next up previous
Next: About this document ...


Chapter 9: Integration Techniques
Section 9.1: Integrations by Substitution

Perform the following indefinite integration.

$\displaystyle \int x \sqrt{x^2 + 1} dx$


Answer

$\displaystyle \int x \sqrt{x^2 + 1} dx = \frac{1}{3} (x^2 + 1)^\frac{3}{2} + C$


Chain Rule Recalled

$\displaystyle \frac{d}{dx} (f(g(x)) = \frac{df}{du} \vert_{u = g(x)} \frac{dg}{dx}$


Inverting the Chain Rule: Integration by Substitution

$\displaystyle \int f'(g(x)) g'(x) dx = f(g(x)) + C$


Formalism of Integration by Substitution

Often, one writes the substitution as $ u = g(x)$ and $ du = g'(x) dx$ and attempts to write the integrand as $ f(u) du = f(g(x)) g'(x) dx$. One is then charged with integrating $ \int f(u) du = F(u) + C$. We conclude that $ \int f(g(x)) g'(x) dx = \int f(u) du = F(u) + C = F(g(x)) + C$.


An integral revisited

Making the substitution $ u = x^2 + 1$, so that $ du = 2x dx$ we have


$\displaystyle \int x \sqrt{x^2 + 1} dx$ $\displaystyle =$ $\displaystyle \frac{1}{2} \int \sqrt{u} du$  

Writing $ \sqrt{u} = u^\frac{1}{2}$, we find

$\displaystyle \int \sqrt{u} du = \frac{2}{3} u^\frac{3}{2} + C$

Thus,

$\displaystyle \int x \sqrt{x^2 + 1} dx = \frac{1}{3} (x^2 + 1)^\frac{3}{2} + \widetilde{C}$


Example

Integrate:

$\displaystyle \int x e^{x^2} dx$


Solution

Set $ u = x^2$. Then $ du = 2x dx$.


$\displaystyle \int x e^{x^2} dx$ $\displaystyle =$ $\displaystyle \frac{1}{2} \int e^{x^2} (2x) dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \int e^u du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} e^u + C$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} e^{x^2} + C$  


Another Example

Integrate

$\displaystyle \int \sin(x) \cos(x) dx $


Solution

Set $ u = \sin(x)$ so that $ du = \cos(x) dx$.


$\displaystyle \int \sin(x) \cos(x) dx $ $\displaystyle =$ $\displaystyle \int u du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} u^2 + C$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sin^2(x) + C$  


A third example

Integrate

$\displaystyle \int \frac{\sqrt{\ln(x)}}{x} dx$


Solution

Set $ u = \ln(x)$ so that $ du = \frac{1}{x} dx$.


$\displaystyle \int \frac{\sqrt{\ln(x)}}{x} dx$ $\displaystyle =$ $\displaystyle \int \sqrt{u} du$  
  $\displaystyle =$ $\displaystyle \int u^\frac{1}{2} du$  
  $\displaystyle =$ $\displaystyle \frac{2}{3} u^\frac{3}{2} + C$  
  $\displaystyle =$ $\displaystyle \frac{2}{3} (\ln(x))^\frac{3}{2} + C$  


A final example

Integrate

$\displaystyle \int \frac{\sin(x)}{\cos^3(x)} dx$


Solution

Set $ u = \tan(x)$. Then $ du = \sec^2 (x) dx$.


$\displaystyle \int \frac{\sin(x)}{\cos^3(x)} dx$ $\displaystyle =$ $\displaystyle \int \tan(x) \sec^2(x) dx$  
  $\displaystyle =$ $\displaystyle \int u du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} u^2 + C$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \tan^2(x) + C$  


An alternate solution

Set $ v = \cos(x)$ so that $ dv = - \sin(x) dx$.


$\displaystyle \int \frac{\sin(x)}{\cos^3(x)} dx$ $\displaystyle =$ $\displaystyle -\int v^{-3} du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} v^{-2} + C'$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sec^2(x) + C'$  


Error?

Why are these answers different?


Answer

$\displaystyle \tan^2(x) + 1 = \sec^2(x)$

So, $ C = \frac{1}{2} + C'$.




next up previous
Next: About this document ...
Thomas Scanlon 2004-02-26