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ABSTRACT. We expose a theorem of Pila and Wilkie on counting rational points
in sets definable in o-minimal structures and some applications of this theorem to
problems in diophantine geometry due to Masser, Peterzil, Pila, Starchenko, and
Zannier.

1. INTRODUCTION

Over the past decade and a half starting with Hrushovski’s proof of the func-
tion field Mordell-Lang conjecture [12], some of the more refined theorems from
model theory in the sense of mathematical logic have been applied to problems
in diophantine geometry. In most of these cases, the technical results underlying
the applications concern the model theory of fields considered with some addi-
tional distinguished structure and the model theoretic ideas fuse algebraic model
theory, the study of algebraic structures with a special emphasis on questions of
definability, and stability theory, the development of abstract notions of dimen-
sion, dependence, classification, et cetera for the purpose of analyzing the class of
models of a theory. Over this period, there has been a parallel development of
the model theory of theories more suited for real analysis carried out under the
rubric of o-minimality, but this theory did not appear to have much to say about
number theory. Some spectacular recent theorems demonstrate the error of this
impression.

In the paper [28], Pila presents an unconditional proof of a version of the so-
called André-Oort conjecture about algebraic relations amongst the j-invariants of
elliptic curves with complex multiplication using a novel technique coming from
model theory. This proof of the André-Oort conjecture comes on the heels of re-
proofs of the Manin-Mumford conjecture (or, Raynaud’s theorem [32]) by Pila and
Zannier [29] (and then extended by Peterzil and Starchenko [22]) and a proof of a
remarkable theorem due to Masser and Zannier [19] about simultaneous torsion
for pairs of points on families of elliptic curves all of which employ Pila’s method.

Each of these theorems is a beautiful and precise instantiation of the vague prin-
ciple that algebraic relations on sets of arithmetically interesting points of geomet-
ric origin must be explained geometrically. As such, these results deserve their
own survey independent from their proofs. However, while I agree that these
theorems and their ilk are of intrinsic interest, there are two reasons why I shall fo-
cus on their proofs. First, the proof strategy employed coming as it does from the
model theory of real geometry is the most striking common feature of these results.
Secondly, the algebro-geometric overhead required for an accurate explication of
how these problems fit into an overarching network of theorems and conjectures in
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diophantine geometry would overwhelm the remainder of this account and mask
the fundamentally classical nature of Pila’s approach to these problems.

With this preamble about what I shall not discuss, let me say what will appear
in this paper. We begin in Section 2 with a sketch of the Pila-Zannier proof in a
simplified case of algebraic relations on roots of unity. This sketch will not reveal
the full strength of the method as the theorem in this special case has been known
for many decades and has innumerable proofs. However, this proof shares the
architecture of the proofs of the other geometrically more complicated theorems.
In Section 3 we discuss the general theory of o-minimality. Section 4, the tech-
nical heart of this survey, concerns the Pila-Wilkie theorem on counting rational
points in definable sets. With Section 5 we return to the diophantine problems,
completing the proof sketch from Section 2 and then discussing some of the other
theorems mentioned in the abstract.

On the same day that I was asked to prepare these notes for the Current Events
Bulletin, I was asked to speak in the Bourbaki seminar about Pila’s proof of the
André-Oort conjecture. Shortly thereafter, I was asked to give a lecture series to
the experts on André-Oort about the same topic. Foolhardily, I concluded that due
to the similarity of these presentations, I would need only prepare one set of notes
and accepted all three invitations. As a matter of fact, while there are some points
of contact, these three sets of notes are radically different. The reader interested in
an exposition of Pila’s proof of the André-Oort conjecture pitched to the general
mathematician should consult my notes for the Bourbaki seminar [35] while the
reader who wishes to read a detailed précis of these proofs should read my notes
for the Luminy lectures [34]. Even better, because the original papers [24] and [28]
are well written and contain extensive introductions, the reader should go straight
to the source.

2. PILA-ZANNIER ARGUMENT FOR MULTIPLICATIVE GROUP

We shall go into more detail about the proofs of the more sophisticated theo-
rems announced in the introduction later in the paper, but let us sketch the method
in a simple example for which, admittedly, many other proofs are known (see, for
example, [32, 13]). The following theorem is a special case of the Manin-Mumford
conjecture and was already proven by Mann [18] before the Manin-Mumford con-
jecture proper was enunciated.

Theorem 2.1. Let n ∈ Z+ be a positive integer and let G = (C×)n be the nth Carte-
sian power of the multiplicative group of the complex numbers. Let G(x1, . . . , xn) ∈
C[x1, . . . , xn] be a polynomial in n variables. Then the set

{(ζ1, . . . , ζn) ∈ G : each ζi is a root of unity and G(ζ1, . . . , ζn) = 0}

is a finite union of cosets of subgroups of G.

The Pila-Zannier argument in this case proceeds by observing that we have an
analytic covering map E : Cn → G given by (z1, . . . , zn) 7→ (e2πiz1 , . . . , e2πizn) and
that relative to this covering, ζ = (ζ1, . . . , ζn) is tuple of roots of unity if and only
if there is some a ∈ Qn for which E(a) = ζ. Thus, we may convert the problem of
studying algebraic equations in roots of unity into the problem of understanding
rational solutions to the transcendental equation G(E(z)) = 0.
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In this form, we have not achieved much yet as sets defined by general complex
analytic equations can be arbitrarily complicated. However, it is not necessary to
consider E on all of Cn. We could restrict E to a fundamental domain

D := {z = (z1, . . . , zn) ∈ Cn : 0 ≤ Re(zi) < 1 for each i}

obtaining a function Ẽ := E � D : D → G, then it is still the case that ζ ∈ G is a
tuple of roots of unity if and only if there is some a ∈ Qn ∩ D with Ẽ(a) = ζ. The
advantage of this move is that Ẽ lives in logically well-behaved structure while E
does not. That is, even though from the point of view of complex analysis, the map
E is just about the best function one could hope to study, from the point of view of
mathematical logic it has a very complicated theory as the kernel of E is the set Zn

and with the ring structure inherited from Cn the theory of this structure suffers
from Gödel incompleteness phenomena. On the other hand, using the real and
imaginary part functions to identify C with R2, the function Ẽ is definable in the
structure Rexp := (R,+,×, exp,≤, 0, 1) of the real field considered together with
the real exponential function.

Why is this important? The theory of Rexp is o-minimal, which, technically,
means that every definable subset of the universe is a finite union of points and
intervals, but which means in practice that the definable sets in any number of
variables admit a geometric structure theory. In particular, the set

X̃ := {z ∈ D : G(Ẽ(z)) = 0}

is such a definable set. We have transformed the problem of describing those n-
tuples of roots of unity ζ for which G(ζ) = 0 to the problem of describing the
intersection Qn ∩ X̃ which at this level of generality may appear to be even more
hopeless than the original problem as we know the problem of describing the ra-
tional solutions to algebraic equations is notoriously intractable (and is conjec-
turally impossible algorithmically [20]). However, if we punt on the problem for
algebraic equations, then for the remaining transcendental equation we can give
numerical bounds.

