativity condition which will force the iterative End-rings
to be rings equipped with e commuting automorphisms. For ease of presentation, let
us deviate slightly from standard multi-index notation and write |α| ≤ n to mean
that |αi| ≤ n for each i = 1, . . . , e. Then our iteration map, ∆(m,n) : Dm+n →
D(m,n), will be given by by (xα)|α|≤n+m 7→

(
(xβ+γ)|β|≤n

)
|γ|≤m

.
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Proposition 5.1. The system ∆ = (∆(m,n) : m,n ∈ N), above, makes End into an
iterative Hasse-Schmidt system. Moreover, the ∆-iterative End-rings are exactly the
rings equipped with e commuting automorphisms. Finally, the system End extends
to fields.

Proof. We leave the straightforward (though somewhat notationally tedious) task of
showing that (End,∆) is an iterative system, to the reader. If (k,E) is an End-ring
then by the compatibility of E with π we can write En(x) =

(
σα(x)

)
{α∈Ze:|α|≤n}

where each σα is an endomorphisms of k. Then for (k,E) to be ∆-iterative means
exactly that

σγ ◦ σβ = σβ+γ for all β, γ ∈ Ze.(10)

Clearly, if σα = τα1
1 τα2

2 · · · ταe
e for all α ∈ Ze, where τ1, . . . , τe are commuting auto-

morphisms of k, then (10) holds. Conversely, for i = 1, . . . , e, let τi := σ(...,0,1,0,... )

where the 1 is in the ith co-ordinate. Then (10) implies that the τ1, . . . , τe commute,
are invertible, and σα = τα1

1 τα2
2 · · · ταe

e for all α ∈ Ze.
To see that End extends to fields suppose (R,E) is an iterative End-integral

domain and K is the fraction field of R. We need to extend each En to a ring
homomorphism Ẽn : K → Dn(K). It suffices to check that En takes nonzero
elements in R to units in Dn(K). But this is the case since the units in Dn(K) =
K(2n+1)e

are just those elements all of whose co-ordinates are nonzero, and En(x) =(
τα1
1 τα2

2 · · · ταe
e (x)

)
|α|≤n

, where the τi are automorphisms of R. �

Remark 5.2. Note that it is not the case that End-rings always localise, one must
require that the multiplicatively closed set by which one is localising is also closed
under the operators. Note also that we really needed iterativity here in order to
extend to fields: if R is an integral domain and σ : R → R is a nonconstant
endomorphism with a nontrivial kernel (eg R = Z[x] and σ(f(x)) := f(0)), then
there is no extension of σ to an endomorphism of the field of fractions of R.

Let us now make explicit the model-theoretic content of Theorem 4.8 applied
to this example. We work in the theory ACFA of existentially closed difference
fields (in one derivation), and in a saturated model (K,σ) of this theory. Analo-
gously to the differential case discussed in subsection 4.2, given a difference subfield
k ⊆ K and a ∈ Kn, we can define the End-locus of a over k to be the irre-
ducible dominant End-subvariety Z = (Zr) of An

K where Zr is the Zariski-locus of
∇r(a) =

(
a, σ(a), . . . , σr(a)

)
over k. Because the theory does not admit quantifier

elimination, the locus only captures the quantifier-free type of a over k. Never-
theless, if k is algebraically closed then the (simplicity-theoretic) canonical base of
tp(a/k) is an algebraic extension of the difference field generated by the minimal
fields of definition of all the Zr. In the difference-field analogue of Corollary 4.10
we must therefore replace dcl by acl, but otherwise the statement and the proof are
the same:

Corollary 5.3. Suppose (K,σ) |= ACFA is saturated, k ⊆ K is an algebraically
closed difference subfield of cardinality less than |K|, a ∈ Kn, and Z ⊆ An

K is the
End-locus of a over k. If Z is separable then there exist m ≥ 1 and r ≥ 0 such that
Cb(a/k) ⊆ acl

(
a, Jetm

End(∇rZ)∇r(a)(K)
)
.

