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I survey some of the model-theoretic work on differential algebra and related topics.

1 Introduction

The origins of model theory and differential algebra, foundations of mathe-
matics and real analysis, respectively, may be starkly different in character,
but in recent decades large parts of these subjects have developed symbiot-
ically. Abraham Robinson recognized that the broad view of model theory
could supply differential algebra with universal domains, differentially closed
fields 33. Not long after Robinson’s insight, Blum observed that differentially
closed fields instantiated Morley’s abstruse totally transcendental theories 3.
Since then, differentially closed fields have served as proving grounds for pure
model theory. In some cases, significant theorems of pure model theory were
proven in the service of a deeper understanding of differential equations.

In this survey I discuss some of the main points of contact between model
theory and differential algebra. As mentioned in the previous paragraph, the
development of differentially closed fields stands at the center of this rela-
tionship. However, there have been other significant developments. Notably,
differential algebra has been instrumental in the model theory of real val-
ued functions. In related developments, model theorists have investigated
difference algebra and more complicated structures in which derivations and
valuations are connected.

2 Notation and conventions in differential algebra

I refer the reader to the introductory articles in this volume for more details
on differential rings. In general, I use standard notations and conventions.
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Definition: By a differential ring I mean a commutative, unital ring R given
together with a distinguished nonempty finite set ∆ of commuting derivations.
If |∆| = 1, then we say that R is an ordinary differential ring. Otherwise, R
is a partial differential ring. A differential field is a differential ring which is
also a field.

Definition: Let R be a differential ring. The differential ring of differential
polynomials over R, R{X}, is the free object on one generator in the category
of differential rings over R. More concretely, if M(∆) is the free commutative
monoid generated by ∆, then as an R-algebra, R{X} = R[{µ(X)}µ∈M(∆)]. If
∂ ∈ ∆, then the action of ∂ on R{X} is determined by ∂ � R = ∂, ∂(µ(X)) =
(∂ · µ)(X), and the sum and Leibniz rules for derivations.

If L/K is an extension of differential fields and a ∈ L, then K〈a〉 is the
differential subfield of K generated by a over K.

If (R,∆) is a differential ring, then I write CR for the ring of constants,
{r ∈ R | (∀∂ ∈ ∆) ∂(r) = 0}. Recall that in the case that R is a field, the
ring of constants is also a field.

Recall that if (R,∆) is a differential ring and n is a natural number, then
a Kolchin closed subset of Rn is a set of the form X(R) = {a ∈ Rn | f(a) = 0
for all f(x1, . . . , xn) ∈ Σ} for some set of differential polynomials in n variables
Σ ⊂ R{X1, . . . , Xn}. In the case that (K,∆) is a differential field and ∆ is
finite, the Kolchin closed subsets of Kn comprise the closed sets of a topology,
the Kolchin topology, on Kn. A finite Boolean combination of Kolchin closed
sets is said to be Kolchin constructible.

3 What is model theory?

If you know the answer to this question, then you may want to skip or skim
this section referring back only to learn my conventions. If you are unfamiliar
with model theory, then you want to consult a textbook on logic, such as 5,8,9,
for more details.

Model theory is the systematic study of models. Of course, this answer
invites the question: What is a model? While in common parlance, a model
is a mathematical abstraction of some real system, problem or event; to a
logician a model is the real object itself and models in the sense that it is a
concrete realization of some abstract theory. More formally, a model M is a
nonempty set M given together with some distinguished elements, functions
defined on certain powers of M , and relations on certain powers of M .
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Example:

1. A unital ring R is a model when we regard 0, 1 ∈ R as distinguished
elements, and + : R × R → R and · : R × R → R as distinguished
functions, and we have no distinguished relations.

2. A non-empty partially ordered set (X,<) is a model with no distinguished
elements or functions but one distinguished binary relation, namely <.

The definition of model given in the previous paragraph could stand re-
finement. The important feature of a model is not merely that it has some
distinguished structure but that its extra structure is tied to a formal lan-
guage.

Given a signature, σ, that is a choice of names for distinguished func-
tions, relations and constants, one builds the corresponding language by the
following procedure. First, one constructs all the σ − terms, the meaningful
compositions of the distinguished function symbols applied to variables and
constant symbols. For example, in Example 3 (1), the expressions +(x, 0) and
·(+(x, y), 1) are terms. Usually, for the sake of readability, we write these as
x+ 0 and (x+ y) · 1. Secondly, one forms all the atomic formulas as the set
of expressions of the form t = s or R(t1, . . . , tn) where t, s, t1, . . . , tn are all
terms and R is a distinguished (n-place) relation symbol of σ. In Example 3
(1) the atomic formulas would be essentially equations between (not neces-
sarily associative) polynomials while in Example 3 (2) the atomic formulas
would take the form x = y and x < y for variables x and y. One closes under
finite Boolean operations (& (and), ∨ (or), and ¬ (not)) to form the set of
quantifier-free formulas. By closing under existential snd universal quantifica-
tion over elements one obtains the language L(σ). We say that the formula ψ
is universal if it takes the form (∀x0) · · · (∀xm)φ for some quantifier-free for-
mula φ. In Example 3 (1), the expression (∀x)(∃y)[(x ·y = 1+z) & (x ·0 = y)]
is a formula. If M is a set on which each of the distinguished symbols of σ
has been interpreted by actual functions and relations (M with such interpre-
tations is called an L(σ)-structure), then every formula in the language L(σ)
has a natural interpretation on M .

