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Interpretation ofy
e Euler-Poincak characteristicy (X) = 3 (—=1)' dimH' (X
e (hyper-)graph theoretic/combinatorial version

e additive invariant of definable sets




O-minimal structures

Definition 1 A linearly ordered structure\f = (M, <, ---) in
language extending the language of ordered setsnsanimali
(parametrically) definable subset #ff is a finite Boolean col
points and intervals of the foriia, b) witha,b e M U {—o0, ¢

Examples:
e (Q <)
e (D, < .+, {A}rep) WhereD is an ordered division ring.
e (R, <,+,-,0,1)

e (R, <,+,-,exp0,1)



Abstract Euler characteristics

Definition 2 AnEuler characteristion a first-order structure
function y from the set of (parametrically) definable subset
M to some ring satisfying

e x(X) = x(Y) ifthere is a definable bijection between
o X(XUY) = x(X)+ x(Y),
o X(XxY)=x(X)-x(Y),and

o x({*}) =1foranyx e M.




Euler characteristics on o-minimal str

Theorem 3 (van den Dries)If M = (M, <, +,-,0,1,...)1is
o-minimal expansion of an ordered field, then there is a ur
characteristicy on M with values inZ. Moreover, if the und
ISR, theny agrees with the topological Euler characteristic
manifolds.

The o-minimal Euler characteristic is a finer invariant than
Euler characteristic. For exampla((0, 1)) = —1 #£ 0 = xo(|

Xtop((O, 1) =-1= Xtop([oa 1)).



The rig of definable sets

Definition 4 Given anL-structure M and a natural number
is the set of allCy -definable subsets of 3f1". The seDef(M

y Def'(M).
—0

n

Def(M) forms a category with the morphisms between tw
being the set of definable functions between them.

Definition 5 Def(M) is the set of Isomorphism classes of ¢
subsets of powers ¢¢1. We write[ | : Def(M) — Def(M) fo
which associates to a definable set its isomorphism @E{{J\
a natural Lying-structure with[ X] + [Y] := [XUY], [X] - [Y] ::
0 :=[9], andl = [{x}].




Rigs
DEf(/\/l) IS arig or semiring but is never a ring as, for instar
DefM)EO0#4A1& (VX,Y)X+y=0 - x=y=0.
Definition 6 Arig (or a semiring is an Lying-structure for wh
e + IS a commutative, associative operation with null ele
e - IS an associative operation with null elemdnt
e left- and right-multiplication by0 are the zero function, ¢
e - Is left- and right-distributive over addition.

The rig iscommutativaf multiplication is also a commutativ



Axioms for DeflM)
The rig Def M) satisfies
e 0#£1
o (VX,y) X-Yy=y-x (commutativity)
o (X, Y)X+y=0—->x=0=y
o (WX, y)X-y=1—->Xx=1=y
o (VX1,X2, Y1, ¥2)(321.1, 21,2, 22,1, 22 2)

[X1 4+ X2 — /\i2:1(Xi =Zi1+z2&Yi =271i +22)]

Question 1 What is Th-._({Def(M) : M a first-order struc

ring




The Grothendieck ring

Givenarig(R, +, -, 0, 1), there is a universal morphism frol
OnR x Rdefine(a,b) ~(c,d) & (Ize R)a+d+z=c+

The quotientR(R) := (R x R)/~ is aring and the maR —
given byx — [(X, 0)]~ (="x — 0”) is a rig morphism.

In general, the morphisiR — R(R) need not be injective.

Definition 7 A (weak) Euler characteristic oM Is a Lying-m¢
X - fféf(M) — R where R is aring.

Definition 8 The Grothendieck ring of a first-order structu

Ko(M) = R(Séf(ﬂ/l)). The ringification mapyo : Eéf(M) -
IS the universal (weak) Euler characteristic g#1.
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Aside on distributive categories

Definition 9 A distributive categorys a categoryC with an in
1, afinal objectT, finite limits and finite colimits, and for w
natural morphism A x C)[[(Ax B) - Ax (B]]C)isan
Isomorphism for any AB, C € Ob(C).

