## Section 7.5: The method of least squares

Problem: Given a collection of data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ find a function $y=f(x)$ which best fits these data.

1

Questions posed by the problem

- What kind of function should $f$ be?
- How do we measure the best fit?


## Proposed answer to the first question

- The function $f$ should be defined for all real values of $x$ so that we may interpolate the data given.
- Its form should be as simple as possible so as to simplify calculations.
- The form of the function should be complicated enough to realistically model the data.

When performing linear regression one assumes that $f(x)=a x+b$ is a linear function. This assumption satisfies the first two desiderata, but seldom the last.

## Proposed answer to the last question

- The function $y=f(x)$ fits the data well if size of the differences $y_{i}-f\left(x_{i}\right)$ are all small.
- We can measure the total error in many ways. For instance, we could define
$E(f)=\left|y_{1}-f\left(x_{1}\right)\right|+\cdots+\left|y_{n}-f\left(x_{n}\right)\right|=\sum_{i=1}^{n}\left|y_{i}-f\left(x_{i}\right)\right|$ and try to minimize this quantity. Alternatively, we could define $\mathcal{E}(f):=\max \left|y_{i}-f\left(x_{i}\right)\right|$ and try to minimize this.


## Proposed answer, continued: Least squares

The methods of calculus work best with the least squares error method.
Set $\mathcal{S}(f):=\left(y_{1}-f\left(x_{i}\right)\right)^{2}+\cdots+\left(y_{n}-f\left(x_{n}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$. The equation $y=f(x)$ is a regression equation for the data if $\mathcal{S}(f)$ is minimized by $f$ among the functions of a specified class (ie linear functions).

## An example of linear regression

Find the linear function having least squares error for the data $\{(0,3),(2,4),(3,3)\}$.

## Solution

Write $f(x)=a x+b$. We must solve for $a$ and $b$. We compute
$S(a, b) \quad:=\mathcal{S}(f)$

$$
\begin{aligned}
& =(3-(a \cdot 0+b))^{2}+(4-(2 \cdot a+b))^{2}+(3-(3 a+b))^{2} \\
& =\left(9-6 b+b^{2}\right)+\left(16+4 a^{2}+b^{2}-8 a-4 b+2 a b\right)+\left(9+9 a a^{2}+b^{2}-18 a-6 b+6 a b\right) \\
& =13 a^{2}+3 b^{2}+8 a b-26 a-16 b+34
\end{aligned}
$$

## Solution, continued

So we must minimize $S(a, b)=13 a^{2}+3 b^{2}+8 a b-26 a-16 b+34$.
Differentiating,

$$
\begin{align*}
& \frac{\partial S}{\partial a}=26 a+8 b-26  \tag{1}\\
& \frac{\partial S}{\partial b}=6 b+8 a-16 \tag{2}
\end{align*}
$$

## Solution, continued

Setting these equal to zero, multiplying the first equation by 3 and the second equation by 4 , we have

$$
\begin{aligned}
& 0=78 a+24 b-78 \\
& 0=32 a+24 b-48
\end{aligned}
$$

Subtracting, we conclude $0=46 a-30$ or that $a=\frac{-15}{23} \approx-.65$. Substituting into the equation $\frac{\partial S}{\partial b}=0$ we find $16=6 b+8\left(\frac{-15}{23}\right)$ so that $b=\frac{383}{138} \approx 2.8$

## Solution, completed

We should test that this point is a minimum.

$$
\begin{align*}
\frac{\partial^{2} S}{\partial a^{2}} & =26  \tag{4}\\
\frac{\partial^{2} S}{\partial b^{2}} & =6  \tag{5}\\
\frac{\partial^{2} S}{\partial a \partial b} & =8  \tag{6}\\
D_{S} & =92 \tag{7}
\end{align*}
$$

$D_{S}>0$ and $\frac{\partial^{2} S}{\partial a^{2}}>0$. Therefore, we have minimized $S$.