Formulas which take a truth value (under a specific interpretation of the
distinguished function, relation, and constant symbols) are called sentences.
For example, (∀x)[x + 1 = 0] is a sentence while x + 1 = 0 is not. If φ is
an (L(σ))-sentence and M is an L(σ)-structure in which φ is interpreted as
true, then we write M |= φ and say that M models φ. If Σ is a set of L(σ)-
sentences and M is an L(σ)-structure, then we say that M is a model of Σ,
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written M |= Σ, if M |= φ for each φ ∈ Σ. A set Σ of L(σ)-sentences is called
a (consistent) theory if there is some model of Σ. We say that the theory Σ is
complete if for each L(σ) sentence ϕ either in every model of Σ the sentence
ϕ is true or in every model of Σ the sentence ϕ is false. The theory of the
L(σ)-structure M is the set of all L(σ)-sentences true in M. Note that the
theory of a structure is necessarily complete. We say that Σ ⊆ T is a set of
axioms for T if M |= Σ ⇒ M |= T .

If M is an L(σ)-structure and A ⊆M is a subset, then there is a natural
expansion of M to a language, written L(σ)A, in which every element of A
is treated as a distinguished constant. We say the the inclusion of L(σ)-
structures M ⊆ N is elementary, written M � N, if M |= φ ⇔ N |= φ for
for each L(σ)M -sentence φ. More generally, if N and M are L(σ)-structures,
A ⊆ N is a subset of N , and ι : A → M is a function; then we say that ι is
elementary if N |= φ(a1, . . . , an) ⇔ M |= φ(ι(a1), . . . , ι(an)) for each formula
φ ∈ L(σ).

A definable set in an L(σ)-structure M is a set of the form {(a1, . . . , an) ∈
Mn |M |= φ(a1, . . . , an)} where φ is an L(σ)M -formula having (free) variables
ampng x1, . . . , xn and φ(a1, . . . , an) is the result of substituting ai for each
(free) occurence of the variable xi. If A ⊆ M is a subset, X ⊆ Mn is a
definable set, and there is some formula φ ∈ L(σ)A with X = {~a ∈Mn | M |=
φ(~a)}; then we say that X is A-definable. For example, if R is a commutative
ring and f(x, y) ∈ R[x, y] is a polynomial in two variables, then {(a, b) ∈
R2 | f(a, b) = 0} is a definable set.

In any L(σ)-structure M, the definable sets form a sub-basis of clopen
(closed and open) sets for a topology. We say that M is saturated if for every
subset A ⊂M of strictly smaller cardinality the class of A-definable sets has
the finite intersection property. Under some mild set theoretic hypotheses
one can show that for any structure N there is a saturated structure M with
N � M.

4 Differentially closed fields

4.1 Universal domains and quantifier elimination

In Weil’s approach to the foundations of algebraic geometry 42, a central role
is played by the notion of a universal domain: an algebraically closed field
into which every “small” field of its characteristic admits an embedding and
for which every isomorphism between “small” subfields extends to an auto-
morphism. One might ask whether a given system of polynomial equations
has a solution in some extension field. This question is equivalent to the syn-
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tactically simpler question of whether the same system has a solution in the
universal domain. While the foundations of algebraic geometry have shifted,
these properties of algebraically closed fields remain at the heart of the sub-
ject. Anyone attempting to duplicate the success of algebraic geometry for
differential algebraic geometry runs into the question of whether there are
analogous universal domains for differential algebra.

It is not hard to state a version of the conditions on Weil’s universal
domains for general first-order theories.

Definition: Let L be a first-order language and T a consistent L-theory. We
say that the model U |= T is a universal domain for T if

• |U | > |L|,

• If M |= T and |M | < |U |, then there is an L-embedding f : M → U, and

• If M ⊆ U, |M | < |U |, and g : M → U is an L-embedding, then there is
an L-automorphism g̃ : U → U with g̃ � M = g.

For example, if T is the theory of fields of characteristic zero expressed
in L(0, 1,+, ·), then C is a universal domain. However, for many natural
theories there are no universal domains. For example, the theory of groups
has no universal domain and even the theory of formally real fields (fields in
which −1 is not a sum of squares) admits no universal domain.

However, some of these theories which lack universal domains in the sense
of Definition 4.1 admit a weaker completion. In our generalization of the no-
tion of universal domain we have taken a category-theoretic approach; univer-
sality is defined by the existence of certain morphisms. We noted above that
algebraically closed fields have the property that if some variety could have
a point rational over some extension field, then it already has a point. By
extending this principle of everything which could happen, does to general first
order theories, Abraham Robinson arrived at the notion of model completeness
(and the related notions of model completion and model companion).

Definition: The theory T ′ is a model companion of the theory T if

• T and T ′ are co-theories: every model of T may be embedded in a model
of T ′ and vice versa and

• every extension of models of T ′ is elementary: if M,N |= T ′ and M ⊆ N,
then M � N.

There is a more refined notion of a model completion. For M a structure,
the diagram of M, diag(M), is the set of quantifier-free sentences of L(σ)M
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true in M. We say that T ′ is a model completion of T if T ′ is a model
companion of T and for every model M |= T of T , the theory T ′ ∪ diag(M) is
complete and consistent.

If T has a model companion, then it has only one.

Example:

• The theory of algebraically closed fields is the model completion of the
theory of fields.

• The theory of real closed fields is the model companion of the theory
of formally real fields. Considered with the signature of ordered rings:
({0, 1}, {+, ·}, {<}) it is the model completion of the theory of ordered
fields.

Notably, the theory of differential fields of characteristic zero has a model
completion.
Theorem 1 The model completion of the theory of differential domains of
characteristic zero is the theory of differentially closed fields of characteristic
zero, DCF0.

Theorem 1 takes a geometric form.
Proposition 2 If K is differentially closed, X ⊆ Kn is Kolchin-
constructible, m ≤ n, and π : Kn → Km is a projection onto m-coordinates,
then π(X) ⊆ Km is also Kolchin-constructible.