For any small distributive categog; the set of isomorphism
objects forms a ridR(C). The rig of modelM is the special ¢
C = Def(M).

Question 2 Are the theories TR, .

category with[L] A#[T]}) and Th
structure}) the same?

({R(C) : C a small distribt
({Def(M) : M a first-o

ring
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Examples ofKq(M)

o If M is a finite structure, theDef(M) = N with the mar
[X] — | X|. The Grothendieck ring i€ and every Euler
characteristic is given by counting modulo some integ

o If M =(w,9), thenKg(M) = 0 as the decomposition
gUw = {0}JUS(w) and the definable isomorphisg: v —
yield 0+ [w] = 1+ [w] In Def(M) and hence 6= 1 in K
However,fféf(M) IS more complicated.
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More examples oK (M)

e If M is an o-minimal expansion of a field, thé&y(M) =

o If M=(C, +,-,0,1), thenKg(M) is very complicated.
least, the universal Euler characteristic®mduces an E
characteristic o asC is interpretable iR.

o Ko(Q, <) embeds iM)[{Xa}iacquicoyy] @s the subring of
polynomials. (Matthew Frank)
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Strong Euler characteristics

Definition 10 A strong Euler characteristig : 5éf(M) — R
structure M is an Euler characteristic satisfying the fibratic

If 7 : E — B is definable function between definable setsg,
allb € B one hasy ([x~1{b}]) = f, thenx([E]) = f - x([B]

The fibration condition differs from the other axioms for an
characteristic in two important respects:

e It is not rig-theortetic.

e In any reasonable language it is syntactically more co

the other axioms.

Proposition 11 On any structureM there is a universal stro
characteristicy® : Def(M) — K3(M).
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Examples of strong Euler charactel

The universal weak Euler characteristics on finite stru
o-minimal expansions of fields are strong.

More generally, ifM is a structure with the property th:
definable function is a locally trivial fibration, then evel
characteristic ooV is strong.

The universal weak Euler characteristic@ms not strong

Every strong Euler characteristic on an algebraically ¢
positive characteristic is trivial.
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Dependence on the theory
Theorem 12 If M = N, thenDef(M) =3, Def(\).

Proof:

e If U is an ultrafilter, then D&f\1) € Def(MY) C Def(M
the inclusion DefM) C Def(M)¥ is elementary in the 1
of Def(M).

e Thus, Det M) <3, Def(MY).

o AsDef(M) is existentially interpretable in DéM),
Def(M) = Def(MY).

e By the Keisler-Shelah theorem = N = (3U) MY =
e Thus,Def(M) =3, Def(MH) = Def(NY) =3, Def(\).
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Some failures of invariance
It can happen thatt = N but Ko(M) #v3 Ko(N).

Example 3 Takel = L(E) whereE is a binary relation. Le]
L-structure on whiclt is an equivalence relatior\! has one
equivalence class of each finite cardinality, antlhas no infir
Let A/ = M be a proper elementary extension. Setthe nu
infinite equivalence classes.ti. ThenKo(M) = Z[ X] while
KoN) = Z[{X|}i<r]. These rings are distinguished by @

There are examples @#1 < N with KS(M) = 0 andKS(N) -

Question 4 If M admits a strong Euler characteristic, do &
extensions oM also admit a strong Euler characteristic?
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Pigeon Hole Principles

Definition 13 The structureM satisfies thd&’igeon Hole Prin
written M = PHP, if whenever f. A — A is a definable inje
function of definable sets, then f Is surjectiyd. satisfies the
Pigeon Hole Principlewritten M = onto— PHP, if there is n
bijection f: A— A\ {x}in M.

Proposition 14 M = onto— PHP < Ko(M) #0
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The Grothendieck group @,

Question 5 (Luc Belair) Is there a definable (in the langua
bijection betweer@ and@;;?

Theorem 15 (Jean-Pierre Serre)The Grothendieck ring of
of p-adic analytic manifolds is isomorphic &y (p — 1)Z.

Theorem 16 (Raf Cluckers, Deirdre Haskell) Ko(Qp) =0

Corollary 17 There is a definable bijection Q) — QJ \ {(
for some n.