More precisely, for any set Y ⊆ Rm definable in some o-minimal expansion
of the real field, we define the algebraic part of Y, Yalg, to be the union of all
connected, positive dimensional semi-algebraic sets (that, definable using Boolean
combinations of polynomial inequalities) contained in Y. The counting theorem of
Pila and Wilkie asserts that there are sub-exponentially many rational points in the
transcendental part of Y, Y rYalg. That is, if we define

N(Y, t) := #{( a1

b1
, . . . ,

an

bn
) ∈ Y rYalg : (∀i ≤ n)|ai| ≤ t, 0 < bi < t, ai ∈ Z, bi ∈ Z}

then for each ε > 0 there is a constant C = Cε so that N(Y, t) ≤ Ctε for all t ≥ 1.
To use the Pila-Wilkie bound one must understand the set Yalg and while this is

far from a trivial problem, it has a geometric character and can be solved in cases
of interest. In our proof sketch of Theorem 2.1 it follows from a theorem of Ax on
a differential algebraic version of Schanuel’s conjecture [3] that X̃alg is the union
of finitely sets each defined by affine equations with rational coefficients which
under Ẽ are transformed into translates of algebraic subgroups of G. We complete
the argument by playing the Pila-Wilkie bound against lower bounds from Galois
theory, but we delay the details until Section 5.
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Each of the theorems in diophantine geometry proven using this method fol-
lows the general outline sketched above, though, of course, the individual steps
tend to be more complicated as there is work involved in proving that the requi-
site covering map is definable in some o-minimal structure, the determination of
the algebraic part of the relevant definable sets may be difficult, and one needs
appropriate Galois theoretic or analytic number theoretic results for the lower
bounds. While each step implicates some beautiful mathematics, it is the invo-
cation of the counting principle for definable sets in o-minimal structures which
gives this method its special character. As such, we shall focus this exposé on the
ideas of definability in o-minimal structures and the counting theorem.

3. INTRODUCTION TO O-MINIMALITY

O-minimality is not well-known to the general mathematician for at least a cou-
ple of reasons. First, it owes its existence and most of its development to mathe-
matical logic and for sociological reasons having to do with logic’s place at the
boundary between mathematics and philosophy, the basics of first-order logic are
not as widely known amongst mathematicians as are the basics of algebra, anal-
ysis and geometry. Secondly, the name itself, while technically accurate in that it
expresses that all of the one-dimensional structure is reducible to the order and
ties the subject to other parts of model theory, masks the fundamental nature of
the subject which is a general but tame and geometric theory of real analysis. In
his text [39], van den Dries argues that o-minimality may be a realization of the
theory of topologie moderée proposed by Grothendieck in [11] in which topology
and real analysis follow geometric intuitions. While I do not subscribe to this the-
sis in the strong form that o-minimality is the realization of topologie moderée,
o-minimality certainly fits the bill for a geometric theory of real analysis.

What follows is a condensed introduction to the theory of o-minimality. The
book [39] develops the general theory especially as it relates to o-minimal struc-
tures on the real numbers from a geometric point of view. The reader may wish
to consult the lecture notes from the recent thematic program on o-minimality at
the Fields Institute for a more recent account or Wilkie’s Bourbaki notes [43] for a
fuller survey. The foundational papers by Pillay, Steinhorn and Knight [30, 15, 31]
remain vital.

Definition 3.1. By an o-minimal structure we mean a structure in the sense of first-
order logic (R,<, . . .) where < is a total order on R and the ellipses refer to some
extra relations, functions and constants so that each definable (using parameters)
subset of R is a finite union of points and intervals.

Remark 3.2. While in the applications we have in mind, the underlying ordered
set is the set of real numbers with its usual ordering, the proofs of the counting
principles pass through an analysis of parametrizations of definable sets in more
general o-minimal structures. That is, the compactness theorem of first-order logic
when used in the context of an o-minimal theory allows for a kind of nonstandard
analysis which converts simple existence and finiteness results into uniformity
theorems.

As noted in Remark 3.2 there are good reasons beyond the historical accident
that logicians isolated the notion of o-minimality for treating o-minimal structures
as structures in the sense of first-order logic, but it is possible to make sense of
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o-minimality without explicit reference to logic. Let us give an alternate definition
of an o-minimal structure.

Definition 3.3. By an o-minimal structure we mean a nonempty totally ordered set
(R,<) given together with a Boolean algebrasDn of subsets of Rn for each n ∈ Z+

so that

1. each Dn is closed under the natural action of Sym(n) induced by permu-
tations of coordinates,

2. each singleton set {a} belongs to D1 for a ∈ R,
3. if X ∈ Dn and Y ∈ Dm, then X×Y ∈ Dn+m,
4. if π : Rn+1 → Rn is the projection onto the first n coordinates and X ∈
Dn+1, then the image of X under π belongs to Dn,

5. {〈a, b〉 ∈ R2 : a < b} ∈ D2,
6. {〈a, b〉 ∈ R2 : a = b} ∈ D2, and
7. every set in D1 is a finite union of singletons and intervals. That is, sets of

the form (−∞, a) := {x ∈ R : x < a}, (a, b) := {x ∈ R : a < x < b}, and
(b, ∞) := {x ∈ R : b < x} for some a, b ∈ R.

We refer to the sets in Dn as the definable subsets of Rn.

It is a routine matter to check that these two definitions of o-minimality are es-
sentially the same. The closure conditions 1. - 4. on the class of definable sets in
Definitions 3.3 and the initial requirement that each Dn be a Boolean algebra cor-
respond to the syntactic operations of logical Boolean operations, permutation of
variables, naming of parameters, conjunction of formulae with disjoint variables,
and existential quantification. Condition 5. corresponds to definability of the or-
dering while condition 6. asserts the definability of equality. It is with condition
7. that we insist upon o-minimality. The choice of a first-order signature in Defini-
tion 3.1 corresponds to specifying a set of generators for the class of definable sets
in the sense of Definition 3.3.

While this second presentation permits one to work with o-minimal structures
without ever thinking about first-order logic, I contend that it is a mistake to do
so. In practice, one establishes the definability of specific sets or conditions by ex-
hibiting a definition. For example, one can show that if X ⊆ Rn is a definable set
in some ordered structure (R,<, . . .), then so is the closure X of X. Of course, this
can be done by manipulating definable sets using projections and setwise Boolean
operations, but the first-order formula describing X is transparently the usual def-
inition of the closure:

(a1, . . . , an) ∈ X ⇐⇒ (∀x1) · · · (∀xn)(∀y1) . . . (∀yn)[
∧
i≤n

xi < ai < yi

→ (∃z1) · · · (∃zn)((z1, . . . , zn) ∈ X &
∧
i≤n

xi < zi < yi)]

One of the characteristic features of mathematical arguments using model the-
ory is the way in which properties of definable sets in one structure may be de-
duced from arguments performed in logically equivalent structures through a
kind of transfer principle. While these arguments are possible without the logi-
cal formalism, they are much more natural with it.
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While there are some degenerate o-minimal structures whose underlying or-
ders are discrete, we shall insist that an o-minimal structure be densely ordered
without endpoints and for our applications the underlying ordered set is the set
of real numbers with its usual ordering.