The implication from Theorem 1 to Proposition 2 follows from a general
result in logic. We say that a theory T is universal if it has a set of universal
sentences as axioms. We say that the L-theory T eliminates quantifiers if
for any model M |= T and any LM -formula φ there is some quantifier-free
LM -formula ψ such that M |= φ ↔ ψ. As a general result, if T ′ is a model
completion of a universal theory T , then T ′ eliminates quantifiers.

The standard algebraic axioms for differential domains are universal so
that this general result applies to DCF0. A Kolchin constructible set in a dif-
ferentially closed field is nothing more nor less than a definable set defined by
a quantifier free formula. The projection of such a set is naturally defined by
a formula with a string of (m−n) existential quantifiers. As DCF0 eliminates
quantifiers, this set is also defined by a quantifier free formula and is therefore
also Kolchin constructible.

In what follows, we concentrate on the axioms for ordinary differentially
closed fields of characteristic zero. Mc Grail and Pierce have developed, in-
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dependently, considerably more complicated axioms for partial differentially
closed fields with n commuting derivations 26,29.

There are a few reasonable ways to axiomatize DCF0. There is a general
procedure for finding axioms for the model companion of a given theory (if
the model companion exists), but in practice, this procedure does not give a
useful system of axioms. In general, it may force one to consider formulas
with existential quantifiers ranging over arbitrarily many variables 3. The
system of axioms presented in Definition 4.1 is concise and requires only one
existentially quantified variable.

Definition: A differential field of characteristic zero K is differentially closed
if for each pair f, g ∈ K{x} of differential polynomials with f irreducible and
g simpler than f , there is some a ∈ K with f(a) = 0 and g(a) 6= 0.

There are also systems of axioms for differentially closed fields based on
geometric conditions. Before we can state the geometric axioms, developed
by Hrushovski, Pierce and Pillay 30, we need to discuss jet spaces.

We use jet spaces to reduce problems in differential algebraic geometry to
algebraic geometry. Informally, if X is a Kolchin closed set, then the nth jet
space of X, ∇nX, is the algebraic locus of the set of sequences of points in X
together with all of their derivatives of order less than or equal to n. Let us
give a more formal, though still näıve, definition. We need a bit of notation.

Definition: If ∆ is a finite set of derivations, then by Mn(∆) we mean the
subset of the free commutative monoid generated by ∆ consisting of differen-
tial monomials of order at most n.

Definition: If X ⊆ Km is a Kolchin closed subset of some Cartesian power
of a differentially closed field (K,∆), then the nth jet space of X is ∇nX,
the Zariski closure in Km||Mn(∆)|| of {(µ(a))µ∈Mn(∆) | a ∈ X}. The inclusions
Mn(∆) ⊆ Mk(∆) for n ≤ k correspond to projections πk,n : ∇kX → ∇nX.
We identify X with ∇0X and we write πk for πk,0.

Our näıve definition of the jet spaces suffices for our present purposes.
However, a more functorial version has proven its worth in many applications.

Proposition 3 A differential field of characteristic zero K is differentially
closed if and only if for any irreducible affine variety X over K and Zariski
constructible set W ⊆ ∇1X with π1 �W : W → X dominant, there is some
point a ∈ X(K) with (a, ∂a) ∈W (K).
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4.2 Totally transcendental theories, Zariski geometries, and ranks

Model theory’s contribution to differential algebra is not merely foundational.
While model theory encompasses all first-order theories, strong theorems re-
quire strong hypotheses. Some of the deepest results are known for totally
transcendental theories (one of which is the theory of differentially closed
fields of characteristic zero).

Definition: A theory T in the language L is totally transcendental if for every
M |= T every consistent LM formula has ordinal valued Morley rank. The
Morley rank of a formula ψ(~x) ∈ LM (~x) is defined by the following recursion.

• RM(ψ) = −1 if ψ(M) = ∅

• RM(ψ) ≥ 0 if ψ(M) 6= ∅

• RM(ψ) ≥ α+1 if there is some way to split ψ into infinitely many disjoint
sets each of rank at least α. More precisely, the Morley rank of ψ is at
least α + 1 if there is some N � M and a sequence {φi(~x)}∞i=1 of LN -
formulas such that φi(N) ⊆ ψ(N) for each i, φi(N) ∩ φj(N) = ∅ for
i 6= j, and RM(φi) ≥ α for all i

• RM(ψ) ≥ λ for λ a limit ordinal if RM(ψ) ≥ α for all α < λ.

• RM(ψ) := min{α : RM(ψ) ≥ α but RM(ψ) 6≥ α+ 1} ∪ {+∞}.

Totally transcendental theories carry many other ordinal-valued ranks
(Lascar, Shelah, local, et cetera). Applications of these ranks and their inter-
connections in differentially closed fields were studied in depth by Pong 32.
Hrushovski and Scanlon showed that these ranks are all distinct in differen-
tially closed fields 19.

While many deep theorems have been proven about general totally tran-
scendental theories, for all practical purposes, the theory of differentially
closed fields is the only known mathematically significant theory to which
the deeper parts of the general theory apply. For example, a theorem of
Shelah on the uniqueness of prime models for totally transcendental theories
implies the uniqueness of differential closures.

Definition: Let T be a theory, M |= T a model of T and A ⊆ M a subset.
A prime model of T over A is a model P |= T with A ⊆ P ⊆ M having the
property that if ι : A ↪→ N is an elementary map from A into any other model
N |= T , then ι extends to an elementary embedding of P into N.
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Theorem 4 If T is a totally transcendental theory, then for any model M |=
T and subset A ⊆M there is prime model over A. Moreover, the prime model
is unique up to isomorphism over A.

As a corollary, we have the existence and uniqueness of differential clo-
sures.
Corollary 5 If K is a differential field of characteristic zero, then there is a
differentially closed differential field extension Kdif/K, called the differential
closure of K, which embeds over K into any differentially closed extension of
K and which is unique up to K-isomorphism.