In fact, the Cluckers-Haskell proof gives the stronger resu
Grothendieclgroupof Qp is zero from which one can const
explicit definable bijection betweed, andQj.
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Ordered Euler characteristics

Definition 18 On arig (R, +, -, 0, 1) define
X<y & (dze Ry x+z=Y.

Definition 19 A partially ordered Euler characteristic oM i
Lring(<)-morphismy : 5éf(M) — (R, +, -, <,0,1) where<
partial order on R satisfying

e 0 <1,
o (VX,V,2)X<Yy—>X+2z2<y+2z, and
e (VX,¥,2)(z>0&X<Yy)—>Z-X<Z-Y.

Proposition 20 M = PHP < M admits an ordered Eulel
characteristic.
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AXx’s Theorem

Theorem 21 (James AX)If f : C" — C" is an injective poly
mapping, then f is surjective.

Theorem 22 Every algebraically closed field admits an orc
characteristic.
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Euler characteristics on limits: ultrapi
If M = [] M; /U is an ultraproduct, theBef(M) is a subst

el
[ ] Def(M;)/U.
el
If for eachi € | we have an Euler characterisfi¢ : I5\e/f(/\/li)
then the ultaproduct /i/ (defined onl"[ Def(M; )/U) gives ar

=1

characteristic ooVt with values in] [ R /U.
el

Example 6 If M is an ultraproduct of finite structures, tht
ordered Euler characteristic with values in a nonstandard
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Euler characteristics on limits: direct

Definition 23 Let M be a structure and A= M. Then A ide
closed inM if for each £ ao-definable function £ M" — M «
f(A") C A.

Definition 24 If (1, <) is a directed set, then the filter of col
C={YCl:(FJael)lbel :b>a}CY}]

Proposition 7 If M = I|_>m M is a direct limit of definably ¢
el

substructuresM admits quantifier elimination i, and for e

we have an Euler characteristig ﬁéf(Mi) — Ri; then the

Euler characteristicy Def(M) — _]_[ R /C defined by

el

x ([ XD = [xi (@(Mi))]c whereg is a quantifier-free definitia
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Grothendieck ring-theoretic proof of Ax™

e Algebraically closed fields eliminate quantifiers. (Clau
Alfred Tarski)

e Each finite field considered as a subset of its algebrai
definably closed.

e The algebraic closure of a finite field is a direct limit of
subfields.

e For any nonprincipal ultrafiltelf on the set of prime nur
C = [1F39u.

Thus,C admits a nontrivial ordered Euler characteristic. H
C &= PHP and Ax’s Theorem follows as as a special case.
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Some quotients and subringsk§(C

The above construction of an ordered Euler characteristic¢
used to show thao(C) is very large.

Theorem 25 If L is an algebraically closed field aniE; (L)
family of pairwise non-isogeneous elliptic curves over L, ti
{xo(IE;(L)]) :1 € |} is algebraically independent indL). Ir
particular, there is a ring embedding[{X; : i € 2¥0}] — Kq(

Since each element &y (C) is represented by a variety, col
theories on the category of affine complex algebraic variet
Euler characteristics 0. For example, Hodge theory yield
mapKo(C) — Z[ X, Y].
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Motivic integrals andKy(C)
SetLL := xo([C]) € Ko(C).
SetMioc = Ko(C)[L™1.

Define a filtration onM ¢ by letting F™ Mo be the group g
{xo([S(ODL™ :i —dimS > m, San irreducible variety.

Let M be the completion aM ¢ with respect to this filtratic

Given a (pure dimensional affine) varieXyC A" defined ove
following Kontsevich, defines a measuytg : Def"(C[[t]]) —

While ux is countably additive, it does not respect definah
Isomorphisms so that it cannot be used to produce an Eul
on C[[t]].

Definition 26 If f . X(C][[t]]) — Z is a definable function a
A C X(C][[t]]) is a definable set, then tmaotivic integral of f
[a L~ Tdux if this integral converges.
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Schanuel dimensions

Definition 27 A dimension d on a structut®1 is a rig homor
d: Séf(M) — D satisfying dx + X) = d(x) universally.