It is not hard to see that (R,<), the set of reals just with its order, is an o-minimal
structure. It takes a little more work to demonstrate the (R,<,+), the set of real
numbers considered as an ordered group, is an o-minimal structure. This latter
structure is the basis of piecewise linear geometry and of tropical geometry. While
the finiteness and uniformity properties of PL-geometry and tropical geometry are
easy enough to demonstrate directly, the o-minimality of this underlying structure
puts these results into context. That (R,+,×,<, 0, 1), the set of real numbers con-
sidered as an ordered field, is o-minimal is a consequence of Tarski’s theorem on
elementary geometry (first proved in 1929, but only published in 1948 [38]) and is
the basis of semi-algebraic geometry.

Wilkie proved that Rexp := (R,<,+,×, exp), the real field considered together
with the real exponential function is o-minimal [42]. Indeed, he proved a stronger
theorem: the real field considered together with all Pfaffian functions is o-minimal
where we say that a function f : R → R is Pfaffian if there is a finite sequence
of functions f1, . . . , fn = f so that for each i ≤ n we have f ′i = Gi(x, f1, . . . , fn)
for some polynomial Gi(y0, y1, . . . , yi) ∈ R[y0, y1, . . . , yn]. The order one linear
differential equation satisfied by exp exhibits the exponential function as a Pfaffian
function. In later work, Speissegger [37] showed that one may take any o-minimal
structure and adjoin all Pfaffian functions relative to that structure and thereby
obtain a new o-minimal structure. In fact, Speissegger’s theorem is more general
in that he allows for the adjunction of so-called Rolle leaves to definable vector
fields, but as this generalization is not germane to our applications, we omit the
details.

In another direction, as a complement to their theorems on p-adic analytic func-
tions, Denef and van den Dries [7] proved the o-minimality of Ran, the real field
considered together with all restricted analytic functions. That is, for each n ∈ Z+

and each power series

f := ∑
α∈Nn

fαxα1
1 · · · x

αn
n ∈ R[[x1, . . . , xn]]

which converges on the unit box we are given a function symbol f̃ to be interpreted
as

f̃ (a1, . . . , an) :=

{
∑ fαaα1

1 · · · a
αn
n if − 1 ≤ a1 ≤ 1 for each i ≤ n

0 otherwise

Combining these two expansions to form Ran,exp := Ran(exp), the real field
considered with all real analytic functions and the real exponential function. The
o-minimality of this structure was first established by van den Dries and Miller [41]
and then the structure of its definable sets was more thoroughly explored by van
den Dries, Macintyre, and Marker [40]. It is this structure which is relevant to the
diophantine applications mentioned in the abstract.

For some perspective, one should note that many expansions of the real field
by global real analytic functions, for example (R,+,×,<, sin), are not o-minimal
as the zero set {x ∈ R : sin(x) = 0} is infinite but discrete. Likewise, for a
sufficiently general smooth function f : R → R the expansion (R,+,×,<, f �
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[0, 1]) is not o-minimal. Since o-minimal structures have a tame geometry and
we know that functions arising from real analysis tend to be wild, these examples
ought not to be so surprising. On the other hand, it follows from work of Rolin,
Speissegger and Wilkie [33] that there is no ultimate o-minimal structure on the
real numbers. Indeed, for any C∞ function f : R → R one can find two other
functions g : R → R and h : R → R so that f = g + h but both structures
(R,+,×,≤, g) and (R,+,×,≤, h) are o-minimal. Consequently, if we understand
o-minimality as the formalization of the concept of topologie moderée, then there
is not a single structure which captures all of tame geometry.

From the fact that a specific structure is o-minimal, one may immediately de-
duce strong finiteness properties of the definable subsets of the line. For example,
if f : R → R is definable in some o-minimal structure on the real numbers, then
the zero set of f consists of finitely many points and finitely many intervals. If f
falls into some natural class for which an identity principle holds, as when f is real
analytic, then we see that if f is not identically zero, it has only finitely many zeros.
This applies, for instance, to the case that f is built via finitely many applications
of sums, differences, products and compositions from the identity function, scalar
multiplication and the real exponential function.

The simplicity of definable sets coming explicitly from o-minimality’s defini-
tion, while often unexpected, is the basis for a far deeper structure theory of de-
finable sets in any number of variables. For example, it follows very easily from
o-minimality that in a sufficiently rich o-minimal structure, if one has a definable
family of definable nonempty sets, then this family admits a definable choice func-
tion. Let us make this statement precise and prove it in detail.

Definition 3.4. We say that the o-minimal structure (R,<, . . .) is sufficiently rich if
it has at least the structure of an ordered abelian group (R,+,−, 0, 1,<, · · · ) with
at least one positive element called 1 named by a constant.

It is an easy exercise to show that if an o-minimal structure is sufficiently rich,
then the underlying group is divisible.

Definition 3.5. Let (R,<, . . .) be an o-minimal structure. By a definable family of
definable subsets of Rn we mean a definable set X ⊆ Rn × Rm for some positive
natural number m where we regard Rm as parametrizing the family where to b ∈
Rm we associate the set Xb := {a ∈ Rn : 〈a, b〉 ∈ X}. Sometimes, we write a
definable family of definable sets as {Xb}b∈B where B ⊆ Rn is a definable set
containing the projection of X to Rm.

Definition 3.6. By a definable choice function for the definable family {Xb}b∈B we
mean a definable function f : B→ Rn for which f (b) ∈ Xb for each b ∈ B.

With these definitions in place, let us prove the existence of definable choice
functions.

Proposition 3.7. Let (R,+,−, 0, 1,<, · · · ) be a sufficiently rich o-minimal structure
and {Xb}b∈B a definable family of non-empty definable subsets of Rn. Then there is a
definable choice function f : B→ Rn for this family.

Proof. We work by induction with the case of n = 0 being trivial. For the inductive
case of n + 1, let b ∈ B and consider the set

A(b) := {y ∈ R : (∃x ∈ Rn)〈x, y〉 ∈ Xb}
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The family {A(b)}b∈B is a definable family of nonempty definable subsets of R.
Let us define a choice function h for this family. For b ∈ B, if A(b) = R, define
h(b) := 0. If A(b) 6= R, then by o-minimality it has a finite non-empty boundary.
Consider the least boundary point y. If y ∈ A(b), define h(b) := y. Otherwise, one
of three situations must obtain: (−∞, y) ⊆ A(b), (y, ∞) = A(b) or (y, z) ⊆ A(y)
for z the second boundary point of A(b). Define h(b) := y − 1 in the first case,
A(b) := y + 1 in the second case, and h(b) := y+z

2 in the last case.
For b ∈ B define

Zb := {x ∈ Rn : 〈x, h(b)〉 ∈ Xb}
Then {Zb}b∈B is a definable family of nonempty subsets of Rn which has a de-
finable choice function g : B → Rn by induction. Our desired choice function
f : B→ Rn+1 is then given by b 7→ 〈g(b), h(b)〉. �

The fundamental theorem of o-minimality is the cell decomposition theorem
which asserts, roughly, that every definable set may be partitioned into finitely
many cells, definable sets which are definably homeomorphic to balls possibly in
a lower dimensional space. Since this theorem is so important for all of the work
in o-minimality and is invoked if only implicitly throughout the proof of the Pila-
Wilkie theorem on counting rational points, we shall go into detail.