The theory of algebraically closed fields is also totally transcendental and
the prime model over a field K is its algebraic closure Kalg. The algebraic
closure is also minimal. That is, if K ⊆ L ⊆ Kalg with L algebraically closed,
then L = Kalg. Kolchin, Rosenlicht, and Shelah independently showed that
the differential closure does not share this property 23,34,38

Theorem 6 If K is a differential closure of Q, then there are ℵ0 differentially
closed subfields of K.

The nonminimality of differential closures results from the existence of
trivial differential equations. In this context, trivial does not mean easy or
unimportant. Rather, it means that an associated combinatorial geometry is
degenerate.

Definition: A combinatorial pregeometry is a set S given together with a
closure operator cl : P(S) → P(S) satisfying universally

• X ⊆ cl(X)

• X ⊆ Y ⇒ cl(X) ⊆ cl(Y )

• cl(cl(X)) = cl(X)

• If a ∈ cl(X ∪ {b}) \ cl(X), then b ∈ cl(X ∪ {a}).

• If a ∈ cl(X), then there is some finite X0 ⊆ X such that a ∈ cl(X0).

If (S, cl) satisfies cl(∅) = ∅ and cl({x}) = {x}, then we say that (S, cl) is a
combinatorial geometry.

Example:

• If S is any set and cl(X) := X, then (S, cl) is a combinatorial geometry.

• If S is a vector space over a field K and cl(X) := the K-span of X, then
(S, cl) is a combinatorial pregeometry.
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• If S is an algebraically closed field and cl(A) is the algebraic closure of
the field generated by A, then (S, cl) is a combinatorial pregeometry.

Definition: The pregeometry (S, cl) is trivial if for any X ∈ P(S) one has
cl(X) =

⋃
x∈X

cl({x}).

Definition: If (S, cl) is a pregeometry, then a set X ⊆ S is independent if for
any x ∈ X one has x /∈ cl(X \ {x}).

In a vector space, any two maximal linearly independent sets have the
same size. Likewise, any two transcendence bases in an algebraically closed
field have the same cardinality. These results are instances of a general prin-
ciple for combinatorial pregeometries.
Proposition 7 If (S, cl) is a pregeometry, A ⊆ S, and X,Y ⊆ A are two
maximal independent subsets of A, then ||X|| = ||Y ||. We define dim(A) :=
||X||.

Combinatorial pregeometries in which the dimension function is additive,
called locally modular, are especially well-behaved.

Definition: A combinatorial pregeometry (S, cl) is locally modular if when-
ever X,Y ⊆ S and dim(cl(X) ∩ cl(Y )) > 0 we have dim(cl(X) ∩ cl(Y )) +
dim(cl(X ∪ Y )) = dim(cl(X)) + dim(cl(Y )).

Example:

• If S is a vector space and cl : P(S) → P(S) is defined by cl(X) := the
linear span of X, then the rank-nullity theorem of linear algebra shows
that S is locally modular.

• If S is C and cl : P(S) → P(S) is defined by cl(X) := Q(X)alg, then S
is not locally modular.

Totally transcendental theories supply examples of combinatorial prege-
ometries: strongly minimal sets, definable sets of Morley rank one having no
infinite/co-infinite definable subsets. (We give a more down-to-Earth defini-
tion below.) These strongly minimal sets are the backbone of the (finite rank
part of) these theories.

Definition: Let M be an L-structure for some language L. Let
ψ(x0, . . . , xn−1) be some L-formula with free variables among x0, . . . , xn−1.
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We say that the set D := ψ(M) is strongly minimal if ψ(M) is infinite and
for any M � N and any formula φ(x1, . . . , xn) ∈ LN either ψ(N) ∩ φ(N) is
finite or ψ(N) ∩ (¬φ)(N) is finite.

Strongly minimal sets are the underlying sets of combinatorial pregeome-
tries. The closure operator is given by model-theoretic algebraic closure.

Definition: Let M be an L-structure for some language L. Let A ⊆M . We
say that a ∈ M is model theoretically algebraic over A if there is a formula
ψ(x) ∈ LA such that M |= ψ(a) but ψ(M) is finite. We denote by acl(A) the
set of all elements of M which are algebraic over A.

Example: If K is a differentially closed field and A ⊆ K, then acl(A) =
Q〈A〉alg.

Proposition 8 Let D be a strongly minimal set. Define cl : P(D) → P(D)
by X 7→ acl(X) ∩D. Then (D, cl) is a combinatorial pregeometry.

Model theorists have been accused of obsession with algebraically closed
fields. Zilber conjectured that for strongly minimal sets, the only interesting
examples are algebraically closed fields.
Conjecture 9 (Zilber) If D is a strongly minimal set whose associated pre-
geometry is not locally modular, then D interprets an algebraically closed field.

Nevertheless, Hrushovski presented a procedure for producing families of
counterexamples to Zilber’s conjecture 15.
Theorem 10 Zilber’s conjecture is false in general.

While the strong form of Zilber’s conjecture about general strongly min-
imal sets is false, Hrushovski and Zilber salvaged it by imposing topological
conditions 21.
Theorem 11 Zilber’s conjecture holds for Zariski geometries (strongly min-
imal sets satisfying certain topological and smoothness properties.)

Theorem ? is especially relevant to differential algebra as Hrushovski and
Sokolović showed that every strongly minimal set in a differentially closed
field of characteristic zero is (essentially) a Zariski geometry 20.
Theorem 12 Every strongly minimal set in a differentially closed field is a
Zariski geometry after finitely many points are removed. Hence, Zilber’s con-
jecture is true for strongly minimal sets in differentially closed fields. In fact,
if D is a non-locally modular strongly minimal set defined in some differen-
tially closed field K, then there is a differential rational function f for which
f(D) ∩ CK is infinite.
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Theorem 12 is instrumental in the analysis of the structure of differential
algebraic groups.

