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1. Introduction

With Hrushovski’s proof of the function field Mordell-Lang conjecture [13] the
relevance of geometric stability theory to diophantine geometry first came to light.
A gulf between logicians and number theorists allowed for contradictory reactions.
It has been asserted that Hrushovski’s proof was simply an algebraic argument
masked in the language of model theory. Another camp held that this theorem was
merely a clever one-off. Still others regarded the argument as magical and asked
whether such sorcery could unlock the secrets of a wide coterie of number theoretic
problems.

In the intervening years each of these prejudices has been revealed as false though
such attitudes are still common. The methods pioneered in [13] have been extended
and applied to a number of other problems. At their best, these methods have been
integrated into the general methods for solving diophantine problems. Moreover,
the newer work suggests limits to the application of model theory to diophantine
geometry. For example, all such known applications are connected with commu-
tative algebraic groups. This need not be an intrinsic restriction, but its removal
requires serious advances in the model theory of fields.

The story of and the mathematics behind Hrushovski’s proof have been explained
well in many other fora (see, for example, [5, 14, 26]) . I need to repeat parts of this
material in order to tell the sequel, but the reader should consult these other sources
for details. Mordell’s conjecture has also been exposited well (see, for example [22]),
but to ground the geometric problems described in this article in elementary algebra
I repeat part of this story as well.

The plan of this article is as follows. In section 2 I recall some definitions
from algebraic geometry and model theory. In section 3 I recall the Mordell-Lang
conjecture. In section 4 I recall the theory of weakly normal groups and their
relevance to Mordell-Lang-like problems. Also in this section I sketch a proof of the
positive characteristic Manin-Mumford conjecture. In section 5 I discuss the theory
of prolongations of definable sets in difference and differential fields indicating how
this theory may be used to compute upper bounds for the number of solutions
to various diophantine problems. In section 6 I discuss the theory of the semi-
pluri-minimal socle of a group of finite Morley rank and sketch how this theory
has been used to prove some uniform finiteness theorems. In section 7 I discuss a
general specialization argument which when combined with other methods may be
used to prove results on diophantine approximations. In section 8 I conclude with
some questions on extensions of these results and with some remarks on how these
theorems have fed back into pure model theory.
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2. Background and notation

In this section I recall some definitions and notation from algebraic geometry
and model theory. The reader may wish to skim or skip this section and return
only when encountering an unfamiliar term in the main text.

2.1. Background from algebraic geometry. The reader who desires more ex-
planation could consult [11] or [12].

For the following definitions, I fix an uncountable algebraically closed field K and
a subfield k < K. The definitions I give below would strike an algebraic geometer
as too näıve, but they suffice for this article.

Definition 2.1. Let N ∈ N be a natural number. On KN+1 \ {(0, . . . , 0)} define

an equivalence relation by (x0, . . . , xN ) ∼ (y0, . . . , yN ) ⇔ (∃λ ∈ K×)
N∧

i=0

λxi = yi.

Projective N -space over K is defined as PN (K) := (KN+1 \ {(0, . . . , 0)})/ ∼.
Denote by [a0 : · · · : aN ] the ∼-class of (a0, . . . , aN ) ∈ KN+1 \ {(0, . . . , 0)}. Define
PN (k) as the image of kN+1 \ {(0, . . . , 0)} under the quotient map.

Note that in the definition of the equivalence relation on kN+1 \ {(0, . . . , 0)} it
does not matter whether λ ∈ K× or λ ∈ k×.

Definition 2.2. A polynomial f(x0, . . . , xN ) ∈ K[x0, . . . , xN ] is homogeneous of
degree d ∈ N if the identity f(λx0, . . . , λxN ) = λNf(x0, . . . , xN ) holds inK[x0, . . . , xN , λ].

Note that the zero polynomial is homogeneous of every degree. Note also that
while the value of a homogeneous polynomial is not constant on a ∼-class in general,
if the value is zero at an point of the ∼-class, then it is zero at every point.

Definition 2.3. A projective algebraic subvariety of PN (K) is a set X(K) ⊆
PN (K) of the form V (f1, . . . , fm) := {[a0 : · · · : aN ] ∈ PN (K) :

m∧
i=1

fi(a0, . . . , aN ) =

0} where f1, . . . , fm are homogeneous polynomials. The variety X is defined over k
if the polynomials defining X may be chosen to have coëfficients from k. We write
X(k) := X(K) ∩ PN (k) for the k-rational points on X.

The notion of defined over given above is equivalent to the model theoretic
version. There is a more refined algebro-geometric version involving the ideal of
definition of X. This distinction can be important for positive characteristic fields.

Definition/Proposition 2.4. The projective algebraic subvarieties of PN (K)
comprise the closed sets of the Zariski topology on PN (K). This topology is noe-
therian and PN (K) has dimension N . A connected projective algebraic variety of
dimension one is called a projective algebraic curve.
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Definition/Proposition 2.5. The degree of an irreducible proective varietyX(K) ⊆
PN (K) is defined to be deg(X) := max{|X(K)∩L(K)| : L(K) = V (λ1, . . . , λN−dim(X)), |X(K)∩
L(K)| < ℵ0, and λ1, . . . , λN−dim(X) are of degree one }.

If X(K) is any projective variety, then its degree is defined to be the sum of the
degrees of its irreducible components.

IfX is defined by a single irreducible homogeneous polynomial, f , then deg(X) =
deg(f). More generally, if X(K) = V (f1, . . . , fn), (f1, . . . , fn) ⊆ K[x0, . . . , xN ] is

prime, and dim(X) = N − n, then deg(X) =
n∏

i=1

deg(fi).

Remark 2.6. When k is a topological field, PN (k) carries another topology induced
from the field topology on k via the quotient map. The Zariski topology is coarser
than this other topology as long as the topology on k is T1. When k is locally
compact, X(k) is compact for each projective algebraic variety X.

Affine algebraic varieties, subsets of some Cartesian power of K defined by the
simultaneous vanishing of a system of polynomial equations, may be more familiar
to the reader. These varieties enter through the next definition.

