next up previous
Next: About this document ...


Section 9.3: Evaluation of Definite Integrals
The Fundamental Theorem of Calculus, recalled

If $ F'(x) = f(x)$, then

$\displaystyle \int_a^b f(x) dx = F(b) - F(a)$


An example

Evaluate

$\displaystyle \int_1^{10} \frac{(\ln (x))^4}{x} dx$


A solution

Substitute $ u = \ln(x)$ so that $ du = \frac{dx}{x}$.

Thus,


$\displaystyle \int \frac{(\ln(x))^4}{x} dx$ $\displaystyle =$ $\displaystyle \int u^4 du$  
  $\displaystyle =$ $\displaystyle \frac{1}{5} u^5 + C$  
  $\displaystyle =$ $\displaystyle \frac{1}{5} (\ln(x))^5 + C$  


Solution, continued

Thus,

$\displaystyle \int_1^{10} \frac{(\ln (x))^4}{x} dx$ $\displaystyle =$ $\displaystyle \frac{1}{5} (\ln(10))^5 - \frac{1}{5} (\ln(1))^5$  
  $\displaystyle =$ $\displaystyle \frac{1}{5} (\ln(10))^5$  


Substituting the limits as well

If we substitute $ u = g(x)$ so that $ \int f(x) dx = \int h(u) du$, then

$\displaystyle \int_a^b f(x) dx = \int_{g(a)}^{g(b)} h(u) du$

Indeed, if $ H'(u) = h(u)$ and $ f(x) = h(g(x)) g'(x)$, then $ (H \circ g)'(x) =
H'(g(x)) g'(x) = h(g(x)) g'(x) = f(x)$. Thus, by the fundamental theorem of calculus,

$\displaystyle \int_{g(a)}^{g(b)} h(u) du$ $\displaystyle =$ $\displaystyle H(g(b)) - H(g(a))$  
  $\displaystyle =$ $\displaystyle \int_a^b f(x) dx$  


Example

Evaluate

$\displaystyle \int_1^2 x^2 e^{x^3} dx$


Solution

Set $ u = x^3$, then $ du = 3 x^2 dx$. So,


$\displaystyle \int_1^2 x^2 e^{x^3} dx$ $\displaystyle =$ $\displaystyle \frac{1}{3} \int_{u=1^3}^{u=2^3} e^u du$  
  $\displaystyle =$ $\displaystyle \frac{1}{3} e^u \vert_{u=1}^{u=8}$  
  $\displaystyle =$ $\displaystyle \frac{1}{3} e^8 - \frac{1}{3} e$  


Another example

Evaluate

$\displaystyle \int_0^{\frac{\pi}{4}} \tan(x) dx$


Solution

Write $ \tan(x) = \frac{\sin(x)}{\cos(x)}$ Set $ u = \cos(x)$. Then $ du = - \sin(x) dx$.

Thus,

$\displaystyle \int_0^{\frac{\pi}{4}} \tan(x) dx$ $\displaystyle =$ $\displaystyle -\int_{u=1}^{u=\frac{\sqrt{2}}{2}} \frac{du}{u}$  
  $\displaystyle =$ $\displaystyle - \ln(u) \vert_{u=1}^{u=\frac{\sqrt{2}}{2}}$  
  $\displaystyle =$ $\displaystyle - \ln(1) + \ln(\frac{\sqrt{2}}{2})$  
  $\displaystyle =$ $\displaystyle \ln(2^{\frac{1}{2}}) - \ln(2)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \ln(2) - \ln(2)$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2} \ln(2)$  


Example

Compute

$\displaystyle \int_0^\pi x \sin(x^2) + x^2 \cos(x) dx $


Solution

Break the integral into two summands, $ \int_0^\pi x \sin(x^2) dx$ and $ \int_0^\pi x^2 \cos(x) dx$. We compute these separately. For the former, set $ u = x^2$ so that $ du = 2x dx$. Thus,


$\displaystyle \int_{x=0}^{x = \pi} x \sin(x^2) dx$ $\displaystyle =$ $\displaystyle \frac{1}{2} \int_{u=0}^{u=\pi^2} \sin(u) du$  
  $\displaystyle =$ $\displaystyle \frac{-1}{2} \cos(u) \vert_{u=0}^{u=\pi^2}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} (1 - \cos(\pi^2))$  


Solution, continued

For the latter part, set $ u = x^2$ and $ dv = \cos(x) dx$. Then, $ du = 2x dx$ and $ v = \sin(x)$. So that

$\displaystyle \int x^2 \cos(x) dx = x^2 \sin(x) - 2 \int x \sin(x) dx$

Set $ w = x$ and $ dy = \sin(x) dx$. Then, $ dw = dx$ and $ y = -\cos(x)$. So,

$\displaystyle \int x \sin(x) dx = -x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x) + C$

Combining these,

$\displaystyle \int x^2 \cos(x) dx = x^2 \sin(x) + 2x \cos(x) - 2 \sin(x) + C$


Solution, continued

Evaluating,


$\displaystyle \int_0^\pi x^2 \cos(x) dx$ $\displaystyle =$ $\displaystyle x^2 \sin(x) + 2x \cos(x) - 2 \sin(x) \vert_{x=0}^{x = \pi}$  
  $\displaystyle =$ $\displaystyle \pi^2 \sin(\pi) + 2 \pi \cos(\pi)$  
    $\displaystyle - 2 \sin(\pi) - 0^2 \sin(0) - 2(0) \cos(0)
+ 2 \sin(0)$  
  $\displaystyle =$ $\displaystyle 2 \pi$  

So,

$\displaystyle \int_0^\pi (x \sin(x^2) + x^2 \cos(x)) dx = \frac{1}{2} (1 - \cos(\pi^2)) + 2 \pi$




next up previous
Next: About this document ...
Thomas Scanlon 2004-03-03