On general grounds, as shown by Hrushovski and Pillay, groups connected
with locally modular strongly minimal sets have very little structure 17.
Theorem 13 Suppose that D1, . . . , Dn are locally modular strongly minimal
sets, G is a definable group, and G ⊆ acl(D1∪· · ·∪Dn). Then every definable
subset of any power of G is a finite Boolean combination of cosets of definable
subgroups.

We call a group satisfying the conclusion of Theorem 13 modular.
While no infinite algebraic group is modular, there are modular differen-

tial algebraic groups. One can find these exotic groups as subgroups of abelian
varieties.

Definition: An abelian variety is a projective connected algebraic group. A
semi-abelian variety is a connected algebraic group S having a subalgebraic
group T which (over an algebraically closed field) is isomorphic to a product
of multiplicative groups with S/T being an abelian variety.

In his proof of the function field version of the Mordell conjecture, Manin
introduced a differential algebraic group homomorphism on the points of an
abelian variety rational over a finitely generated field 25. Buium saw that
Manin’s homomorphisms are best understood in terms of differential algebraic
geometry 4.
Theorem 14 If A is an abelian variety of dimension g defined over a dif-
ferentially closed field of characteristic zero K, then there is a differential
rational homomorphism µ : A(K) → Kg having a kernel with finite Morley
rank.

The kernel of µ is denoted by A] and is called the Manin kernel of A.
Generically, Manin kernels are modular 13.
Theorem 15 If A is an abelian variety defined over an ordinary differentially
closed field K and A admits no non-zero algebraic homomorphisms to abelian
varieties defined over CK , then A](K) is modular.

The modularity of Manin kernels has a diophantine geometric interpreta-
tion. We need some notation to state the theorem properly.

Definition: If G is a commutative group, then the torsion subgroup of G is
Gtor := {g ∈ G | ng = 0 for some positive integer n}.

Theorem 16 (Function field Manin-Mumford conjecture) If A if an
abelian variety defined over a field K of characteristic zero, A does not admit
any nontrivial algebraic homomorphisms to abelian varieties defined over Qalg,
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and X ⊆ A is an irreducible variety for which X(K) ∩ A(K)tor is Zariski
dense, then X is a translate of an algebraic subgroup of A.

Proof: One finds a finite set ∆ of derivations on K for which there are no
non-trivial homomorphisms of algebraic groups from A to an abelian variety
defined over K∆. One then replaces K by a differential closure and shows
that the genericity condition on A continues to hold.

Since the additive group is torsion free, the Manin kernel A](K) must
contain the torsion group of A(K). Thus, if X(K) ∩A(K)tor is Zariski dense
in X, then X(K) ∩ A](K) is dense in X. However, as A](K) is modular, we
know that X(K) ∩ A](K) must be a finite Boolean combination of cosets of
groups. Using the fact that X is closed and irreducible, one observes that
X(K) ∩ A](K) must be a translate of a group. By considering the stabilizer
of X, one sees that this implies that X itself is a translate of an algebraic
subgroup of A. z

The function field Mordell-Lang conjecture follows from Theorem 15 to-
gether with a general result of Hrushovski on the structure of finite rank
groups.

Definition: If G is a commutative group of finite Morley rank, then the
socle G[ of G is the maximal connected definable subgroup of G for which
G[ ⊆ acl(D1, . . . , Dn) for some strongly minimal sets D1, . . . , Dn.

In the above definition one assumes implicitly that G is saturated.

Example: If G = A] is a Manin kernel, then G[ = G.

Definition: Let G be a group defined over some set A. We say that G is
rigid if every subgroup of G is definable over acl(A).

Example: If G is an abelian variety, then G] is rigid.

Under the hypothesis of rigidity of the socle, one can analyze the structure
of a group G of finite Morley rank in terms of the structure on G[ and on
G/G[. 13

Proposition 17 Let G be a group of finite Morley rank. Suppose that G[ is
rigid. If X ⊆ G is a definable set with trivial (generic) stabilizer, then X is
contained (up to a set of lower rank) in a coset of G[.

With Proposition 17 in place, we have all the main ingredients for a
differential algebraic proof of the function field Mordell-Lang conjecture. For
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the sake of readability, I state a weaker version of the theorem than one finds
in 4,13.
Theorem 18 Let A be an abelian variety defined over some field K of charac-
teristic zero. Suppose that A is generic in the sense that there are no nontriv-
ial homomorphisms of algebraic groups from A to any abelian variety defined
over the algebraic numbers. If Γ ≤ A(K) is a finite dimensional subgroup
(dimQ(Γ ⊗ Q) < ∞) and X ⊆ A is an irreducible subvariety with X(K) ∩ Γ
Zariski dense in X, then X is a translate of an algebraic subgroup of A.

Proof: We observe that by passing to the quotient of A by the stabilizer of
X we may assume that X has a trivial stabilizer. We are then charged with
showing that X is a singleton.

As with the proof of Theorem 16, we replace K with a differentially closed
field in such a way that A remains generic. That is, there are no nontrivial
homomorphisms of algebraic groups from A to any abelian variety defined
over CK .

Consider the Manin map µ : A(K) → Kg (where g = dimA). The
finite dimensionality hypothesis on Γ implies that µ(Γ) is contained in a finite
dimensional vector space over Q. A fortiori, µ(Γ) is contained in a finite
dimensional vector space, Γ̄, over CK . All such vector spaces are definable by
linear differential equations and have finite Morley rank. Let Γ̃ := µ−1(Γ̄).
Then Γ̃ is a group of finite Morley rank containing Γ and its socle is A](K).