Definition 2.7. A quasi-projective variety is a (Zariski) relatively closed subset of
some Zariski open subspace of a projective space.

The degree of a quasi-projective variety is defined to be the degree of its Zariski
closure in the ambient projective space.

For example, affine N -space over K, AN (K) := KN may be identified with the
quasi-projective variety PN (K) \ V (x0) via (a1, . . . , aN ) 7→ [1 : a1 : · · · : aN ]. More
generally, if X(K) ⊆ AN (K) ⊆ PN (K) is an affine algebraic variety, then it is a
quasi-projective variety.

Definition 2.8. An irreducible projective variety X(K) = {[x0 : · · · : xn] ∈
Pn(K) :

m∧
i=1

fi(x) = 0} is smooth at a point [a0 : · · · : an] ∈ X(K) if the rank of the

Jacobian matrix { ∂fi

∂xj
(a0, . . . , an)}1≤i≤m,0≤j≤n is n − dim(X). The variety X(K)

is smooth if it is smooth at every point.

In the case that K = C, a variety is smooth in the sense of algebraic geometry
if and only if it is a complex analytic manifold when considered with the Euclidean
topology.

Definition 2.9. A rational function f : PN (K) → PM (K) is a partial function of
the form [a0 : · · · : aN ] 7→ [f0(a0, . . . , aN ) : · · · : fM (a0, . . . , aN )] where f0, . . . , fM

are homogeneous polynomials of the same degree and at least one of the polynomials
is not the zero polynomial. If X(K) ⊆ PN (K) and Y (K) ⊆ PM (K) are quasi-
projective subvarieties, then a rational function f : X → Y is a partial function
which is the restriction of a rational function f̃ on PN to X for which f̃ is defined
at some point of each component of X and the image of f̃ on X(K) is contained
in Y (K). The function f is called regular if it is defined at every point of X(K).

Definition 2.10. The connected varieties X and Y are birationally equivalent if
there are rational functions f : X → Y and g : Y → X so that f ◦ g and g ◦ f
are defined and equal to the identity every except possibly on a proper subvariety.
These varieties are biregularly equivalent if f and g may be taken to be regular.
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Remark 2.11. What I have called “quasi-projective varieties” should properly be
called “quasi-projective subvarieties of a projective space.” One ought to regard
bi-regular varieties as being the same variety.
Remark 2.12. While it is not obvious from the definitions, the class of quasi-
projective varieties is closed under products in that there is a natural way to regard
the product of two projective spaces as a projective variety.
Definition 2.13. An algebraic group is a group whose universe is a quasi-projective
variety and whose group operations are given by regular functions. An abelian
variety is a connected projective algebraic group.

2.2. Background from model theory. Most of the model theoretic terms used
in this article are defined as they are introduced. In this section, I lay out my
conventions and definitions of some peripheral terms.
Notation 2.14. If M is an L structure for some language L, then I usually denote
the universe of M by M . If Σ(x1, . . . , xn) ⊆ LM (x1, . . . , xn) is a partial type
with free variables among x1, . . . , xn then Σ(M) := {(a1, . . . , an) ∈ Mn : M |=
Σ(a1, . . . , an)}. Usually, I write a tuple as a single element. If Σ = {ϕ} is a single
formula, then ϕ(M) := Σ(M) is called a definable set.
Definition 2.15. Let M be an L-structure for some first-order language L. If A ⊆
M is a subset, then the algebraic closure of A is acl(A) := {b ∈M : ∃ϕ(x) ∈ LA(x)
with M |= ϕ(b) and |ϕ(M)| < ℵ0}.

Let me recall the definition of Morley rank.
Definition 2.16. Let M be an L-structure. For X a definable set in M we define
the Morley rank of X, RM(X), to be the minimal ordinal (or ±∞) satisfying

• RM(∅) = −∞
• RM(X) ≥ 0 ⇔ X 6= ∅
• RM(X) ≥ α+ 1 if and only if for every n ∈ N there are n disjoint definable

subsets Xi ⊆ X with RM(Xi) ≥ α
• RM(X) ≥ λ for λ a limit ordinal if and only RM(X) ≥ α for all α < λ.

The Morley degree of X, dM(X), is the maximal n such that there are n disjoint
definable subsets of X each having the same Morley rank as X.

A definable set of Morley rank and Morley degree one is called strongly minimal.
Definition 2.17. A group G considered as an L-structure for some language L
extending the language of groups is connected if it has no proper definable subgroup
of finite index.

3. From algebra to geometry: the Mordell-Lang conjecture

The problems and theorems described in this paper start with the Mordell-Lang
conjecture. In principle, one could understand and, perhaps, even appreciate these
problems without knowing the genesis of this line of mathematics, but someone
ignorant of their connection to humbler algebraic problems might wrongly regard
these problems as contrived. The Mordell-Lang conjecture proposes an elegant
geometric solution to some of the most elementary and ancient of algebraic prob-
lems. The Mordell-Lang conjecture itself arose from the study of rational solutions
to polynomial equations in two variables, but developed into a range of geometric
questions.

By a diophantine problem one usually means something like



DIOPHANTINE GEOMETRY FROM MODEL THEORY 5

Problem 3.1. Given a system of algebraic equations
m∧

i=1

fi(x1, . . . , xn) = 0 with

f1, . . . , fm ∈ Q[x1, . . . , xn] polynomials with rational coëfficients, find all the ratio-
nal solutions.

A number of changes to the basic template of Problem 3.1 are allowed. For
instance, Q might be replaced by some other commutative ring. The goal of “find
all the rational solutions” may be replaced with a weaker desiratum such as a
qualitative description of the set of solutions. The equations themselves might be
replaced with some kind of inequality.

While these problems carry the name of Diophantus of Alexandria who first
(among extant texts) systematically studied similar problems, it should be noted
that, at least in the surviving portion of his Arithmetica, he dealt only with specific
systems of equations of degree at most six and he contented himself with finding a
solution rather than all of them.