Let us begin by giving a precise definition of cell. As we define this notion, we
shall define the dimension of a cell.

Definition 3.8. Let (R,<, · · · ) be an o-minimal structure. We define the class of
cells in Rn by recursion on n and for each cell X we define dim(X). The set R0 is a
singleton which is the only cell in R0. We define dim(R0) := 0. If X ⊆ Rn is a cell
and f : X → R is a definable, continuous function, then the graph of f ,

Γ( f )X := {(x, y) ∈ Rn × R : x ∈ X & f (x) = y}
is a cell with dim(Γ( f )) := dim(X). If g : X → R is another definable, continuous
function for which (∀x ∈ X) f (x) < g(x), then the interval

( f , g)X := {(x, y) ∈ Rn × R : x ∈ X & f (x) < y < g(x)}
is a cell and dim(( f , g)X) := dim(X) + 1. Likewise,

(−∞, f )X := {(x, y) ∈ Rn × R : x ∈ X & y < f (x)}
and

(g, ∞)X := {(x, y) ∈ Rn × R | x ∈ X & g(x) < y}
are cells of dimension dim(X) + 1.

Let us specialize to the case of cells in R = R1 for a moment. A definable
function (indeed, any function) f : R0 → R is given by choosing a single point
a ∈ R. Via the natural identification R0 × R1 = R, we see that Γ( f )R0 = {a}.
Likewise, if g : R0 → R is another definable function for which (∀x ∈ R0) f (x) <
g(x), then taking b to be the sole value of g we have a < b and again with respect
to the natural identification of R0 × R1 with R, the interval ( f , g)R0 is simply the
usual interval (a, b). That is, cells in R are singletons and open intervals, possibly
unbounded. To say that (R,<, . . .) is o-minimal is precisely the same as to say that
every definable set X ⊆ R may be expressed as a finite union of cells. The cell
decomposition theorem asserts that this property of definable sets in one space
generalizes to any dimension.
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Theorem 3.9. Let (R,<, · · · ) be an o-minimal structure. Given any m ∈ Z+ and any
finite sequence X1, . . . , Xn ⊆ Rm of definable subsets of Rm there is a finite sequence of
cells C1, . . . , Ck ⊆ Rm which partitions Rm and whose restriction to each X` also parti-
tions X`. That is, Ci ∩ Cj = ∅ for i 6= j, Rm =

⋃k
j=1 Cj, and for each ` ≤ m we have

X` =
⋃
{j≤k : Cj∩X` 6=∅} Cj.

In the course of the proof of Theorem 3.9 one shows that definable functions
are very regular. The monotonicity theorem says that for any definable function
f : R → R possibly after removing finitely many points one may partition the
domain into finitely many intervals so that on each interval f is continuous and
either constant or strictly monotone. In general, the piecewise continuity theorem
says that if f : Rn → R is a definable function, then one may decompose the
domain into finitely many cells so that the restriction of f to each cell is continuous.
If the structure (R,<, . . .) includes at least the structure of an ordered field, then it
makes sense to speak of the derivative of a function. In this case, for any k ∈ Z+

one may choose a cell decomposition of the domain so that f is Ck on each cell.
Likewise, in the cell decomposition theorem itself, one may take the functions
defining the cells to have any prescribed degree of smoothness. Unfortunately, it is
not the case that one may always take the cells to be defined by analytic functions,
but in many cases of interest, for example in Ran,exp, one may take the defining
functions to be real analytic.

It it hard to overstate the strength of the geometric consequences of the cell
decomposition theorem and its refinements. For example, it implies a kind of
infinitesimal rigidity on the topology of definable sets living in a definable family.

It is a fairly easy consequence of the cell decomposition theorem applied to the
total space of a definable family that given a definable family {Xb}b∈B of definable
sets, the cells required for the cell decompositions of the various fibres also vary in
definable families. It follows from this uniformity theorem that at least when the
underlying ordered set is the set of real numbers with its usual ordering that the
topology of the sets in a definable family is rigid.

Proposition 3.10. If {Xb}b∈B is a definable family of definable sets in some o-minimal
structure on the real numbers (with the usual ordering) then there are only finitely many
homemorphism types represented in the family.

As a corollary of Proposition 3.10 we obtain a theorem of Khovanski [14] on
fewnomials. To be fair, while the theorem on fewnomials which we shall discuss
is logically a consequence of Proposition 3.10 both temporally and intellectually it
is prior. Khovanski’s work on fewnomials inspired much of the development of
theory of o-minimality and many of his specific results underly Wilkie’s proof of
the o-minimality of Rexp. Moreover, the argument we outline below is patterned
on Khovanski’s own proof through the passage from polynomials of indetermi-
nate degree to exponential polynomials.

Theorem 3.11. For fixed integers k and n there are only finitely many homemorphism
types amongst the following sets

{(a1, . . . , an) ∈ (R+)
n :

k

∑
i=1

fia
mi,1
1 · · · ami,n

n = 0}
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as ( f1, . . . , fk) ranges through Rk and m ranges through the k by n matrices with natural
number coordinates.

To prove Theorem 3.11 we observe that it suffices show that there are only
finitely many homemorphism types even if we allow m to range through Mk×n(R)
rather than merely Mk×n(N). The above family of semialgebraic sets may be em-
bedded into the following Rexp-definable family.

{(a, f , m) ∈ (R+)
n × (Rk × (Rn)k) :

k

∑
i=1

fi

n

∏
j=1

exp(mi,j ln(ai)) = 0}

The finiteness of the number of homemorphism types is now a special case of
Proposition 3.10.

4. COUNTING RATIONAL POINTS IN O-MINIMAL DEFINABLE SETS

The key technical result behind the Pila-Wilkie theorem on counting rational
points may be seen as, in some sense, a dual version of the cell decomposition
theorem in that rather than concluding that a general definable set may be pieced
together from definable subsets each defined in a very simple way it is shown
that a general definable set may be covered by finitely many definable sets each
of which is parametrized by a unit ball via functions with small derivatives. Be-
fore we go into detail about this technical result on parametrizations, let us go
into some more detail about the counting theorem itself and then explain how an
appropriate parametrization theorem could yield these bounds.