If X(K)∩Γ is Zariski dense in X, then so is X(K)∩Γ̃. By Proposition 17,
X(K)∩Γ̃ must be contained in single coset of A](K) up to a set of lower rank.
As in the proof of Theorem 16, the modularity of A](K) together with the
irreducibility of X implies that X is a single point. z

Of course, stronger forms of Theorem 18 , in which one concludes that
X is a translate of an algebraic subgroup of G hold 28. However, the proof
of Theorem 18 exhibits some uniformities not known to hold in the absolute
case.

As a consequence of the geometric axioms for differentially closed fields,
Proposition 17, and intersection theory, one can derive explicit bounds on the
number of generic points on subvarieties of semiabelian varieties 18.
Theorem 19 Let K be a finitely generated field extension of Qalg. Let G be
a semiabelian variety defined over Qalg. Suppose that X ⊆ G is an irreducible
subvariety defined over Qalg which cannot be expressed as X1 +X2 for some
positive dimensional subvarieties X1 and X2 of G. If Γ < G(K) is a finitely
generated group, then the number of points in Γ ∩ (X(K) \X(Qalg)) is finite
and may be bounded by an explicit function of geometric data.
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4.3 Generalized differential Galois theory

There is a general theory of definable automorphism groups in stable theo-
ries. Pillay observed that when specialized to the case of differentially closed
fields, this theory gives a differential Galois theory which properly extends
the Picard-Vessiot and Kolchin strongly normal Galois theories 31.

Definition: Let K be a differential field and X a Kolchin constructible set
defined overK. Let U ⊇ K be a universal domain for differentially closed fields
extending K. A differential field extension K ⊆ L ⊆ U is called X-strongly
normal if

• L is finitely generated over K as a differential field,

• X(K) = X(Ldif ), and

• If σ ∈ Aut(U/K) is a differential field automorphism of U fixing K, then
σ(L) ⊆ L〈X(U)〉.

The extension is called generalized strongly normal if it is X-strongly normal
for some X.

Kolchin’s strongly normal extensions are exactly the CU-stongly normal
extensions.
Theorem 20 If L/K is an X-strongly normal extension, then there is a
differential algebraic group GL/K defined over K and a group isomorphism µ :
Aut(L〈X(U)〉/K〈X(U)〉) → GL/K(U). Moreover, there is a natural embedding
Aut(L/K) ↪→ Aut(L〈X(U)〉/K〈X(U)〉) and with respect to this embedding we
have µ(Aut(L/K)) = GL/K(Kdif ) = GL/K(K).

As with Kolchin’s differential Galois theory, we have a Galois correspon-
dence between intermediate differential fields between K ⊆ L and differential
algebraic subgroups of GL/K defined over K.

Moreover, every differential algebraic group may be realized as the dif-
ferential Galois group of some generalized strongly normal differential field
extension. Thus, as every differential Galois group of a Kolchin strongly nor-
mal extension is a group of constant points of an algebraic group over the
constants and there are other differential algebraic groups (Manin kernels, for
example) differential Galois theory of generalized strongly normal extensions
properly extends Kolchin’s theory.

However, there are many finitely generated differential field extensions
which are not generalized strongly normal. Trivial equations produce this
phenomenon as well.
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4.4 Classification of trivial differential equations

Theorem 11 implies that strongly minimal sets in differentially closed fields are
either (essentially) algebraic curves over the constants or locally modular. On
general grounds, locally modular strongly minimal sets are either (essentially)
groups or trivial (in the sense of pregeometries). The theories of the field of
constants and, as we have seen, locally modular groups are well-understood.
We are left with the task of understanding trivial strongly minimal sets.

We begin by introducing the notion of orthogonality in order to give a
precise sense to the parenthetical qualifier “essentially.”

Definition: LetX and Y be strongly minimal sets. Denote by π : X×Y → X
and ν : X × Y → Y the projections to X and to Y , respectively. We say that
X and Y are non-orthogonal, written X 6⊥ Y , if there is an infinite definable
set Γ ⊆ X × Y such that π �Γ and ν �Γ are finite-to-one functions.

Theorem 12 may be restated as If X is a non-locally modular strongly
minimal set in a universal domain U for DCF0, then X 6⊥ CU.

Theorem 13 together with a general group existence theorem of
Hrushovski implies that if X is a nontrivial, locally modular, strongly mini-
mal set in a differentially closed field, then X is non-orthogonal to the Manin
kernel of some simple abelian variety. Moreover, A] 6⊥ B] if and only if A and
B are isogenous abelian varieties.

Question: How can one classify trivial strongly minimal sets in differentially
closed fields up to nonorthogonality?

Question: Is there a structure theory for trivial strongly minimal sets in
differentially closed fields analogous to the structure theory for locally modular
groups?

It is possible for a general trivial strongly minimal set to have no structure
whatsoever, but it is also possible for it to carry some structure. For example,
the set of natural numbers N given together with the successor function S :
N → N defined by x 7→ x+ 1 is a trivial strongly minimal set.

The answers to these questions are unknown in general. In particular, it
is not known whether there is some trivial strongly minimal set X definable
in a differentially closed field having a definable function f : X → X with
infinite orbits.

However, for order one trivial strongly minimal sets defined over the con-
stants of an ordinary differentially closed field, there are satisfactory answers
to these questions 16.

dasur16dec01: submitted to World Scientific on December 16, 2001 16



Definition: Let K ⊆ U be a countable differential subfield of the universal
domain. Let X ⊆ Un be a constructible set defined over K. We define the
order of X to be the maximum of tr.degKK〈x〉 as x ranges over X.

Definition: Let X be a strongly minimal set defined over the set A. We
say that X is totally degenerate if every permutation of X is induced by an
element of Aut(U/A).