Analogously to the differential case, when tp(a/k) is of finite-rank our jet spaces
agree with those of Pillay and Ziegler, and Corollary 5.3 recovers Theorem 1.2
of [11]; namely, that Cb(a/k) is almost internal to the fixed field of (K,σ).
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5.2. Difference-differential rings. We can combine the above example with the
differential example. A Hasse-Schmidt system that is convenient for the study of a
ring equipped with one Hasse-Schmidt derivation together with an endomorphism

might be the following: Dn(R) =
n∏

i=0

R[η]/(η)n+1−i, sn(r) := (r + (η)n+1−i : i =

0, . . . , n), ψn : Dn(R)→
n∏

i=0

Rn+1−i given by the standard monomial basis in each

of the n+1 factors, and πm,n : Dm(R)→ Dn(R) given by projecting onto the first n
coordinates and then taking the quotient R[η]/(η)m+n+1−i → R[η](η)n+1−i on each
of the remaining factors. Given a ring k together with a Hasse-Schmidt derivation
D and an endomorphism σ, we make k into a D-ring by setting En : k → Dn(k) to
be the ring homomorphism

En(x) =
( n−i∑

j=0

σiDj(x)ηj : i = 0, 1, . . . , n
)
.

As before, if one wants to focus on the case of an automorphism a more conve-
nient presentation would be

Dn(R) =
n∏

i=1

R[η]/(η)n+1−i ×R[η]/(η)n+1 ×
n∏

i=1

R[η]/(η)n+1−i

and

En(x) =
( n−i∑

j=0

σ−iDj(x)ηj ,
n∑

j=0

Dj(x)ηj ,
n−i∑
j=0

σiDj(x)ηj : i = 1, . . . , n
)
.

We can then combine the iterativity maps for HSD and End to obtain an iteration
map ∆(m,n) : Dm+n → D(m,n) given by

fi(η)−n+m≤i≤n+m 7→
(
(fα+β(ζ + ε))−n≤α≤n

)
−m≤β≤m

.

The corresponding iterative Hasse-Schmidt rings are precisely rings equipped with
an iterative Hasse-Schmidt derivation and an automorphism that commutes with
the Hasse-Schmidt derivation. Moreover, this iterative Hasse-Schmidt system will
extend to fields.

5.3. Higher D-rings. As a final example we consider a higher order version of
the D-rings studied by the second author in [12] and [13], see also Example 3.7
of [10]. As we explain at the end of this section, higher D-rings specialise to both
Hasse-Schmidt differential rings and to difference rings thought of as rings with
difference operators.

Let e be a positive integer and let A := Z[c1, . . . , ce] be the polynomial ring in
e indeterminates. We define a Hasse-Schmidt system over A as follows. For each
m ∈ N, let

Pm(X,W ) :=
m−1∏
i=0

(X − iW ) ∈ Z[X,W ]

where for convenience we set P0(X,W ) := 1. For I ∈ Ne and R an A-algebra define

DI(R) := R[ε1, . . . , εe]/
(
PI1+1(ε1, c1), . . . , PIe+1(εe, ce)

)
.
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As P`(X,W ) divides Pm(X,W ) for ` ≤ m, we have quotient maps πI,J : DI(R)→
DJ(R) for J ≤ I. Since, P1(X,W ) = X, D0(R) = R. As Pm(X, c`) is a monic
polynomial over k, the rings DI(R) are free R-algebras with monomial basis

{εJ : J ≤ I}.

So D = (DI : I ∈ Ne) is a Hasse-Schmidt system over A, albeit indexed by Ne and
thus diverging slightly from our formalism.

Observe that the ring Z[W ][X,Y ]/(P`(X,W ), Pm(Y,W )) is the coordinate ring
of the reduced subscheme X`,m of A2

Z[W ] whose underlying space is {(iW, jW ) : 0 ≤
i < `, 0 ≤ j < m}. Visibly, P`+m+1(X + Y,W ) is identically zero on X`+1,m+1.
Hence,

P`+m+1(X + Y,W ) ∈ (P`+1(X,W ), Pm+1(Y,W )).

This observation permits a definition of an iteration map. Indeed, changing vari-
ables so as to separate out the roles of each of the applications of DI , for I and J
two multi-indices in Ne and R an A-algebra, let us write DI ◦ DJ(R) as

R[X1, . . . , Xe, Y1, . . . , Ye]/(PI1(X1, c1), . . . , PIe(Xe, ce), PI1(Y1, c1), . . . , PIe(Ye, ce))

and
DI+J(R) := R[Z1, . . . , Ze]/(PI1+J1(Z1, c1), . . . , PIn+Jn

(Zn, cn)).

The iteration map ∆I,J : DI+J → DI ◦DJ is then defined by Zi 7→ Xi + Yi for 1 ≤
i ≤ n. Our observation that P`+m+1(Xi + Yi, ci) may be expressed as an R-linear
combination of P`+1(Xi, ci) and Pm+1(Yi, ci) shows that ∆I,J is a homomorphism of
R-algebras. Visibly these maps are associative and compatible with the projection
maps defining the inverse system.