Definition 4.1. The usual multiplicative height function H : Q→N is defined by
H(0) := 0 and H( a

b ) := max{|a|, |b|} when a, b ∈ Z r {0} and gcd(a, b) = 1. We
extend H to a function, still denoted by H, on Qn by H(x1, . . . , xn) := max{H(xi) :
i ≤ n}. This is not the standard projective height, but it works well for the pur-
poses of our counting problems. Given any subset X ⊆ Rn and a number t ≥ 1
we define

X(Q, t) := {a ∈ Qn : a ∈ X & H(a) ≤ t}
and define N(X, t) := #X(Q, t) to be the number of points in X(Q, t).

If X happens to contain all of Qn, then N(X, t) is asymptotic to a constant times
t2n. This simple observation combined with the even simpler remark that Rn itself
is definable in any o-minimal structure on R shows that one cannot hope to show
that N(X, t) grows more slowly than any power of t for a general set X ⊆ Rn defin-
able in some o-minimal expansion of (R,<). Somewhat less trivial considerations
show that some further restrictions are required. For example, if X ⊆ Rn happens
to contain the graph of a polynomial with integer coefficients f : Rn−1 → R, then
N(X, t) will grow at least on the order of t2(n−1)/d where d is the degree of f . Of
course, there are more general algebraic varieties which have many rational points
and if X should contain one of these, it, too, will have many rational points. Thus,
to have any hope of proving a bound on N(X, t) for general X definable in some
o-minimal structure on R, we must exclude those algebraic sets which have too
many rational points. We achieve this by excluding all semi-algebraic sets.

Definition 4.2. We say that a set X ⊆ Rn is semi-algebraic if it is definable in the
structure (R,+,×,<) of the real numbers considered as an ordered field. More
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concretely, a set is semi-algebraic if it is a finite Boolean combination of sets de-
fined by conditions of the form f (x1, . . . , xn) > 0 where f ∈ R[X1, . . . , Xn] is poly-
nomial with real coefficients in n variables. Given a set X ⊆ Rn we define Xalg,
the algebraic part of X, to be the union of all sets Z where Z ⊆ X is semi-algebraic,
connected, and has dimension at least one. We define Xtrans, the transcendental
part of X, to be X r Xalg.

There is no reason to expect the algebraic part of X to be semi-algebraic itself
even if X is definable in some particularly well behaved o-minimal structure on the
real numbers. For example, consider the following set which definable in Rexp.

X := {(x, y, z) ∈ R3 : x > 0 & z = xy = exp(y ln(x))}
The set X has dimension two, being the graph of a definable continuous func-

tion on R+ ×R, but it does not contain any two dimensional semi-algebraic sets.
On the other hand, its algebraic part consists of the union of the following count-
ably infinite collection of one-dimensional semi-algebraic sets

{(x, y, z) ∈ R3 : x > 0 & y =
n
m

& xn = zm}

as n
m ranges through the rational numbers. Thus, in this case Xalg is a properly

infinite union of semi-algebraic sets.
With these definitions in place we may state the counting theorem from [24].

Theorem 4.3. Let X ⊆ Rn be a subset of some Cartesian power of the real numbers which
is definable in some o-minimal structure on R. Then for each ε > 0 there is some constant
C = Cε so that for t ≥ 1 one has N(Xtrans, t) ≤ Ctε.

Remark 4.4. Strengthenings of Theorem 4.3 are known. The proof of Theorem 4.3
passes through a proof a uniform version in which X is allowed to vary in a defin-
able family and the bound is shown to hold for a bigger set than simply Xtrans. For
purposes of the application of Theorem 4.3 to the André-Oort conjecture and some
related problems it is necessary to count algebraic points of small degree rather
than merely rational points. These bounds may be deduced from the bounds for
rational points [26].

Remark 4.5. Examples have been constructed showing that in general one can-
not hope for better universal bounds. However, one might hope that if X is de-
finable in a particularly nice way, then the bounds may be strengthened. In the
strongest forms, these strengthenings assert that certain transcendental equations
have no non-obvious algebraic solutions. I have in mind conjectures along the
lines of Schanuel’s conjecture on the transcendence of the exponential function
that if α1, . . . , αn are complex numbers which are Q-linearly independent then
the transcendence degree of the field Q(α1, . . . , αn, eα1 , . . . , eαn) is at least n [17],
André’s conjectures on G-functions [1], and the Kontsevich-Zagier conjectures on
periods [16]. While these conjectures are inaccessible to contemporary techniques,
Wilkie’s conjecture about sets definable using the real exponential function may
be within reach.

Conjecture 4.6. Let X ⊆ Rn be a subset of a Cartesian power of R definable in Rexp.
There there are constants C and K depending only on X so that for t ≥ 1 we have
N(Xtrans, t) ≤ C(log t)K.
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The proof Theorem 4.3 and the proofs [27] of partial results towards Conjec-
ture 4.6 rely on a general geometric theorem about parametrizations of definable
sets, referred to as a dual form of cell decomposition in the first paragraph of this
section, and a linear algebraic argument to show that the rational points on the
image of a ball under a sufficiently smooth function must lie in a small number of
algebraic hypersurfaces.

Definition 4.7. Let (R,+, ·,<, . . .) be an o-minimal structure on an ordered field,
X ⊆ Rn be a definable set of dimension k in some Cartesian power of R and r ∈ Z+

be a positive integer. We say that φ = (φ1, . . . , φn) : (0, 1)k → Rn is a partial
r-parametrization of X if

• φ is definable,
• the range of φ is contained in X, and
• for each i ≤ n and multi-index α = (α1, . . . , αk) ∈ Nk with |α| = ∑ αi ≤ r

we have | ∂|α| fi
∂x

α1
1 ···∂xαn

n
(x)| ≤ 1 for all x ∈ (0, 1)n.

By an r-parametrization of X we mean a finite set S of partial r-parametrizations of
X for which X is covered by the ranges of the functions in S.

The main theorem about parametrizations is that r-parametrizations exist for
every r ∈ Z+ and every sufficiently bounded definable set in an o-minimal struc-
ture.

Theorem 4.8. Let (R,+,×,<, . . .) be an o-minimal structure expanding an ordered field,
X ⊆ [−1, 1]n be a definable subset of the unit n-cube in R for some n ∈ Z+, and r ∈ Z+

be a positive integer. Then X admits an r-parametrization.

For the intended applications, we work in an o-minimal structure on R. What,
then, is the point of the greater generality? The proof of Theorem 4.8, even in
the case that the underlying ordered field is the field of real numbers, makes es-
sential use of parametrizations of definable sets in more general o-minimal struc-
tures through a kind of nonstandard analysis. That is, by proving even individual
instances of the parametrization theorem, say, in general o-minimal structures,
one may deduce via the compactness theorem of first-order logic that the theorem
holds uniformly in definable families. From the point of view of the ultimate theo-
rem, these compactness arguments are hidden, but they are crucial for the proofs.

Theorem 4.8 generalizes a theorem of Yomdin on the existence of r-parametriza-
tions for real semi-algebraic sets [45, 44] and its proof follows Gromov’s version
of the proof in the semi-algebraic setting [10]. Of course, for purposes of Theo-
rem 4.3 in which we count only rational points in the transcendental part of X, the
parametrization theorem for semialgebraic sets on its own does not help.