Generalizing a finiteness result of Jouanolou on hypersurface solutions
to Pfaffian equations on certain compact complex manifolds 22, Hrushovski
showed that order one sets are either essentially curves over the constants or
essentially totally degenerate ?. More precisely, we have the following theorem.
Theorem 21 If X is an order one set defined over an ordinary differentially
closed field K, then either X 6⊥ CK or there is some totally degenerate X ′

with X 6⊥ X ′.
As a corollary of Theorem 21 we have a finiteness result on the number

of solutions to order one equations.
Corollary 22 Let U be an ordinary differentially closed field. Let f(x, y) ∈
U[x, y] be a nonzero polynomial with constant coefficients. If {a ∈ U :
f(a, a′) = 0} ⊥ CU, then the number of solutions to f(a, a′) = 0 in a dif-
ferential field K is bounded by a function of tr.deg(K).

Theorem 21 begs the question of whether there are any trivial sets. By
directly analyzing differential equations, Mc Grail produced a family of trivial
sets 27. By producing a dictionary between properties of one forms on curves
and properties of certain order one sets in ordinary differentially closed fields,
Hrushovski and Itai produced families of examples of trivial order one sets 16.

4.5 Differential fields of positive characteristic

There has been significant development of the model theory of differential
fields of positive characteristic. The theory of differential fields of character-
istic p admits a model companion DCFp, the theory of differentially closed
fields of characteristic p 44. This theory is not totally transcendental, but
it shares some properties with totally transcendental theories. For example,
Wood showed that positive characteristic differential closures exist and are
unique 45.

However, differential fields satisfying fewer equations have proved to be
more useful. The theory of separably closed fields of finite imperfection degree,
which may be understood fruitfully in terms of differential algebra, underlies
the proof of the positive characteristic Mordell-Lang conjecture.

dasur16dec01: submitted to World Scientific on December 16, 2001 17



5 O-minimal theories

Differential algebra has played a crucial role in the model theoretic analysis
of well-behaved real-valued functions. The best behaved ordered structures
are o-minimal : the definable subsets of the line are just finite Boolean com-
binations of points and intervals.

Definition: An o-minimal expansion of R is a σ-structure on R for some
signature σ having a binary relation symbol < interpreted in the usual manner
such that for any LR(σ)-formula ψ(x) with one free variable x the set ψ(R) is
a finite union of intervals and points.

Example:

• R considered just as an ordered set is o-minimal. [Cantor]

• R considered as an ordered field is o-minimal. [Tarski 41]

Remark Tarski did not state his theorem on the real field in terms of o-
minimality. Rather, he proved quantifier elimination for the real field in the
language of ordered rings. O-minimality follows as an immediate corollary.

Theorem 23 (Wilkie 43) The expansion of R by the field operations and
the exponential function is o-minimal.

Behind the proof of Theorem 23 is a more basic theorem on expansions
of R by restricted Pfaffian functions.

Definition: Let f1, . . . , fn be a sequence of differentiable real valued func-
tions on [0, 1]m. We say that this sequence is a Pfaffian chain if ∂fi

∂xj
∈

R[x1, . . . , xm, f1, . . . , fi] for each i ≤ n and j ≤ m. We say that f is a Pfaffian
function if f belongs to some Pfaffian chain.

Example: ex restricted to the interval [0, 1] is Pfaffian.

Theorem 24 (Wilkie) If f1, . . . , fn is a Pfaffian chain, then (R,+, · · · , <
, f1, . . . , fn) is o-minimal.

Patrick Speisseger has generalized Wilkie’s result to the case where the
base structure is an arbitrary o-minimal exapansion of R rather than simply
the real field 40.

While the work on o-minimal expansions of R concerns, on the face of it,
real valued functions of a real variable, it is often convenient to work with the
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ordered differential field of germs of functions at infinity.

Definition: A Hardy field is a subdifferential field H of the germs at +∞ of
smooth real-valued functions on the real line which is totally ordered by the
relation f < g ⇔ (∃R ∈ R)(∀x > R)f(x) < g(x).

If R is an o-minimal expansion of R, then the set of germs at +∞ of
R-definable functions forms a Hardy field H(R).

Hardy fields carry a natural differential valuation with the valuation ring
being the set of germs with a finite limit and the maximal ideal being the set
of germs which tend to zero.

Definition: Let (K, ∂) be a differential field. A differential valuation on K
(in the sense of Rosenlicht) is a valuation v on K for which

• v(x) = 0 for any nonzero constant x ∈ (K∂)×,

• for any y with v(y) ≥ 0 there is some ε with ∂(ε) = 0 and v(y − ε) > 0,
and

• v(x), v(y) > 0 ⇒ v(y∂(x)
x ) > 0.

One obtains the logarithmic-exponential series, R((t))LE , by closing
R((t)) under logarithms, exponentials, and generalized summation. R((t))LE

carries a natural derivation and differential valuation 7.
For many examples of o-minimal expansions R of R, there is a natural

embedding H(R) ↪→ R((t))LE . These embeddings, which may be regarded
as divergent series expansions, can be used to show that certain functions
cannot be approximated by other more basic function. Answering a question
of Hardy, one has the following theorem.
Theorem 25 The compositional inverse to (log x)(log log x) is not assymp-
totic to any function obtained by repeated composition of semi-algebraic func-
tions, ex, and log x.

The empirical fact that many interesting Hardy fields embed into R((t))LE

suggests the conjecture that the theory of R((t))LE is the model companion
of the universal theory of Hardy fields.

Van der Hoeven has announced a sign change rule for differenial polyno-
mials over (his version of) R((t))LE . This result would go a long way towards
proving the model completeness of R((t))LE 10.