On any rigR one defines a partial quasi-orderhy
X<y & (VYneZy)(Jze R)yn-x+ z=y. Define an equi
relationx ~y < X <y & y < X.

Definition 28 The Schanuel dimension of a structuvé is the
mapdim : Def(M) — Def(M)/~ =: D(M).
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Examples of dimensions
DR) = ({—oo}Uw, Vv, +, —00,0) = DQp)
D(Z) — {[@]N’ [{O}]N9 [Z]N}

If Ris any global stability theoretic rank (Morley, Lasc
thenR is a dimension.

Given a cardinak, definex™ := {0, 1} U {L : Rg < A < «}
structureM of cardinality«, the functiond : Def(M) —
defined byd([X]) = 1if 0 < | X] < Rg andd([X]) = || X]
IS a dimension.
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Finite structures with dimension and r

Definition 29 (Dugald Macpherson and Charles Steinhorn
of finite £-structures is an asymptotic class with dimensior
If for any L-formulae(X, y1, ..., Ym) there are

e real numbers B and C,

e a natural number N,

e real numbersuq, ..., un, and

e formulasyo(y1, ..., ¥n),---> ¥N(Y1, ..., Ym)
such that for anyM € C and be MM

o M VL vib) and

o if M [=4i(b)fori > O0then| [o(M; b)| — uilM]| <C
and

o If M = yo(b), then|e(M, b)| < B.
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Pseudofinite structures

Definition 30 An infinite structureM is strongly pseudofinit
Isomorphic to an ultraproduct of finite structures. An infinit
IS pseudofinitaf every sentence true UM is satisfied by sormr
structure.

If M Is pseudofinite, theK (M) embeds as an ordered su
elementary extension &.

Moreover, if M is strongly pseudofinite, theyy is a strong E
characteristic. In factyg satisfies the Lebesgue conditions.

Definition 31 An ordered Euler characteristig 551‘(/%) —
satisfies the upper (resp. lower) Lebesgue condition if whe
7 . E — B is a definable function and & R with x ([z ~1{b}]
(resp.< f)forallb € B, theny([E]) > f - x([B]) (resp.< f
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Questions about Euler characterist
pseudofinite structures

Question 8 Doesyp : Def(M) — Ko(M) always satisfy the
conditions forM a pseudofinite structure? jg always stron

pseudofinite structures?

Question 9 If M is infinite andyg : Def(M) — Ko(M) sati:
Lebesgue conditions, mudtl be pseudofinite?
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Fields with strong ordered Euler chara

Theorem 32 (James AX)A field K is pseudofinite if and on
e K is perfect: ifcharK= p > 0, then K= (¥x)(3y) yP =

e Gal(K2!9/K) = 7Z: for each natural number n, K has e
separable extension of degree n and that extension is

and

e K is pseudoalgebraically closed: for each absolutely i
polynomial f(X,Y) € K[X, Y] there is some&a, b) € K?
f(a,b) =0.

Definition 33 A field K isquasifiniteif K is perfect and
Gal(Ka9/K) = Z.

Theorem 34 If the field K admits a nontrivial strong ordere
characteristic, then K is quasifinite.
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Proof of quasifiniteness

e Perfection requires only an ordered Euler characterist
theny ([K]) = x [KPD < x([KD.

e An ordered Euler characteristjcgives a leading term ft
¢, : Ko(R) — L, defined byl (X) =€, (y) &
(Vne o) N[x(X) — xWI < x) & n[x(X) — xY)| < x
e Reduce to the case #f infinite.
e ldentify {f € K[X]: degf = nandf is monig with K".
o 0, ([{f e K[X]:degf =n& fisirreducible}]) = +¢,(

o If[L:K]>n,thent,({f: K[x]/(f) =L} > ¢, (K]
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Some guestions

Question 10 Is there a combinatorially transparent conditi
to KS(M) # 07

Question 11 Is Thgring(Ko(G)) an invariant of Thx 0)(G) fo
abelian group?

Question 12 Are there transparent (though non-trivial) con
which imply simplicity?
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