As is well-known to the readers of this Bulletin, the general solution to Prob-
lem 3.1 with Z in place of Q is impossible to solve [23] and the problem with Q itself
may be just as difficult. Thus, one cannot hope for a good solution to a diophantine
problem unless the class of equations has been restricted or the meaning of “find”
has been weakened.

The Mordell-Lang conjecture developed from the following diophantine problem.
Problem 3.2. Given a nonzero polynomial f(x, y) ∈ Q[x, y] in two variables with
rational co-efficients determine whether the set of rational solutions, {(a, b) ∈ Q2 :
f(a, b) = 0} is infinite.
Remark 3.3. There are a couple of minor issues (concerning elliptic curves) ob-
structing the proof of the decidability of Problem 3.2. If the question is changed
to: Is there a number field K for which the set of K-rational solutions, {(a, b) ∈
K2 : f(a, b) = 0}, is infinite?, then Faltings’ theorem [9] gives an easy decision
procedure.

As observed by Dedekind and Weber as early at the 1880s, Problem 3.2 may
be expressed algebro-geometrically. The equation f(x, y) = 0 defines a finite union
of affine algebraic curves C1(C), . . . , Cm(C) and a rational solution to f(a, b) = 0
defines a Q-rational point on one of these curves. Thus, if there were infinitely
many rational solutions to f(a, b) = 0, then Ci(Q) would be infinite for some i. It
follows on general grounds that such a curve must be defined over Q.

Since an algebraic curve is connected of dimension one, any rational function
on a curve is defined at all but finitely many points. Thus, if C and C ′ are two
birational curves both defined over Q with the rational transformations witnessing
birationality also defined over Q, then C(Q) is infinite if and only if C ′(Q) is infinite.
As a general principle, for any algebraic curve C, there is some birational smooth
projective curve C ′ for which C ′ and the rational functions witnessing birationality
are defined over the same field where C is defined. Thus, Problem 3.2 has the
following algebro-geometric form.
Problem 3.4. Given a smooth projective curve C defined over Q determine whether
C(Q) is infinite.

While Problem 3.4 is now phrased in the language of algebraic geometry it does
not yet qualify as a geometric problem.

Poincaré observed that Problem 3.4 might be better posed in terms of curves
embedded in abelian varieties rather than in arbitrary projective spaces. I remark
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that a smooth projective curve over C is a one dimensional, connected, compact,
complex manifold. That is, it is a Riemann surface. Such a space is topologically
classified by its genus, the number of holes, or if you prefer a prefer a more rigorous
definition, half of its first Betti number.
Remark 3.5. There is a well-defined notion of geometric genus for a smooth projec-
tive curve over an arbitrary algebraically closed field, but the definition requires a
foray into the theory of divisors or sheaf cohomology which I would prefer to avoid.
Remark 3.6. The genus of a curve may be computed quite easily from the defining
equations of the curve.

To a curve C of genus g ≥ 1 there is a naturally associated g-dimensional abelian
variety, JC , called the Jacobian of C. Given any point P0 ∈ C(K) there is a regular
function ϕP0 : C(K) → JC(K) which is biregular onto its image and sends P0 to 0.
Moreover, if C and P0 are defined over k, then so are JC , the group structure on
JC , and the map ϕP0 .

Take now C as in the statement of Problem 3.4. If the genus of C is zero,
then Poincaré’s observation tells us nothing, but a decision procedure based on
the decidability of real and p-adic fields and the so-called Hasse principle handles
this case [22]. So we may now assume that the genus of C is at least one. If
C(Q) is infinite, then, in particular, it is not empty. Take P0 ∈ C(Q) and set
C ′(C) := ϕP0(C(C)). Then C(Q) is infinite if and only if C ′(Q) = C ′(C) ∩ JC(Q)
is infinite. Poincaré’s observation yields the following reduction of Problem 3.4.

Problem 3.7. Given a smooth projective curve C of genus at least one embedded
in its Jacobian over Q, determine whether C(Q) is infinite.

The solution to Problem 3.7 seems to depend on an understanding of the group
JC(Q). As a point of fact, neither Faltings’ original proof nor Vojta’s refined
proof [40] of the Mordell conjecture actually used information about the group
JC(Q). However, the line of reasoning I am developing here is essential for the
theorems proved by model theoretic methods.

In his thesis [25], Mordell proved that for any jacobian JC over Q, the abelian
group JC(Q) is finitely generated. Weil generalized Mordell’s theorem showing
that for any finitely generated field k and any abelian variety A defined over k, the
abelian group A(k) is finitely generated.

These theorems bring us close to a resolution of Problem 3.7 for genus one curves
and suggest the solution for higher genus curves.

A smooth curve of genus one embedded in its Jacobian JC may be identified with
that Jacobian. Thus, a curve of genus one has infinitely many rational points if
and only if it has at least one rational point and its Jacobian has a point of infinite
order. To my knowledge, these questions are not known to be decidable, but there
are methods based on the widely believed Birch-Swinnerton-Dyer conjecture for
answering them.

The fact that a curve of genus greater than one cannot carry the structure of
an algebraic group (as follows from universality properties of the Jacobian or over
C from the fact that such a curve has a non-abelian fundamental group) together
with Weil’s theorem strongly suggest that a curve C of genus greater than one
over a finitely generated field k can have only finitely many k-rational points. This
suggestion is wrong in positive characteristic, but it is correct for k of characteristic
zero. Mordell’s conjecture, slightly generalized beyond Q, is the following.
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Conjecture 3.8 (Theorem of Faltings [9]). If C is a smooth projective curve of
genus greater than one over a finitely generated field k of characteristic zero, then
C(k) is finite.

Using Weil’s theorem, Conjecture 3.8 may be reformulated without any reference
to arithmetic fields.
Conjecture 3.9. Let A(C) be an abelian variety over the complex numbers. Let
X(C) ⊆ A(C) be a smooth curve of genus greater than one. Let Γ < A(C) be a
finitely generated subgroup. Then, X(C) ∩ Γ is finite.