As usual, a D-ring structure on an A-algebra k is given by collection of A-algebra
homomorphisms EI : k → DI(k) compatible with the identification D0(k) = k and
the maps πI,J : DI(k) → DJ(k) in the inverse system. We may express each such
map in terms of the monomial basis as

EI(x) =
∑
J≤I

∂I,J(x)εJ .

However, it is not the case in general that for J ≤ I and J ≤ K that ∂I,J = ∂K,J .
For example, taking e = 1, we have ε2 = 0 · ε0 + 0 · ε1 + 1 · ε2 in D2(k) but
ε2 = 0 · ε0 + e · ε1 in D1(k). If we wish to express the D-ring structure on k via a
single Ne-indexed sequence of operators δJ : k → k, then instead of the monomial
basis we should take {βJ : J ≤ I} as a basis for DI , where

βJ(ε1, . . . , εe) :=
e∏

i=1

PJi(εi, ci).

Viewing the DI as finite free S-algebras with respect to this basis, we have that if
(k,E) is a D-ring then

EI(x) =
∑
J≤I

∂J(x)βJ

where (∂J : J ∈ Ne), are A-linear additive endomorphisms of k.

Proposition 5.4. Suppose k is an A-algebra and (∂I : I ∈ Ne) is a set of A-
linear additive endomorphisms of k. For i ≤ e, let σi := ci · ∂i + id where ∂i :=
∂(0,...,0,1,0,...,0) with the 1 is in the ith co-ordinate. For K ∈ Ne, set σK := σK1

1 ◦
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· · · ◦ σKe
e . Then setting EI(x) =

∑
J≤I

∂J(x)βJ for all I ∈ Ne, (k,E) is an iterative

D-ring if and only if the following two rules hold

• Product rule: ∂I(xy) =
∑

J+K=I

σK
(
∂J(x)

)
· ∂K(y),

• Iteration rule: ∂I ◦ ∂J =
(
I + J

I

)
∂I+J .

To carry out this proof we need a few easy combinatorial lemmata.
Let us start with a calculation allowing us to see the iteration rule.

Lemma 5.5. P`(X + Y,W ) =
∑`

m=0

(
`
m

)
Pm(X,W )P`−m(Y,W )

Proof. It suffices to show that the stated equality holds whenever one evaluates at
points of the form (aW, bW ) where a and b are integers. On the lefthand side, we
have P`(aW + bW,W ) =

∏`−1
i=0((a+ b− i)W ) = `!

(
a+b

`

)
W `. On the righthand side

we have

∑̀
m=0

(
`

m

)
Pm(aW,W )P`−m(bW,W ) =

∑̀
m=0

(
`

m

)
m!

(
a

m

)
Wm(`−m)!

(
b

`−m

)
W `−m

= W `
∑̀
m=0

`!m!(`−m)!
m!(`−m)!

(
a

m

)(
b

`−m

)

= W ``!
∑̀
m=0

(
a

m

)(
b

`−m

)
= W ``!

(
a+ b

`

)
The last equality is obtained by comparing the coefficients of W ` in the expansion
of the equality (1 +W )a(1 +W )b = (1 +W )a+b. �

Now

∆(m,n) ◦ EI+J(x) =
∑

K≤I+J

∂K(x)βK(X1 + Y1, . . . , Xe + Ye)

=
∑

K≤I+J

∂K(x)
e∏

i=1

PKi(Xi + Yi, ci).

Using Lemma 5.5 to expand this, one sees that ∆-iterativity is equivalent to the
iteration rule claimed by the proposition.

To see that the claimed Leibniz rule is equivalent to the EI being homomor-
phisms, we need to compute the product of two standard basis vectors. First we
observe:

Lemma 5.6. Pn(X,W )Pm(X,W ) =
∑n

i=0 i!
(
n
i

)(
m
i

)
W iPm+n−i(X)
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Proof. The case of n = 0 is clear. For the inductive step,

Pn+1Pm =
n∑

i=0

i!
(
n

i

)(
m

i

)
W i(X − (m+ n− i)W + (m− i)W )Pm+n−i

=
n∑

i=0

i!
(
n

i

)(
m

i

)
W iPm+1+n−i + i!

(
n

i

)(
m

i

)
W i+1(m− i)Pm+n−i

=
n+1∑
i=0

(i!
(
n

i

)(
m

i

)
+ (i− 1)!

(
n

i− 1

)(
m

i− 1

)
(m− i+ 1))W iPm+n+1−i

=
n+1∑
i=0

(
m!

