11.5: Taylor Series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where each a_{n} is a number and x is a variable.
A power series defines a function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ where we substitute numbers for x.

Note: The function f is only defined for those x with $\sum_{n=0}^{\infty} a_{n} x^{n}$ convergent.

Geometric series as a power series
For $|x|<1$ we computed

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Taylor Series

If $f(x)$ is an infinitely differentiable function, then the Taylor series of $f(x)$ at a is the series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Example

Compute the Taylor series of $f(x)=e^{x}$ at $a=0$.

Solution

We know $f^{(n)}(x)=e^{x}$ for all $n \geq 0$. So $f^{(n)}(0)=1$ and the Taylor series of $f(x)=e^{x}$ at $a=0$ is

$$
\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

5

Example

Compute the Taylor series at $a=1$ of $f(x)=\sqrt{x}$.

Solution

Write $f(x)=x^{\frac{1}{2}}$. Then $f^{\prime}(x)=\frac{1}{2} x^{\frac{-1}{2}}, f^{\prime \prime}(x)=\frac{-1}{4} x^{\frac{-3}{2}}$,
$f^{\prime \prime \prime}(x)=\frac{3}{8} x^{\frac{-5}{2}}, f^{(4)}(x)=\frac{-5}{16} x^{\frac{-7}{2}}=\frac{(-1)^{4+1} 5 \cdot 3 \cdot 1}{2^{4}} x^{\frac{-7}{2}}$. In general, $f^{(n)}(x)=\frac{(-1)^{n+1}(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1}{2^{n}} x^{\frac{-2 n-1}{2}}$ so that
$f^{(n)}(1)=\frac{(-1)^{n+1}(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1}{2^{n}}$ and the Taylor series of $f(x)=\sqrt{x}$ at $a=1$ is

$$
1+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{n!2^{n}}(x-1)^{n}
$$

Convergence of Taylor series

Given an infinitely differentiable function $f(x)$ with Taylor series (at a) $\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$ either $\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$ converges and is equal to $f(x)$ for every number x or there is a number R (called the radius of convergence) for which $\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$ converges and is equal to $f(x)$ for $|x-a|<R$ while $\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$ diverges for $|x-a|>R$.

Examples

-

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

for all x.
-

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

for $|x|<1$ and diverges for $|x|>1$

Operations on Taylor series

Differentiation: If $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{f^{(n+1)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} n a_{n} x^{n-1}$.
Integration: If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then
$\int f(x) d x=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$.
Products: If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, then $f(x) \cdot g(x)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} a_{i} b_{n-i}\right) x^{n}$.
Composition (monomial case): If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and m is a positive integer, then $f\left(x^{m}\right)=\sum_{n=0}^{\infty} a_{n} x^{n m}$.

Example

Compute the Taylor series at $a=0$ of $\int e^{x^{2}} d x$.

Solution

We know $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$. So, $e^{x^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{2 n}$. Integrating, $\int e^{x^{2}} d x=\int \sum_{n=0}^{\infty} \frac{1}{n!} x^{2 n} d x=C+\sum_{n=0}^{\infty} \frac{1}{n!(2 n+1)} x^{2 n+1}$.
That is, $\int e^{x^{2}} d x=C+x+\frac{1}{6} x^{3}+\frac{1}{30} x^{5}+\frac{1}{98} x^{7}+\cdots$.

Example

Find the Taylor series at zero of $\frac{1+x^{2}}{1-x^{3}}$.

Solution
We know $\frac{1}{1-u}=\sum_{n=0}^{\infty} u^{n}$ so that $\frac{1}{1-x^{3}}=\sum_{n=0}^{\infty} x^{3 n}$.
Multiplying, $\frac{1+x^{2}}{1-x^{3}}=\left(1+x^{2}\right) \sum_{n=0}^{\infty} x^{3 n}=\sum_{n=0}^{\infty}\left(x^{3 n}+x^{3 n+2}\right)=$ $1+x^{2}+x^{3}+x^{5}+x^{6}+x^{8}+x^{9}+x^{11}+\cdots$