To put Conjecture 3.9 in a form amenable to model theory we need to generalize
it beyond curves. Lang observing that groups seem to be the only obstruction to
the finiteness of the set of rational points on a subvariety of an abelian variety
generalized Mordell’s conjecture to the following form.
Conjecture 3.10. Let A(C) be an abelian variety over the complex numbers. Let
Γ < A(C) be a finitely generated group. If X(C) ⊆ A(C) is a subvariety of A, then
the Zariski closure of X(C)∩Γ is a finite union of translates of abelian subvarieties
of A.

This conjecture is also a theorem of Faltings’ [10].
While there is no known model theoretic proof of 3.10, it is now stated in a form

closely connected to current preöccupations in model theory. Cöıncidentally, one of
the original model theorists, Skolem, proved Conjecture 3.9 under the hypothesis
that rk(Γ) < dimA [38].

4. From geometry to model theory: weakly normal groups

Conjecture 3.10 may be expressed in terms of the structure induced on the
finitely generated group Γ. With the next definition I say precisely what is meant
by induced structure.
Definition 4.1. Let M be an L-structure in some first-order language L. Let
X ⊆ MN be a (not necessarily definable) non-empty subset of some Cartesian
power of M . The induced structure on X is the L′-structure X defined by:

• The universe of X is X.
• For each formula ϕ(x1

1, . . . , x
n
1 ; . . . ;x1

m, . . . , x
n
m) ∈ L({xj

i}1≤i≤m,1≤j≤n) there
is a basic m-ary relation Rϕ(y1, . . . , ym) in L′ interpreted in X by Rϕ(X ) =
Xm ∩ ϕ(M).

Remark 4.2. What I have called induced structure might more properly be termed
full inducted structure. One might prefer to fix some family of formulas Σ ⊆
L({xi}i∈ω) and take for L′ only those formulas Rϕ with ϕ ∈ Σ.

Using quantifier elimination for (C,+, ·, 0, 1), Conjecture 3.10 may be expressed
as “Every quantifier-free definable set for the induced structure on Γ is a finite
Boolean combination of cosets of definable groups.” Groups satisfying the hypoth-
esis that every definable subset of any Cartesian power are finite Boolean combi-
nations of cosets of definable groups are called weakly normal. Using a quantifier
elimination theorem for modules proven independently by Baur [2] and Monk [24]
we have the following transformation of Conjecture 3.10.
Conjecture 4.3. If A(C) is a complex abelian variety and Γ < A(C) is a finitely
generated group, then the induced structure (from the language LC(+, ·)) on Γ is
weakly normal.
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We now have the Mordell-Lang conjecture in a model theoretic form, but how
does this help? As I have oft mentioned, there is no known model-theoretic proof of
Conjecture 4.3. Moreover, if one could show directly that the induced structure on
Γ is weakly normal, then there would be little point in dressing up the argument in
the robes of stability theory. The point is: there are a number of related questions
for which an indirect stability theoretic analysis of auxiliary structures produces
coherent solutions.

I note a simple observation which transports the goal of proving that Γ has weakly
minimal induced structure to the realm of possibility. If G is a weakly normal group,
then the induced structure on any subgroup is also weakly minimal. Thus, to prove
that Γ in the statement of Conjecture 4.3 is weakly normal it suffices to find some
intermediate group Γ ≤ Γ̄ < A(C) with Γ̄ having weakly normal induced structure.
In practice, one searches for Γ̄ as a group definable in some expansion of the theory
of fields in which there are transparent criteria for detecting the weak normality
of definable groups. Alas, also in practice, the search for Γ̄ seldom reveals such a
group, but partial success together with some trickery sometimes suffices.

To illustrate this technique in a case not complicated by the failure mentioned in
the previous sentence, let me sketch the proof of the positive characteristic Manin-
Mumford conjecture. The Manin-Mumford conjecture proper deals with abelian va-
rieties over number fields and was first proven by Raynaud [30]. A model-theoretic
proof yielding better effective bounds is due to Hrushovski [15]. Taking the ba-
sic results of [7] as given, the proof of the positive characteristic Manin-Mumford
conjecture is much easier than all the other theorems described in this paper.

Proposition 4.4. Let K be an algebraically closed field of positive character-
istic. Let A(K) be a sufficiently general abelian variety defined over K. Let
Γ := A(K)tor := {a ∈ A(K) : ∃n ∈ Z+na = 0} be the torsion subgroup. Then
the induced (from LK(+, ·)) structure on Γ is weakly normal.

In the statement if Proposition 4.4 the phrase “sufficiently general” means that
there is no positive dimensional abelian variety B defined over a finite field and a
nonzero morphism of algebraic groups ψ : B → A.

Sketch of Proof: Using a bit of number theory, namely, the theories of very good
reduction and of relative Frobenii, we make a good choice of a field automorphism
σ : K → K and a polynomial P (X) ∈ Z[X] so that P (σ) defines a group homo-
morphism P (σ) : A(K) → A(K) with kerP (σ) ⊇ Γ. Of course, one could achieve
the explicit requirements by setting σ := idK and P (X) = X − 1. This would get
you nowhere. The phrase about very good reduction and the relative Frobenius is
important.

The next step is to extend (K,+, ·, σ) to an existentially closed model (K,+, ·, σ)
of the theory of difference fields (a field given together with a distinguished auto-
morphism) and to set Γ̄ := kerP (σ) : A(K) → A(K).

There are strong criteria for deciding whether a group definable in an existentially
closed difference field has weakly normal induced (from LK(+, ·)) structure and it
is routine to check these criteria for Γ̄. Applying the observation about subgroups
of weakly normal groups, we see that Γ has weakly normal induced structure. a

I left three black boxes in the above sketch. First, what are σ and P? Second,
what are the criteria for checking weak normality? Third, how are these criteria
proven? I indicated obliquely the answer to the first question and because of its
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number theoretic content, I decline to give more details here. The interested reader
can consult [32] for a detailed explanation. As a full answer to the other questions
would fill hundreds of pages, I indicate a partial answer.