The logical structure of the proof of Theorem 4.8 is similar to that of the cell de-
composition theorem (Theorem 3.9). For both of these theorems, the one-dimen-
sional case itself is an immediate consequence of the definition of o-minimality, but
to carry out the induction using the definable choice functions given by Propo-
sition 3.7 one performs a concurrent induction showing that definable functions
have strong regularity properties. For the cell decomposition theorem, this takes
the form of the monotonicity theorem in dimension one and the piecewise conti-
nuity theorem in higher dimensions. For the parametrization theorem, this takes
the form of a reparameterization theorem in all dimensions and a strengthening of
the reparameterization theorem in dimension one.
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To say what is meant by reparameterization, we need the definition of strongly
bounded.

Definition 4.9. Let (R,+, ·, 0, 1,<, . . .) be an o-minimal expansion of an ordered
field. We say that the set X ⊆ Rn is strongly bounded if there is a natural number
N ∈ N for which X ⊆ [−N, N]n. We say that a function f : Y → Rn is strongly
bounded if its range is strongly bounded.

Definition 4.10. Let (R,+, ·, 0, 1,<, · · · ) be an o-minimal expansion of an ordered
field. Given a positive integer r ∈ Z+ and a definable function f = ( f1, . . . , fn) :
(0, 1)m → Rn we say that an r-parameterization S of the open unit box (0, 1)m is
an r-reparameterization of f if for each α ∈ Nm with |α| ≤ r, φ ∈ S and j ≤ n the

function f j ◦ φ is r-times differentiable and
∂|α|( f j◦φ)

∂x
α1
1 ···∂xαm

m
is strongly bounded.

Remark 4.11. In the case that the underlying field is simply R, then bounded and
strongly bounded have the same meaning. The meanings diverge only for non-
archimedian fields. In the real case, if f : (0, 1)m → Rn is bounded and sufficiently
smooth, then any r-parameterization of (0, 1)m is an r-reparameterization. The
utility of the concept of a reparameterization is only seen through the nonstandard
analytic arguments.

The key auxiliary result in the proof of Theorem 4.8 is the reparameterization
theorem.

Theorem 4.12. Let (R,+, ·, 0, 1,<, · · · ) be an o-minimal expansion of an ordered field,
m ∈ Z+, n ∈ Z+, and r ∈ Z+ be three positive integers. If f : (0, 1)m → Rn is
strongly bounded, then there exists an r-reparameterization of f . Moreover, if m = n = 1,
the reparameterization S may be chosen so that for each φ ∈ S either φ or φ ◦ f is a
polynomial with strongly bounded coefficients.

Theorem 4.12 and thereby the full Theorem 4.8 are established via a constructive
and concrete argument in the base case and then via an inductive argument rely-
ing heavily upon definable choice and the cell decomposition theorems in higher
dimensions.

Let us explain now how Theorem 4.3 follows from Theorem 4.8. We start with
a set X ⊆ Rn definable in some o-minimal expansion of the real numbers and a
number ε > 0. Breaking X into the 2n pieces Xτ := {(a1, . . . , an) ∈ X : |aτi

i | ≤
1 for all i ≤ n} as τ ranges over {±1}n, it suffices to estimate N(Xτ , t) for each
such τ. Since the map x 7→ 1

x does not effect our height function, we may replace
each Xτ with its image under (x1, . . . , xn) 7→ (xτ1

1 , . . . , xτn
n ) and thereby we may

assume that X ⊆ [−1, 1]n. From Theorem 4.8 we know that for each r ∈ Z+ the
set X admits an r-parameterization. We shall choose r depending on ε so that the
existence of such an r-parameterization implies that N(X, t) ≤ Ctε.

At this point, the argument follows the lines of other constructive arguments
bounding numbers of rational solutions and is similar in spirit to Bombieri’s proof
of the Mordell conjecture [5]. The key result is the following proposition whose
proof is ultimately embedded in the paper [4].

Proposition 4.13. For m, n, d ∈ N with m < n there are numbers r ∈ Z+ and ε =
ε(m, n, d) and C = C(m, n, d) in R+ so that for any Cr function φ : (0, 1)m → Rn with
range X and t ≥ 1 the set X(Q, t) is contained in at most Ctε hypersurfaces of degree d
and ε(m, n, d)→ ∞ as d→ ∞.
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The proof of Proposition 4.13 requires some nontrivial but elementary combi-
natorial estimates and some careful but again elementary analytic considerations,
but ultimately it is based on a simple, but ubiquitous in the theory of diophantine
approximations, observation: if an integer has absolute value less than one, it is
zero.

With Proposition 4.13 in place, Theorem 4.3 follows by induction: those excep-
tional hypersurfaces which have full dimension intersection with X are part of
Xalg and those which intersect X in a lower dimensional set contribute little to
N(Xtrans, t) by induction.

5. DIOPHANTINE APPLICATIONS

In general, it is not true that if X ⊆ Rn is definable in some o-minimal structure
on the real numbers that (Xtrans)(Q) is finite. For example, if X is the graph of the
function x 7→ 2x, then its algebraic part is empty, but for each integer a we have
〈a, 2a〉 ∈ X(Q). However, in some cases of independent number theoretic interest
the upper bounds of Theorem 4.3 may be played against lower bounds coming
from Galois theory. In the introduction to this paper, we sketched a version of this
argument due to Pila and Zannier to show that algebraic relations amongst roots
of unity may always be explained by multiplicative dependencies. In this section
we shall explain some of the more sophisticated results proven using variations of
this method

Let us return to the argument sketched in the introduction giving a few more
details to complete the proof. Recall that we wish to prove that for G(x1, . . . , xn) ∈
C[x1, . . . , xn] a polynomial over the complex numbers in n variables the set

X := {(ζ1, . . . , ζn) ∈ (C×)n : G(ζ1, . . . , ζn) = 0 & each ζi is a root of unity }

is a finite union of cosets of groups. We observed that if we define

D := {z ∈ C : 0 ≤ Re(z) < 1}

and Ẽ : Dn → (C×)n by

(z1, . . . , zn) 7→ (e2πiz1 , . . . , e2πizn)

then via the usual interpretation of C as R2 using the real and imaginary part
functions, the function Ẽ is definable in Rexp and the set X is the image under Ẽ
of the set X̃(Q) where X̃ := {(z1, . . . , zn) ∈ Dn : G(e2πiz1 , . . . , e2πizn) = 0} is an
Rexp-definable set.

Before we can apply Theorem 4.3 to give even numerical bounds on the distri-
butions of the points in X̃(Q), we need to compute X̃alg. The key to this computa-
tion is Ax’s function field version of the Schanuel Conjecture [3].

Theorem 5.1. If γ1(t), . . . , γn(t) ∈ tC[[t]] are power series over the complex numbers
with no constant term which are linearly independent over Q, then the transcendence de-
gree over C(t) of the field C(t, γ1(t), . . . , γn(t), exp(γ1(t)), . . . , exp(γn(t))) is at least
n.

