Chapter 8: Trigonometric Functions

A circle of radius 1 has a circumference of $2\pi \approx 6.283185307179586476925286766559005768394338798750211.$

When measuring angles by degrees (°), a full revolution is 360° . For our trigonometric functions, we use *radians* as our arguments.

To convert between degrees and radians, one should find the arc length of the segment of the unit circle demarked by two radii meeting at an angle of x° .

1

 $\mathbf{2}$

3

Negative arc lengths

A negative arc length should be interpreted as a distance along the unit circle in the *clockwise* direction.

Some values

$$sin(0) = 0$$

$$cos(0) = 1$$

$$sin(\frac{\pi}{4}) = 1 = cos(\frac{\pi}{4})$$

$$sin(\frac{\pi}{6}) = \frac{1}{2}$$

$$cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$$

$$sin(\frac{\pi}{2}) = 1$$

$$cos(\pi) = -1$$

Trigonometric identities

If n is a positive integer, then one write $\sin^n(x)$ for $(\sin(x))^n$. Likewise, for the cosine and other trigonometric functions.

The Pythagorean theorem may be expressed as:

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

As an arclength of 2π corresponds to a full revolution of the circle,

 $\sin(\theta + 2\pi) = \sin(\theta)$ $\cos(\theta + 2\pi) = \cos(\theta)$

Differentiation of Sine and Cosine

$$\frac{d}{dx}\sin(x) = \cos(x)$$
$$\frac{d}{dx}\cos(x) = -\sin(x)$$

Indefinite integration of Sine and Cosine

$$\int \sin(x)dx = -\cos(x) + C$$
$$\int \cos(x)dx = \sin(x) + C$$

11

Let $g(x) = \sin(x^2 + \cos(e^x))$. Compute g'(x).

Solution

$$g'(x) = \frac{d}{dx}(\sin(x^2 + \cos(e^x)))$$

= $\cos(x^2 + \cos(e^x))\frac{d}{dx}(x^2 + \cos(e^x))$
= $\cos(x^2 + \cos(e^x))(2x - \sin(e^x)e^x)$