As one might guess from the fact that the defintion of weakly normal groups has
nothing to do with normal subgroups, weak normality is actually a property which
may be predicated of an abstract theory and the above definition of a weakly normal
group merely lays out the consequence of this abstract version of weak normality
for a group. Weak normality is tied up with a bevy of conditions; one-basedness,
non-existence of a type definable pseudo-plane, local modularity, linearity, pseudo-
linearity, non-existence of an interpretable field, etc; which are equivalent under
appropriate hypotheses but are otherwise subtly different. These conditions have
markedly different characters: stability theoretic, dimension theoretic, combinato-
rial geometric, algebraic, etc. So, even when these conditions are equivalent, one
avatar or another may be easier to recognize and apply.

The class of weakly normal groups is closed under taking definable subgroups,
quotients, and extensions. Thus, to prove that a group is weakly normal, it suf-
fices to prove that each subquotient in some definable composition series is weakly
normal. Using a theorem proven independently by Hrushovski and Pillay [19], it
suffices to show that the group is in the model theoretic algebraic closure of some
set which is abstractly weakly normal. In many cases, this transforms the problem
to an analysis of strongly minimal sets.

Weak normality has many equivalent formulations for strongly minimal sets with
linearity being the most relevant here.

Definition 4.5. Let X be a strongly minimal set. A family of plane curves on X
is a definable set C ⊆ X2 ×B where

• For any b ∈ B the set Cb := {(x, y) ∈ X2 : (x, y, b) ∈ C} is strongly minimal
and

• for any b ∈ B there are only finitely many b′ ∈ B for which Cb ∩ Cb′ is
infinite.

The dimension of the family is RM(B).

Definition 4.6. The strongly minimal set is linear if every family of plane curves
on X has dimension at most one. It is k-pseudo-linear if there is some k ∈ ω for
which every family of plane curves on X has dimension at most k.

The following theorem of Hrushovski [16] may be used to define weak normality
for strongly minimal sets.

Theorem 4.7. The following are equivalent for a strongly minimal set X.

• The theory of X is weakly normal.
• X is linear.
• X is k-pseudo-linear for some k ∈ N.

The proof of the implication from pseudo-linearity to linearity involves the in-
terpretation, from the hypothesis of pseudo-linearity but the failure of linearity, of
an infinite field, something which is incompatible with linearity.

One might wonder whether, and Zilber conjectured that, a non-linear strongly
minimal set always interprets a field. The conjecture is false ( [17]), but under the
hypothesis that the strongly minimal set is a Zariski geometry, then Zilber’s con-
jecture is true [21]. Heuristically, one recovers the field by using a high dimensional
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family of curves to define something like a tangent space to X with an action of
the field.

How does the theory of Zariski geometries give criteria for recognizing the weakly
normal groups definable in existentially closed difference fields? First, one must ex-
tend the basic work on Zariski geometries so that it applies to difference fields. As
these theories are not stable, this requires a very substantial technical effort [7].
Next, one classifies the fields which are interpretable in existentially closed differ-
ence fields and finds that they are simply the fixed fields of automorphisms of the
form σnτm where σ is the distinguished automorphism, τ is either the Frobenius
in positive characteristic or the identity in characteristic zero, and m,n ∈ Z are
integers. From these steps one concludes that a definable group which is not weakly
normal must have an infinite subquotient which admits a definable homomorphism
with a finite kernel to the k-rational points of an algebraic group over one of the
fixed fields, k. To put this observation to use one needs to know something about
the theory of algebraic groups. In the case of Proposition 4.4 the algebraic work is
routine. In some other cases, the algebra used at this point can be somewhat more
involved.

5. From enriched fields back to pure fields: prolongations

In many of the auxiliary theories of enriched fields used in the proofs of dio-
phantine theorems the analysis of definable sets may be reduced to the study of
definable sets in pure fields through the systematic use of prolongations. These
prolongations are also used to prove effective finiteness results which would not
otherwise be apparent.

Let me introduce prolongations for differential fields first. Recall that a differ-
ential field is a field K given together with a derivation, a function ∂ : K → K
satisfying ∂(x+ y) = ∂(x) + ∂(y) and ∂(x · y) = x · ∂(y) + ∂(x) · y universally, and
that an existentially closed differential field is called a differentially closed field. If
(K,+, ·, ∂) is a differentially closed field, X ⊆ KN is a definable set, and m ∈ N
is a natural number, then the m-th prolongation space, or m-th jet space, of X is
∇mX, the Zariski closure in KN(m+1) of {(a, . . . , ∂ma) : a ∈ X}. I note that there
are natural algebraic maps πm,n : ∇m+nX → ∇nX and differentially defined maps
∇m : X → ∇mX given by a 7→ (a, . . . , ∂ma). The quantifier elimination theorem
for differentially closed fields of characteristic zero asserts that for any definable set
X, there is a natural number m ∈ N and a set X̃ ⊆ ∂mX definable in the language
of pure fields such that X = ∇−1

m (X̃). The construction of the jet space works
also for subsets of quasi-projective varieties. However, the higher jet spaces of a
projective variety are not projective. This curiosity is related to the existence of
some weakly normal groups definable in differentially closed fields.

For a difference field K, we define the prolongation spaces in analogy to the jet
spaces in differentially closed fields replacing ∂ with σ, the distinguished automor-
phism. In this case, the m-th prolongation space of a definable set X ⊆ KN is just
X̄ × · · · × σm(X̄) where X̄ is the Zariski closure of X.

Effective bounds were first calculated using prolongation spaces in an argument
used in Hrushovski’s proof of the Manin-Mumford conjecture [15].

Proposition 5.1 (Proposition 2.5 of [15]). Let (K,+, ·, σ) be an existentially closed
difference field. Let n,N ∈ N be natural numbers and Υ ⊆ AN(n+1)(K) = ∇nAN (K)
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an affine variety. Then the degree of the Zariski closure of ∇−1
n (Υ(K)) is at most

deg(Υ)2
dim(Υ)

.