Aschenbrenner and van den Dries have isolated a class of ordered differ-
ential fields with differential valuations, H-fields, to which every Hardy field
belongs. They show, among other things, that the class of H-fields is closed
under Liouville extensions 1.
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6 Valued differential fields

The model theory of valued differential fields, which serves as a framework for
studying perturbed differential equations, has also been developed.

Definition: A D-ring is a commutative ring R together with an element
e ∈ R and an additive function D : R→ R satisfying D(1) = 0 and D(x ·y) =
x ·D(y) + y ·D(x) + eD(x)D(y).

If (R,D, e) is a D-ring, then the function σ : R → R defined by x 7→
eD(x) + x is a ring endomorphism.

If e = 0, then a D-ring is just a differential ring. If e ∈ R× is a unit, then
Dx = σ(x)−x

e so that a D-ring is just a difference ring in disguise.

Definition: A valued D-field is a valued field (K, v) which is also a D-ring
(K,D, e) and satisfies v(e) ≥ 0 and v(Dx) ≥ v(x) for all x ∈ K.

Example:

• If (k,D, e) is a D-field and K = k((ε)) is the field of Laurent series over k
with D extended by D(ε) = 0 and continuity, then K is a valued D-field.

• If (k, ∂) is a differential field of characteristic zero, σ : k((∂)) → k((ε))
is the map x 7→

∑∞
i=0

1
n!∂

n(x)εn, and D is defined by x 7→ σ(x)−x
ε , then

(k((ε)), D, ε) is a valued D-field.

• If k is a field of characteristic p > 0 and σ̄ : k → k is any automorphism,
then there is a unique lifting of σ̄ to an autmorphism σ : W (k) → W (k)
of the field of quotients of the Witt vectors of k. Define D(x) := σ(x)−x,
then (W (k), D, 1) is a valued D-field.

Definition: A valued D-field (K, v,D, e) is D-henselian if

• K has enough constants: (∀x ∈ K)(∃ε ∈ K) v(x) = v(ε) and Dε = 0 and

• K satisfies D-hensel’s lemma: if P (X0, . . . , Xn) ∈ OK [X0, . . . , Xn] is
polynomial with v-integral coefficients and for some a ∈ OK and integer
i we have v(P (a, . . . ,Dna)) > 0 = v( ∂P

∂Xi
(a, . . . ,Dna)), then there is some

b ∈ OK with P (b, . . . ,Dnb) = 0 and v(a− b) > 0.

D-henselian fields can serve as universal domains for valued D-fields 35,36.

dasur16dec01: submitted to World Scientific on December 16, 2001 20



Theorem 26 The theory of D-henselian fields with v(e) > 0, densely ordered
value group, and differentially closed residue field of characteristic zero is the
model completion of the theory of equicharacteristic zero valued D-fields with
v(e) > 0.

There are refinements (with more complicated statements) of Theorem 26
with v(e) ≥ 0 and restrictions on the valued group and residue field.

The relative theorem in the case of a lifting of a Frobenius on the Witt
vectors, proved by Bélair, Macintyre, and Scanlon, may be the most important
case 2,37.
Theorem 27 In a natural expansion of the language of valued difference
fields, the theory of the maximal unramified extension of Qp together with
an automorphism lifting the p-power Frobenius map eliminates quantifiers (in
an expansion of the language of valued D-fields having angular component
functions and divisibility predicates on the value group) and is axiomatized by

• the axioms for D-henselian fields of characteristic zero,

• the assertion that the residue field is algebraically closed of characteristic
p and that the distinguished automorphism is the map x 7→ xp, and

• the assertion that the valued group satisfies the theory of (Z,+, 0, <) with
v(p) being the least positive element.

There are a number of corollaries of Theorem 27. Among them, we have
that the theory of the Witt vectors with the relative Frobenius is decidable.

7 Model theory of diffence fields

Model theorists have also analyzed difference algebra in some depth. Since
the main topic of this volume is differential algebra, I will contain myself to a
few highlights of the model theoretic work on difference algebra.

Definition: A difference ring is a ring R given together with a distinguished
ring endomorphism σ : R→ R.

Difference algebra admits universal domains in a weaker sense than does
differential algebra.
Proposition 28 The theory of difference fields admits a model compan-
ion, ACFA. A difference field (K,+, ·, σ, 0, 1) satisfies ACFA if and only if
K = Kalg, σ : K → K is an automorphism, and for any irreducible variety
X defined over K and irreducible Zariski constructible set W ⊆ X × σ(X)
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projecting dominantly onto X and onto σ(X), there is some a ∈ X(K) with
(a, σ(a)) ∈W (K).

Unlike DCF0, the theory ACFA is not totally transcendental. However, it
falls into the weaker class of supersimple theories for which many of the tech-
niques and results of totally transcendental theories carry over. The analysis
of ACFA preceeded and stimulated the development of the general work on
simple theories.

An analogue of Theorem 12 holds for ACFA 6. As a consequence of this
theorem, on can derive an effective version of the Manin-Mumford conjec-
ture 14.

While it is essentially impossible to actually construct differentially closed
fields, Hrushovski and Macintrye have shown that limits of Frobenius auto-
morphisms provide models of ACFA 12,24.
Theorem 29 Let R :=

∏
n∈ω,p prime Falg

pn . Let σ : R → R be defined by

(apn) 7→ (apn

pn). If m ⊆ R is a maximal ideal for which R/m is not locally
finite, then (R/m, σ̄) |= ACFA.

A slight strengthening of Theorem 29 based on the Chebotarev Density
Theorem may be expressed more meaninfully, if less algebraically, as The
theory of the generic automorphism is the limit of the theories of the Frobenius.
This means that if φ is a sentence in the language of difference rings, then φ
is true in some model of ACFA if and only if there are infinitely many prime
powers q such that (Falg

q , (x 7→ xq)) |= φ.
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