(m− i)!

(
n

i

)
+

(
n

i− 1

)
(i− 1)!m!(m− i+ 1)
(m− i+ 1)!(i− 1)!

)W iPm+n+1−i

=
n+1∑
i=0

i!
(
m

i

)(
n+ 1
i

)
W iPm+n+1−i

�

Lemma 5.6 leads to an expression for the product rule, but not the claimed
one. For the sake of definiteness, let us write down the Leibniz rule predicted by
Lemma 5.6. Expanding the exponential in two different ways, we have∑

∂L(ab)βL = E(ab)

= E(a)E(b)

=
∑
I,J

∂I(a)∂J(b)βIβJ

=
∑
I,J

∑
K

∂I(a)∂J(b)K!
(
I

K

)(
J

K

)
cKβI+J−K

So multiplicativity of E amounts to the product rule:

∂L(ab) =
∑

I+J=K+L

K!cK
(
I

K

)(
J

K

)
∂I(a)∂J(b).(11)

To put (11) in the form claimed by Proposition 5.4, we should compute the iterates
of σ. Under the hypothesis of iterativity, if σ(x) = c∂1(x) + x, then σn(x) =∑n

i=0 c
i n!
(n−i)!∂i(x). Indeed, σn(x) =

∑n
i=0 c

i
(
n
i

)
∂i
1(x). Via iterativity, we have

i!∂i = ∂i
1 so that

(
n
i

)
∂i
1 = n!

(n−i)!∂i. Putting together this observation with (11), we
compute

∂L(ab) =
∑

I+J=K+L

K!cK
(
I

K

)(
J

K

)
∂I(a)∂J(b)

=
∑

I′+J=L

J∑
K=0

K!cK
(
I ′ +K

K

)(
J

K

)
∂I′+K(a)∂J(b)

=
∑

I′+J=L

J∑
K=0

K!cK
(
J

K

)
∂K(∂I′(a))∂J(b)

=
∑

I′+J=L

σJ(∂I′(a))∂J(b)
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The computation is reversible, and so we get that (11) is equivalent to the desired
product rule. This completes the proof of Proposition 5.4. �

Let us note some specializations. If A → k factors through Z[c1, . . . , ce] →
Z[c1, . . . , ce]/(c1, . . . , ce) = Z, then an iterative D-ring is simply an iterative Hasse-
Schmidt differential ring. If k is a Q-algebra, then it follows from the iteration

rule that ∂I =
1
I!
∂I1
1 ◦ · · · ◦ ∂Ie

e so that the full stack is already determined by

the operators ∂1, . . . , ∂e. If ci is a unit in R, then ∂i = c−1
i (σi − id). Thus, in

the case of Q[c±1
1 , . . . , c±1

e ]-algebras, the category of D-algebras is equivalent to the
that of difference algebras for e commuting endomorphisms. However, in positive
characteristic, even when the parameters ci are units, it is not the case that a D-ring
is essentially just a difference ring.

Algebras over Z[c] with additive operators D : R → R satisfying D(xy) =
xD(y)+ yD(x)+ cD(x)D(y) were considered by the second author in [12] and [13].
André developed a theory of confluence between difference and differential operators
in [1] taking both operators σ : R → R and δ : R → R as basic where σ is a ring
endomorphism and δ is an additive operator satisfying the twisted Leibniz rule
δ(xy) = σ(x)δ(y) + δ(x)y. If there is some b ∈ R with δ(b) ∈ R×, then one may
express σ(x) = cδ(x) + x where c := σ(b)−b

δ(b) . The operator δ is then a D-operator
in the above sense.

Hardouin develops a theory of iterative q-difference operators in [5]. Her axioms
are very similar to ours (with e = 1). For instance, the Leibniz rules are exactly
the same. However, there are some major distinctions. The parameter c is (q− 1)t
so that the operator δ1(x) = σq(x)−x

(q−1)t where σq : C(t) → C(t) is the automorphism
f(t) 7→ f(qt) is not Z[c]-linear. Additionally, her iteration rules involve the q-
analogues of the binomial coefficients. Most importantly, her exponential maps take
values in noncommutative difference algebraic rings. Some aspects of the q-iterative
operators may be incorporated into our setting by working with the ring schemes
Dn(R) := R[ε]/(

∏n−1
i=0 (ε − qi)). We leave to future work any further comparisons

between these theories, as well as the more general issue of relaxing the definition
of D-rings so that the operators need not be linear over the base ring.
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