The proof of Proposition 5.1 is a routine induction using Bezout’s theorem that
deg(X ∩ Y ) ≤ deg(X) · deg(Y ) for varieties X and Y and the observation that if
X ⊆ KN and Y (K) ⊆ AN(n+1) is the Zarsiki closure of ∇n(X), then σ(π(Y (K))) =
ν(Y (K)) where π (respectively, ν) is the projection onto the first (respectively, last)
Nn coördinates.

As mentioned before the statement of Proposition 5.1, this proposition is in-
strumental in the proof of an effective Manin-Mumford conjecture. As surveys of
this theorem are available in other sources (see for example [4, 29]), I expound this
technique through the proof of the Drinfeld module version of the Manin-Mumford
conjecture [33].

We start with some notation.

Notation 5.2. Let p > 0 be a prime number. Let A := Fp[t] be the polynomial
ring in one variable over the field of p elements. Let K be an algebraically closed
field of characteristic p. By End(K,+) I mean the ring of group endomorphism
of (K,+) given by regular functions. A Drinfeld module is a ring homomorphism
ϕ : A→ End(K,+) for which ϕ(t) is not simply scalar multiplication. Put another
way, a Drinfeld module is a way to regard K as an A-module with the action being
given by polynomial functions, not all of which are linear. The Drinfeld module ϕ
is said to have generic characteristic if writing ϕ(t) = [x 7→

∑N
i=0 aix

pi

] we have
a0 /∈ Fp

alg.

The Manin-Mumford conjecture for Drinfeld modules (proposed by Denis [8]) is
the following.

Theorem 5.3. Let ϕ : A→ End(K,+) be a Drinfeld module of generic character-
istic. Let Γ := {y ∈ K : (∃a ∈ A \ {0}) ϕ(a)(y) = 0} be the torsion module of ϕ.
Then, Γ has weakly normal induced structure. Moreover, for every definable sub-
group H ≤ Γn of some Cartesian power of Γ there is a definable A-module H̃ ≤ H
of finite index.

One could add some more conclusions to Theorem 5.3 concerning uniformities.
The proof of Theorem 5.3 starts as does the proof of Proposition 4.4 in that we

use the theory of reductions of Drinfeld modules and of the relative Frobenius to
find a good choice σ : K → K of an automorphism and a polynomial P (X) ∈ A[X]
so that kerP (σ) captures (most of) the torsion module. The qualification “most
of” reflects that it is in general impossible to find such σ and P with Γ ≤ kerP (σ).
We ignore this obstruction for now. Set Ξσ := kerP (σ) : K → K where (K, σ) is an
existentially closed difference field extending (K,σ). We then prove Theorem 5.3
with Ξσ in place of Γ using the main theorem of [7] to prove weak normality and
a hybrid of analytic, algebraic, and model theoretic arguments to prove that the
definable groups are commensurable with A-modules.

At this point the uniformities accorded by prolongations enter the story. The
first part of the argument shows that for any affine algebraic variety X(K) ⊆ KN

the intersection X(K) ∩ ΞN
σ is a finite union of cosets of definable A-modules.

Compactness alone would give the existence of bounds on the numbers of cosets
one needs, but using Proposition 5.1 one can explicitly bound the number of such
cosets in terms of deg(X), N , dim(X), and the degrees of the coëfficients of P .
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Once one finds these bounds, a second good choice of an automorphism ρ : K →
K and polynomial Q(X) ∈ A[X] are chosen with Ξρ := kerQ(ρ) : K → K and
Γ ≤ Ξσ + Ξρ. The uniform bounds for X(K) ∩ Ξσ as X varies through a family
are used to transfer the problem of understanding X(K) ∩ Γ into an analysis of
X̃(K) ∩ Ξρ for some variety X̃ explicitly computed from X.

6. The socle

While we have a full description of the structure of groups of finite Morley
rank for which all the associated strongly minimal sets are linear, there are groups
in which both linear and non-linear components reside. There are even groups
which are in no way weakly normal, but because they may be expressed as non-
trivial extensions, in some geometric arguments they behave like weakly normal
groups. The analysis of these situations uses the theories of orthogonality and of
the infelicitously named semi-pluriminimal socle. In this section, I concentrate on
the socle and its use in some proofs.
Definition/Proposition 6.1. If G is a sufficiently saturated group of finite Morley
rank, then the semi-pluriminimal socle of G is the maximal connected group G] ≤ G
for which there is a set Y of Morley rank at most one with G] ⊆ acl(Y ).

It is a routine matter to understand the structure of G] in terms of Y . The
point of G] is that we can understand the definable sets in G just in terms of the
definable sets in G] and G/G].
Proposition 6.2. If G is a group of finite Morley rank, then every definable set in
G is a finite Boolean combination of sets of the form a+ T + π−1

H (S) where a ∈ G,
T ⊆ G] is a definable set, H ≤ G is a definable subgroup, πH : H → H/(H∩G]) ↪→
G/G] is the quotient map, and S ⊆ G/G] is a definable set.

Proposition 6.2 has been applied to prove a number of theorems in diophantine
geometry. It first appeared in [13] in the proof of the Mordell-Lang conjecture for
semi-abelian varieties (commutative connected quasi-projective algebraic groups
which are extensions of abelian varieties by products of multiplicative groups) and
again in a slightly different form in [15] to extend the Manin-Mumford conjecture
to general commutative algebraic groups. It leads to easy (that is, without any
recourse to the theory of Zariski geometries) proofs of some other theorems.

In [20], Hrushovski and Pillay use Proposition 6.2 together with the theory of
prolongations to compute effective bounds on the number of generic points on
subvarieties of complex abelian varieties.
Theorem 6.3. Let A(C) be a complex abelian variety and X(C) ⊆ A(C) a sub-
variety both defined over Qalg. Let Γ < A(C) be a finitely generated group. We
assume that X does not contain any subvariety of the form X1 +X2 where X1 and
X2 are positive dimensional subvarieties of A.

Then |(X(C)∩Γ)\X(Qalg)| is finite and bounded by an explicit doubly exponential
function of the rank of Γ, deg(X), and geometric data associated to A.