It follows from Theorem 5.1 that if γ : (0, 1) → X̃ were a semi-algebraic curve,
then the components of γ would satisfy a nontrivial linear dependence over Q.
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This alone is not enough for the determination of X̃alg. Rather, we now use an-
other property of definable sets in o-minimal structures on the real numbers: ev-
ery countable definable set is finite. For each positive k ≤ n we consider the set
Mk of maximal k-dimensional affine spaces: affine spaces V (translates of vector
subspaces) of dimension k for which dim(V ∩ X̃) = k but for which there is some
point a ∈ (V ∩ X̃) for which is no k + 1-dimensional affine space W which meets
X̃ near a in dimension k + 1 set. It is not hard to see that relative to the usual rep-
resentations of affine spaces via affine equations, each of the sets Mk is definable.
It takes a little more work using properties of the covering map Ẽ to see that every
element of Mk is defined over Q. Hence, each Mk is countable and therefore finite.
Combining this argument with Theorem 5.1, we see that X̃alg =

⋃n
k=1

⋃
H∈Mk

H.
For the algebraic part, it is now clear that X̃alg(Q) is a finite union of cosets of
groups (intersected with [0, 1)n).

To complete the proof, we must show that (X̃trans)(Q) is finite using the bounds
from Theorem 4.3. For this we need a reduction: we may assume that G is an
irreducible polynomial defined over some a number field K. If you are comfortable
with basic algebraic geometry, this reduction is standard and quite easy and will
be given in the parenthetical sentences to follow. Otherwise, take this point as
given or just follow the argument in the case when G is in fact a polynomial over
a number field.

(For the reduction, observe that Theorem 2.1 is equivalent to the apparent gen-
eralization where the hypersurface defined by G is replaced by a general subvari-
ety. For a variety Y ⊆ An

C, if

Z := Y(C) ∩ {(ζ1, . . . , ζn) ∈ (C×)n : each ζi is a root of unity }

then Y(C) and Z(C) meet the n-tuples of roots of unity in the same set. So, we
may assume Y = Z. It then follows from Lagrange interpolation that Y is defined
over the algebraic numbers as it contains a Zariski dense set of algebraic points.
Since only finitely many equations are required to define Y, it is, in fact, defined
over a number field.)

Let us now estimate N(X̃, t). Suppose that z ∈ X̃(Q, t). We can write z =
( a1

b1
, . . . , an

bn
) where each ai and bi is an integer, 0 ≤ ai < bi ≤ t and (ai, bi) = 1

(and bi = 1 if ai = 0). Exponentiating, we have G(e2πi a1
b1 , . . . , e2πi an

bn ) = 0. Let

L := K((e2πi a1
b1 , . . . , e2πi an

bn ) be the field obtained by adjoining the coordinates of
Ẽ(z) to K. Since G has coefficients in K, for any automorphism σ : L → L over

K, we have G(σ(Ẽ(z))) = 0. Since e
2πi

aj
bj is a primitive bth

j root of unity, we know

that σ(e
2πi

aj
bj ) = e

2πi a′
bj for some integer a′ with 0 ≤ a′ < bi. Moreover, it follows

from basic Galois theory that the orbit of e
2πi

aj
bj under the Galois group of L over

K has cardinality at least ϕ(bj)/[K : Q] where ϕ is Euler’s totient function given
by ϕ(n) := #(Z/nZ)×. A simple computation shows that for any constant C > 0
and number ε < 1 we have ϕ(n) > Cnε for n � 0. Putting all these observations
together, we see that if t ∈ Z+ and N(X̃trans, t) > N(X̃trans, t− 1), then N(X̃, t) ≥

1
[K:Q]

ϕ(t). For t� 0 this would violate Theorem 4.3 with ε < 1. Hence, there must
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be some t for which every element of (X̃trans)(Q) has height at most t. That is, this
set is finite.

For the other applications we have mentioned, the statements are intrinsically
more complicated as they refer to more sophisticated geometries and the proofs
are correspondingly more involved. However, the fundamental strategies are the
same.

Let us consider the theorem of Masser and Zannier [19] about torsion on ellip-
tic curves. They consider the family of elliptic curves presented in their affine Le-
gendre form where Eλ is defined by the affine planar equation y2 = x(x− 1)(x−
λ) for λ ∈ C r {0, 1}. From theory of elliptic curves, Eλ considered together with
the point at infinity has a unique structure of an algebraic group with that point at
infinity as the identity. For a fixed complex number a we might consider the set of
λ for which the point (a,

√
a(a− 1)(a− λ)) is torsion in the group Eλ(C). It is not

hard to see that for a = 0 or a = 1, then these points are always torsion. On the
other hand, for every other a there are only countably many λ for which this point
is torsion in Eλ(C). Nevertheless, computing the rational functions which define
the multiplication by n map on Eλ it is fairly easy to show that for any such a there
will be infinitely many λ for which (a,

√
a(a− 1)(a− λ)) is torsion. Masser and

Zannier address the question: if we consider two number a and b, for how many λ

are (a,
√

a(a− 1)(a− λ)) and (b,
√

b(b− 1)(b− λ)) both torsion in Eλ(C)? In the
special case of a = 2 and b = 3 they given an answer.

Theorem 5.2. There are only finitely many complex numbers λ for which

Pλ := (2,
√

2(2− λ))

and

Qλ := (3,
√

6(3− λ))

are torsion in Eλ(C).

Remark 5.3. The proof of Theorem 5.2 applies perfectly well to any two numbers a
and b for which the points

Pa
λ := (a,

√
a(a− 1)(a− λ))

and

Qb
λ := (b,

√
b(b− 1)(b− λ))

are linearly independent over Z in the group Eλ(Q(λ)).

The proof of Theorem 5.2 follows the pattern of the proof of Theorem 2.1 we
have outlined above. For each elliptic curve Eλ, the the theory of analytic uni-
formizations gives a complex analytic covering map πλ : C → Eλ(C). As with
the usual exponential function, this covering is not definable in any o-minimal ex-
pansion of the real numbers. However, if we restrict πλ to a fundamental domain,
it is. Moreover, at the cost of treating πλ as simply a real analytic function, we
may normalize the fundamental domain so that the domain of πλ is the square
[0, 1)× [0, 1) and the map πλ is a group homomorphism when [0, 1) is given the
usual wrap around additive structure. With some work, one can show that the
two variable (or, really, four real variable) function (λ, z) 7→ πλ(z) is definable in
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Ran,exp relative to the usual interpretation of C in R and when z is restricted to
[0, 1)× [0, 1). Masser and Zannier then study the set

X̃ := {(x1, y1, x2, y2) ∈ [0, 1)4 : (∃λ)πλ(x1, y1) = (2,
√

2(2− λ))

& πλ(x2, y2) = (3,
√

6(3− λ))}

Visibly, X̃ is definable in Ran,exp and it is not hard to see that the rational points
on X̃ all come from λ for which Pλ and Qλ are simultaneously torsion. Transcen-
dence results about the Weierstraß ℘-function are used in place of Ax’s theorem to
show that X̃alg is empty and a theorem of David [6] about the degree of the field
extension required to define elliptic curves with elements of specified order plays
the rôle of the calculation of the degree of a cylcotomic extensions.

