next up previous
Next: About this document ...


Section 7.7: Double integrals

If $R$ is some region in the plane and $f(x,y)$ is a (continuous) function taking positive values, then the volume of $\{ (x,y,z) ~\vert~ (x,y) \text{ in } R \text{ and }
0 \leq z \leq f(x,y) \}$ is the

integral


\begin{displaymath}\int \int_R f(x,y) dx \, dy\end{displaymath}

More generally, if $f(x,y)$ is any continuous function, then $\int \int_R f(x,y) dx \, dy$ is the signed volume of the solid bounded by $f$.


Example

If $R := \{ (x,y) ~\vert~ 0 \leq x \leq 1, 0 \leq y \leq 1 \}$ is the unit square and $f(x,y) \equiv 1$, then the solid bounded by $f$ over $R$ is the unit cube. So, $\int \int_R f(x,y) dx \, dy = 1$.


Iterated integrals

If $R = \{ (x,y) ~\vert~ a \leq x \leq b, g(x) \leq y \leq h(x) \}$ (where $a \leq b$ are constants and $g$ and $h$ are continuous functions of $x$), then


\begin{displaymath}\int \int_R f(x,y) dx \, dy = \int_a^b (\int_{g(x)}^{h(x)} f(x,y) dy) dx\end{displaymath}

Here, $F(x) = \int_{g(x)}^{h(x)} f(x,y) dy$ is itself a function of $x$.


Example

Suppose $f(x,y) = xy$ and $R = \{ (x,y) ~\vert~ 1 \leq x \leq 2, x \leq y \leq x^2 \}$. Compute

\begin{displaymath}\int \int_R f(x,y) dx \, dy\end{displaymath}


\begin{eqnarray*}
\int \int_R f(x,y) dx \, dy & = & \int \int_{ \{ (x,y) ~\vert~...
...rac{16}{8} - \frac{1}{12} + \frac{1}{8}) \\
& = & \frac{27}{8}
\end{eqnarray*}


Another example

Compute


\begin{displaymath}\int \int_{ \{ (x,y) ~\vert~ 0 \leq x \leq 1, 0 \leq y \leq e^x \}} e^x dx \, dy \end{displaymath}


Solution

\begin{eqnarray*}
\int \int_{ \{ (x,y) ~\vert~ 0 \leq x \leq 1, 0 \leq y \leq e^...
...2} e^{2x}) \vert_{x=0}^{x = 1} \\
& = & \frac{1}{2} (e^2 - 1)
\end{eqnarray*}


Yet another example

Compute


\begin{displaymath}\int \int_{ \{ (x,y) ~\vert~ 1 \leq x \leq 4, \sqrt{x} \leq y \leq x^3 \} }
\frac{x}{y^2} dx \, dy \end{displaymath}


Solution

\begin{eqnarray*}
\int \int_{ \{ (x,y) ~\vert~ 1 \leq x \leq 4, \sqrt{x} \leq y ...
...16}{3} + \frac{1}{4} - \frac{2}{3} - 1 ) \\
& = & \frac{47}{12}
\end{eqnarray*}




next up previous
Next: About this document ...
Thomas Scanlon 2004-02-11