Sketch of Proof: Endow C with a derivation ∂ : C → C so that Qalg is the
constant field of ∂. Using ∂ we define ∂ logA : A(C) → Cg where g = dimA via
a 7→“∇1(a) − (a, 0).” Here I have identified the fiber above the origin of A(C)
of π1,0 : ∇1A → A with Cg and I have written the zero section as a 7→ (a, 0).
Perhaps, the logarithmic derivative is more familiar on the multiplicative group:
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∂ log : C× → C is given by x 7→ ∇1(x)
(x,0) = (x,∂x)

(x,0) = (1, ∂x
x ) which we identify with

∂x
x .

As the map ∂ logA is a group homomorphism, ∂ logA(Γ) < Cg is a finite rank
subgroup of Cg. As such, it is contained in a finite dimensional Qalg-vector space.
Every such vector space is the kernel of some linear differential operator. So, we
find a linear differential operator L : Cg → C with kerL = ∂ logA(Γ) ⊗ Qalg. Set
Γ̄ := kerL ◦ ∂ logA.

One shows easily that Γ̄] = A(Qalg) and then uses Proposition 6.2 to show that
(Γ̄ \A(Qalg)) ∩X(C) is finite. A differential version of Proposition 5.1 finishes the
argument. a

In another curious development, Proposition 6.2 has been used to prove the
Mordell-Lang conjecture for complex tori. I should mention that the model theo-
retic proof of this result is only one of many proofs.
Proposition 6.4. If T is a complex torus (a compact, connected, complex Lie
group), Γ < T is a finitely generated subgroup, and X ⊆ T is a closed analytic
submanifold, then X ∩ Γ is a finite union of cosets of subgroups of Γ.

The proof of Proposition 6.4 as presented in [27] proceeds by reduction to Falt-
ings’ theorem by using Proposition 6.2. One can find other proofs using basic results
about complex analysis in [1].

7. From exact solutions to approximations: specializations

The theorems described in the previous sections have dealt with exact solutions
to equations. In this section I discuss a family of problems dealing with approximate
solutions to diophantine equations.

Let me remind you of the definition of a valuation.
Definition 7.1. LetK be a field. A valuation v onK is a function v : K → Γ∪{∞}
where (Γ,+, <) is an ordered abelian group and ∞ is new symbol defined to be
greater than every element of Γ subject to the addition rules ∞+γ = ∞ = γ+∞ =
∞+∞. Moreover, the function v is assumed to satisfy v(x · y) = v(x) + v(y) and
v(x+ y) ≥ min{v(x), v(y)} universally and v(0) = ∞.

A field given together with a valuation is called a valued field.
The valuation topology on a valued field is the weakest topology making v con-

tinuous for the order topology on Γ.
One of the most basic examples of a valued field is the field of p-adic numbers.

Take p ∈ N a prime number. Define a valuation vp : Q → Z ∪ {∞} on Q by
vp(0) = ∞ and vp(pr a

b ) = r where a, b ∈ Z are prime to p. The field of p-adic
numbers, Qp, is the completion of Q with respect to the valuation topology. The
valuation vp extends uniquely to Qp, and, in fact, even to Qalg

p . The field Qalg
p is

not complete. Its completion is the algebraically closed field Cp, on which there is
a unique extension of the valuation vp having values in Q ∪ {∞}.

The Tate-Voloch conjecture is a p-adic diophantine approximation version of
the Manin-Mumford conjecture. The conjecture arose from a theorem of Tate and
Voloch on forms in p-adic roots of unity [39].
Theorem 7.2 (Tate, Voloch). Let f(x1, . . . , xn) ∈ Cp[x1, . . . , xn] be a polynomial
in n variables over Cp.

There is a rational number r ∈ Q such that for any n-tuple of roots of unity
ζ1, . . . , ζn ∈ C×p either f(ζ1, . . . , ζn) = 0 or vp(f(ζ1, . . . , ζn)) < r.
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The geometrization of Theorem 7.2 takes the following form.

Conjecture 7.3. Let G(Cp) be a semi-abelian variety over Cp. Let Γ := G(Cp)tor
be the torsion subgroup. Let X(Cp) ⊆ G(Cp) be a closed subvariety. Then there is
a rational number r ∈ Q such that for any ζ ∈ Γ either ζ ∈ X(Cp) or the p-adic
proximity of ζ to X, λp(ζ,X), is less than r.

I will not give a precise definition of λp(·, X) here but note simply that if G

is affine and X is defined as {a ∈ G(Cp) :
m∧

i=1

fi(a) = 0} then we can define

λp(a,X) := min{v(fi(a)) : 1 ≤ i ≤ m}.
Conjecture 7.3 in its full form is still open, but we have the following theorem [34,

35].

Theorem 7.4. Conjecture 7.3 is true under the hypothesis that G is defined over
Qalg

p .

The proof Theorem 7.4 makes use of the weakly normal groups employed in [15]
together with a few other ideas. First, some p-adic nonstandard analysis is used
to convert theorems on the finiteness of the number of torsion points on a variety
into proximity bounds. Secondly, since we are forced to work with a single prime,
it is necessary to use definable groups which are not weakly normal. The theory
of orthogonality together with some Galois theory controls the non-weakly normal
parts of these groups. Finally, more sophisticated results on Galois representations
are needed in order to find enough difference equations.

The key to converting finiteness theorems on numbers of exact solutions into
bounds on proximity is (a slight elaboration of) the next lemma.

Lemma 7.5. Let (K, v) be an algebraically closed valued field with value group ΓK .
Let σ : K → K be a field automorphism satisfying (∀x ∈ K)v(x) = v(σ(x)). Let
OK,v := {x ∈ K : v(x) ≥ 0} be the ring of v-integers in K.

Let X(K) ⊆ An(K) be an affine algebraic varieties. Let Υ̃(K) ⊆ An(m+1)(K) be
an affine algebraic variety and set Υ(K) := ∇−1

m (Υ̃(K)).
Suppose that for every difference field (K, σ) extending (K,σ) we the set X(K)∩

Υ(K) is finite.
Then, there is a value γ ∈ ΓK such that for any ζ ∈ Υ(OK,v) either ζ ∈ X(OK,v)

or λv(ζ,X) ≤ γ.