It bears noting that the published sketch of Theorem 5.2 avoids an explicit ref-
erence to definability in o-minimal structures as Pila had proved a provisional
version of Theorem 4.3 for subanalytic surfaces without invoking the theory of o-
minimality [25]. On the other hand, due to the work of Peterzil and Starchenko [23]
on the uniform definability of theta functions in Ran,exp, it follows that the ques-
tion of simultaneous torsion in families of higher dimensional abelian varieties
may be analyzed via these methods.

Finally, let us close with Pila’s proof of the André-Oort conjecture for modular
curves. We shall introduce the André-Oort conjecture via the classical theory of
complex elliptic curves. Unlike most other approaches to this problem where one
might (or might not) define the terms using complex analysis but then address the
questions with a more number theoretic theory, Pila’s proof appeals directly to the
complex analytic presentation of the problem.

As we observed above, for every elliptic curve E over the complex numbers, one
can find a complex analytic surjective group homomorphism π : C → E(C). The
kernel of C is a lattice which after making a linear change of variables we may ex-
press as ker π = Z⊕Zτ for some complex number τ ∈ h := {z ∈ C : Im(z) > 0}.
Conversely, for any τ ∈ h, the complex analytic group Eτ(C) := C/(Z + Zτ) is
complex analytically isomorphic to a complex algebraic curve with an algebraic
group structure, which we shall continue to denote by Eτ . From the general the-
ory of covering spaces, it is not hard to see that the endomorphisms of the elliptic
curve Eτ correspond to complex numbers µ for which µ(Z + Zτ) ≤ Z + Zτ. A
short computation shows that for most choices of τ, the number µ gives an en-
domorphism only when µ is an integer. On the other hand, if τ satisfies a qua-
dratic equation over Q, then there will be some endomorphisms not coming from
Z. This is the reason why elliptic curves whose endomorphism rings are strictly
larger than Z are said to have complex multiplication or to be CM.

There is an analytic function j : h → C having the property that Eτ(C) and
Eσ(C) are isomorphic as elliptic curves if and only if j(τ) = j(σ). We refer to
the value j(τ) as the j-invariant of the elliptic curve Eτ . Let us say that a complex
number ζ is a special point if it is the j-invariant of an elliptic curve with complex
multiplication. By the above discussion, we see that a number is special if and only
if it is the value of the analytic j-function on a quadratic imaginary number. The
André-Oort conjecture in this case predicts the form of the algebraic subvarieties
X ⊆ An

C of affine n-space which contain a Zariski dense set of n-tuples of special
points. Specializing to the case of n = 2, it proposes a solution to the question
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of for which polynomials g(x, y) ∈ C[x, y] are there infinitely many pairs (ξ, ζ) of
special points for which g(ξ, ζ) = 0? This case was solved early in the investiga-
tions around the André-Oort conjecture, first assuming the Riemann Hypothesis
by Edixhoven [8] and then unconditionally by André [2].

Clearly, if ξ is a special point, then the set algebraic varieties {ξ} ×A1
C and

A1 × {ξ} contain Zariski dense sets of special points as does the whole plane A2
C.

It follows from the general theory of coverings, that for each n ∈ Z+ there is
a polynomial Pn(x, y) ∈ C[x, y] for which the function τ 7→ Pn(j(nτ), j(τ)) is
identically zero. From this presentation, it is clear that the curve defined by the
vanishing of Pn contains a Zariski dense set of special points for if τ is quadratic
imaginary, then so is nτ and vice versa. The André-Oort conjecture (for the j-line)
says that these are the only algebraic varieties other than points which can contain
a Zariski dense set of special points.

Theorem 5.4 (Pila). Let X ⊆ An
C be an irreducible algebraic subvariety of affine n-space

over the complex numbers. Suppose that the set

{(ξ1, . . . , ξn) ∈ X(C) : each ξi is the j-invariant of a CM-elliptic curve}
is Zariski dense in X, then X is defined by equations of the form Pm(xi, xj) = 0 and
xk = ξ for ξ a special point.

The proof of Theorem 5.4 follows our by now familiar pattern. First, Pila ob-
serves that j restricted to a fundamental domain is definable in Ran,exp by work of
Peterzil and Starchenko [21]. He then moves from a study of X to that of X̃, the
inverse image of X(C) via j (or really, the map (z1, . . . , zn) 7→ (j(z1), . . . , j(zn)))
restricted to its fundamental domain, which is a definable set in Ran,exp. He then
must determine X̃alg and does so using considerations of the action of the modular
group showing that the algebraic part comes from the pre-images of finitely many
varieties of the desired form. At this point, the goal is to show that if X does not
already have the desired form, then there are only finitely many quadratic imag-
inary points in X̃trans. The counting theorem, Theorem 4.3, applied to rational
points, but Pila deduces the same kinds of bounds for algebraic points of bounded
degree [26]. Thus, for any ε > 0 there is some constant C for which the number of
quadratic imaginary points of height at most t in X̃trans is at most Ctε. As in the
proof of Theorem 2.1, he reduces to the case that X is defined over a number field
and observes that if there are special points coming from X̃trans, then all of their
Galois conjugates are also in this set. At this point, he estimates the size of these
orbits from below using Siegel’s theorem on the growth of the class number [36]
to find that for ε < 2 one has a lower bound of Ctε thus contradicting the upper
bound from the counting theorem.

Remark 5.5. Theorem 5.4 had been proven previously by Edixhoven and Yafaev [9]
under the assumption of the Generalized Riemann Hypothesis for quadratic imag-
inary fields. Their proof shares the same kind strategy at the end: find upper
bounds geometrically and lower bounds via Galois theory and analytic number
theory.

Remark 5.6. The paper in which the proof of Theorem 5.4 appears [28] includes
proofs of theorems in the direction of the Pink-Zilber conjectures. On the other
hand, while many parts of this argument succeed when applied to other Shimura
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varieties, some steps are incomplete. For example, it is known that the analytic
covering maps for the moduli spaces of principally polarized abelian varieties are
definable in Ran,exp (again, after suitable restriction) [23] and it seems plausible
that the arguments employed to determine the algebraic parts of inverse images
of algebraic varieties by Cartesian powers of j should work for these maps, too, but
to date no one has carried out the details. More importantly, the lower bounds on
the size of the Galois orbits of the special points are not yet known unconditionally.
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[1] Yves André. G-functions and geometry. Aspects of Mathematics, E13. Friedr. Vieweg & Sohn, Braun-
schweig, 1989.
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[33] J.-P. Rolin, P. Speissegger, and A. J. Wilkie. Quasianalytic Denjoy-Carleman classes and o-
minimality. J. Amer. Math. Soc., 16(4):751–777 (electronic), 2003.
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