Section 7.6: Nonlinear regression

Problem: For a given class of functions \mathcal{F} and a set of data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ find a (the?) function f of class \mathcal{F} which minimizes the sum of squares of errors.

Linear regression is the solution to this problem where \mathcal{F} is the class of linear functions.

Quadratic regression

A quadratic function is a function $f(x)$ of the form
$f(x)=a x^{2}+b x+c$ for fixed constants a, b, and c.
Note that taking $a=0$ we see that a linear function is a special case of a quadratic function.

Large An example of quadratic regression

Find a quadratic function $f(x)=a x^{2}+b x+c$ minimizing the sum of squares of errors for the data $\{(-1,0),(1,2),(0,-1),(2,1)\}$.

Solution

$$
\begin{aligned}
S(a, b, c)= & (f(-1)-0)^{2}+(f(1)-2)^{2} \\
& +(f(0)-(-1))^{2}+(f(2)-1)^{2} \\
= & \left(a(-1)^{2}+b(-1)+c-0\right)^{2}+\left(a(1)^{2}+b(1)+c-2\right)^{2} \\
& +\left(a(0)^{2}+b(0)+c-(-1)\right)^{2}+\left(a(2)^{2}+b(2)+c-1\right)^{2} \\
= & (a-b+c)^{2}+(a+b+c-2)^{2} \\
& +(c+1)^{2}+(4 a+2 b+c-1)^{2}
\end{aligned}
$$

Solution, continued

$$
\begin{aligned}
\frac{\partial S}{\partial a} & =2[(a-b+c)+(a+b+c-2)+4(4 a+2 b+c-1)] \\
& =2[18 a+8 b+6 c-6] \\
\frac{\partial S}{\partial b} & =2[(-1)(a-b+c)+(a+b+c-2)+2(4 a+2 b+c-1)] \\
& =2[8 a+6 b+2 c-4] \\
\frac{\partial S}{\partial c} & =2[(a-b+c)+(a+b+c-2)+(c+1)+(4 a+2 b+c-1)] \\
& =2[6 a+2 b+4 c-2]
\end{aligned}
$$

Setting these equal to zero and performing some algebra, we find $a=0, b=\frac{3}{5}$, and $c=\frac{1}{5}$.

Other forms of nonlinear regression

- Exponential regression: $f(x)=a e^{b x}$
- Power regression: $f(x)=a x^{b}$
- Logarithmic regression: $f(x)=a \ln (x)+b$
- Cubic regression: $f(x)=a x^{3}+b x^{2}+c x+d$
- Polynomial regression of degree m :

$$
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}=\sum_{i=0}^{m} a_{i} x^{i}
$$

Multiple regression

Problem: Given a set of data $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{n}, y_{n}, z_{n}\right)\right\}$ find a function $f(x, y)$ of two variables (of some specified class) best fitting the data.

When $f(x, y)=a x+b y+c$ is taken to be a linear function, then this is the problem of multiple linear regression.