To prove Lemma 7.5 produce from a Γ-sequence of counter-examples to each
γ ∈ Γ serving as the requisite bound an element of Υ in some ultrapower of K
which is infinitesimally close to X but is not itself in X. By applying a standard
part mapping a new element of X is created but a compactness argument shows
that there can be no such new element.

With Lemma 7.5 in place, to prove Theorem 7.4 one needs to find the right σ and
the right Υ. If, for instance, one could find σ : Cp → Cp preserving the value group
and some weakly normal group Υ containing G(Cp)tor defined by a σ equation,
then for varieties X containing no translates of groups, Lemma 7.5 immediately
implies the desired result. In practice, a single choice of σ and Υ does not suffice
and the full argument is more delicate.

An approximation lemma for valued differential fields analogous to Lemma 7.5
holds. Using this analogue, the conclusion of [13], and some basic model theory of
separably closed fields one can prove a positive characteristic version of the so-called
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abc-theorem for commutative algebraic groups [36] generalizing the characteristic
zero theorem of Buium [6].

8. Concluding remarks

The main theorem on Zariski geometries often goes by the name of the Zilber
trichotomy. When dealing with groups, one sees only a dichotomy, between weakly
normal and algebraic groups. The other dichotomy actually holds for all weakly
normal strongly minimal sets. Recall that a sufficiently saturated strongly minimal
set X is trivial if given any finite subset A ⊆ X and element a ∈ X, if a ∈ acl(A),
then there is some b ∈ A such that a ∈ acl({b}). A trivial strongly minimal set
is necessarily weakly normal. As one can see by taking a = b + c and A := {b, c}
with b and c generic, if X is a strongly minimal group, then X cannot be trivial.
The converse, at least among weakly normal strongly minimal sets is true: if X is
weakly normal, strongly minimal, and not trivial; then X is bïınterpretable with a
weakly normal group.

All of the theorems described in this article have harnessed only the dichotomy
within the class of groups. However, it is expected (and has been proven in some
cases [18]) that most strongly minimal sets in existentially closed difference and
differential fields are trivial. Since these trivial sets are present, we should see them
reflected in arithmetic.

Since triviality does not in and of itself give a complete description of the class of
definable sets, as does weak normality for a group, knowing that some set definable
in a difference or differential field is trivial might not give much information. To
extract the arithmetic content of triviality in these theories we need a classifica-
tion of the possible structures on trivial sets. In [18] it is shown that any strongly
minimal set in certain class of sets definable in differentially closed field has essen-
tially no structure. However, even for this class, there is no known interpretation
of this amorphousness in terms of finiteness for solutions to algebraic (as opposed
to differential) equations.

Even when restricted to diophantine questions concerning algebraic groups, there
are limits to the model theoretic methods. It is impossible to find a weakly normal
group definable in an existentially closed differential or difference field containing
an infinite set of points rational over a number field. Thus, there can be no new
proof of the Mordell-Lang conjecture using the model theory of fields as currently
understood. There are subgroups of abelian varieties over finite fields which are
known to have weakly normal induced structure [3] which cannot be embedded
into a weakly normal group definable in an existentially closed difference field [37].

One might conclude from this article that the work on applications of stability
theory to diophantine geometry has yielded results in only one direction: number
theoretic theorems proven using stability theoretic techniques. However, there has
been some feedback at several levels. Of course, strong results on Zariski geome-
tries and the model theory fields and groups have been proven in the service of
diophantine theorems. However, the connection goes deeper than this. Zilber has
raised a diophantine conjecture, what he calls the conjecture on intersections with
tori, which generalizes the Mordell-Lang conjecture and is essential for his quest
for an axiomatization of the theory of the complex exponential function and the
program of Baldwin and Holly to build a bad field [42].
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geometry, Vol. I, 327–352, Progr. Math., 35, Birkhuser Boston, Boston, Mass., 1983.

[31] T. Scanlon, The Model Theory of Valued D-Fields, Ph. D. thesis, Harvard University,
May 1997.

[32] T. Scanlon, Diophantine consequences of dichotomy theorems in difference and differential
fields, 1998, http://www.msri.org/publications/ln/msri/1998/mtf/scanlon/1/index.html.

[33] T. Scanlon, Diophantine geometry of the torsion of a Drinfeld module, preprint, 1999.

[34] T. Scanlon, p-adic distance from torsion points of semi-abelian varieties, Journal für die

Reine und Angewandte Mathematik 499, June 1998, 225 - 236.
[35] T. Scanlon, The conjecture of Tate and Voloch on p-adic proximity to torsion, Internat.

Math. Research Notices 1999, no. 17, 909 – 914.
[36] T. Scanlon, The abc theorem for commutative algebraic groups in characteristic p, Internat.

Math. Res. Notices 1997, no. 18, 881 - 898.

[37] T. Scanlon and J. F. Voloch, Difference algebraic subgroups of commutative algebraic
groups over finite fields, Manuscripta Math. 99 (1999), no. 3, 329–339.

[38] T. Skolem, Einige Sätze über p-adische Potenzreihen mit Anwendung auf gewisse exponen-
tielle Gleichungen, Math. Ann. 111 (1935), no. 3, 399 – 424.

[39] J. Tate and J. F. Voloch, Linear forms in p-adic roots of unity, Internat. Math. Research

Notices 1996, no. 12, 589 - 601.
[40] P. Vojta, Mordell’s conjecture over function fields, Invent. Math. 98 (1989), no. 1, 115–138.
[41] A. Weil, L’arithmétique sur les courbes algebriques, Acta Math. 52 (1928), 281 - 315.
[42] B. Zilber, Intersecting varieties with tori, preprint, 2000,

http://www.maths.ox.ac.uk/ zilber.

University of California at Berkeley, Department of Mathematics, Evans Hall,
Berkeley, CA 94720-3840, USA

E-mail address: scanlon@math.berkeley.edu


