next up previous
Next: About this document ...


Section 9.2: Integrations by Parts
A Test Problem

Perform the following indefinite integration.


\begin{displaymath}\int x \sin(x) dx\end{displaymath}


Answer


\begin{displaymath}\int x \sin(x) dx = \sin(x) - x \cos(x) + C\end{displaymath}


Product Rule Recalled


\begin{displaymath}(f \cdot g)'(x) = f'(x)g(x) + f(x) g'(x)\end{displaymath}


Inverting the Chain Rule: Integration by Substitution


\begin{displaymath}\int f(x) g'(x) dx = f(x)g(x) - \int g(x) f'(x) dx\end{displaymath}


Formalism of Integration by Parts

Often, one finds two functions $u$ and $v$ so that the integrand may be written as $u dv$ where $dv = v'(x) dx$. If we succeed in so doing, then from the equality

\begin{displaymath}u(x) v'(x) = u(x) v(x) - v(x) u'(x)\end{displaymath}

we see that if $f(x) = u(x) v'(x)$, then


\begin{displaymath}\int f(x) dx = \int u(x) v'(x) dx = \int u dv = u v - \int v du\end{displaymath}

If $\int v du$ is easier to evaluate than is $\int f(x) dx$, then the method succeeds.


An integral revisited

Take $u = x$ and $v = -\cos(x)$ so that $dv = \sin(x) dx$ and $du = dx$. Then,

\begin{eqnarray*}
\int x \sin(x) dx & = & \int u dv \\
& = & uv - \int v du \\...
...-x \cos(x) + \int \cos(x) dx \\
& = & -x \cos(x) + \sin(x) + C
\end{eqnarray*}


Example

Integrate:


\begin{displaymath}\int x e^x dx\end{displaymath}


Solution

Take $u = x$ and $v = e^x$ so that $du = dx$ and $dv = e^x dx$.

\begin{eqnarray*}
\int x e^x dx & = & \int u dv \\
& = & uv - \int v du \\
& = & x e^x - \int e^x dx \\
& = & x e^x - e^x + C
\end{eqnarray*}


Large Another example

Integrate


\begin{displaymath}\int e^x \cos(x) dx\end{displaymath}


Solution

Set $u = e^x$ and $v = \sin(x)$ so that $du = e^x$ and $dv = \cos(x) dx$.

Then

\begin{eqnarray*}
\int e^x \cos(x) dx & = & \int u dv \\
& = & uv - \int v du ...
...t e^x \sin(x) dx \\
& = & e^x \sin(x) + \int (-e^x\sin(x)) dx
\end{eqnarray*}


Solution, continued

Set $w = e^x$ and $y = \cos(x)$ so that $dw = e^x dx$ and $dy = -\sin(x) dx$.

Then

\begin{eqnarray*}
\int -e^x \sin(x) dx & = & \int w dy \\
& = & wy - \int y dw \\
& = & e^x \cos(x) - \int e^x \cos(x) dx
\end{eqnarray*}

Substituting, we have

\begin{displaymath}\int e^x \cos(x) dx = e^x \sin(x) + e^x \cos(x) - \int e^x \cos(x) dx\end{displaymath}

Adding $\int e^x \cos(x) dx$ and dividing by $2$ gives


\begin{displaymath}\int e^x \cos(x) dx = \frac{e^x}{2}(\sin(x) + \cos(x)) + C\end{displaymath}


A third example

Integrate


\begin{displaymath}\int \ln(x) dx\end{displaymath}


Solution

Set $u = \ln(x)$ and $v = x$ so that $du = \frac{dx}{x}$ and $dv = dx$.

\begin{eqnarray*}
\int \ln(x) dx & = & \int u dv \\
& = & uv - \int v du \\
...
...x} dx \\
& = & x \ln(x) - \int dx \\
& = & x \ln(x) - x + C
\end{eqnarray*}


A final example

Integrate


\begin{displaymath}\int \frac{x e^{2x}}{x^2 + 4x + 4} dx\end{displaymath}


Solution

Note that $\frac{1}{4x^2 + 4x + 1} = (2x + 1)^{-2}$. Via the substitution $w = 2x+1$ (with $dw = 2 dx$) we find that

\begin{eqnarray*}
\int \frac{dx}{4x^2 + 4x + 1} & = & \int (2x+2)^{-2} dx \\
&...
...\\
& = & \frac{-1}{2}w^{-1} + C \\
& = & \frac{-1}{4x+2} + C
\end{eqnarray*}

Solution, continued

Set $u = x e^{2x}$ and $v = \frac{-1}{4x+2}$ (so that $dv = \frac{dx}{x^2 + 4x + 4}$ and $du = e^{2x} + 2x e^{2x} = (2x + 1) e^{2x}$).

\begin{eqnarray*}
\int \frac{x e^{2x}}{4 x^2 + 4x + 1} dx & = & \int u dv \\
&...
...dx \\
& = & \frac{-x e^{2x}}{4x + 2} + \frac{1}{4} e^{2x} + C
\end{eqnarray*}




next up previous
Next: About this document ...
Thomas Scanlon 2004-02-29