11.2: Newton's Method

For a general function f(x) it may be difficult to find a solution to f(a) = 0. However, if f(x) = b + mx is a linear function, then we may solve for 0 = f(a) = b + ma as $a := \frac{-b}{m}$.

Newton's method is a way to solve for f(a) = 0 by approximating f(x) by a linear function.

1

Newton's method: the theory

If f(x) is differentiable, then for any point c we may approximate f(x) by the tangent line to the graph of f at $\langle c, f(c) \rangle$. That is,

$$f(x) \approx f(c) + f'(c)(x - c)$$

So, if the tangent line is a good approximation to f between c and a zero of f, then we may find an *approximate* zero by solving for $0 = f(a) \approx f(c) + f'(c)(a-c)$ giving $a = c - \frac{f(c)}{f'(c)}$.

 $\mathbf{2}$

Newton's method: the algorithm

Given: A differentiable function f(x).

Goal: Find a solution (or an approximate solution) to f(a) = 0.

Process: Step 0: Guess an approximate zero x_0 and set $d := x_0$.

Step 1: Compute f(d). If f(d) is close enough to zero for you, then set a = d and quit.

Step 2: Compute f'(d). If f'(d) = 0, then this method fails. Go back to step 0.

Step 3: Approximate $f(x) \approx f(d) + f'(d)(x-d)$. Set the approximation equal to zero and solve for x finding $x := d - \frac{f(d)}{f'(d)}$. If this is the n^{th} iteration of this process, call this number x_n . Reset $d := x_n$ and return to step 1.

3

Example

4

Find a solution to $0 = f(x) = x^6 - 5x^2 + x + 1$.

		A solution		
Ve	compute $f'($	$f(x) = 6x^5 - 10x$	x + 1.	
i	x_i	$f(x_i)$	$f'(x_i)$	
0	-1	-4	-5	
1	-0.20000	0.60007	2.99808	
2	-0.40015	-0.19664	4.93994	
3	-0.36034	-0.00739	4.56698	
4	-0.35873	-0.00001	4.55161	
5	-0.35872	$\approx 2\times 10^{-10}$	4.55158	

5

Difficulties with the method

- If $f'(x_0) = 0$, then the method fails completely.
- If there is a point c for which f'(c) = 0 but f(c) ≈ 0, then by choosing x₀ ≈ c, even if the process converges, then it may take many steps.
- If there are many solutions to f(x) = 0, then this process may produce a solution far away from the initial guess, and not necessarily the nearest zero.

Another Example

 $\overline{7}$

Use Newton's method to approximate $\sqrt[3]{7}$.

Let $f(x) = x^3 - 7$. (So that $f'(x) = 3x^2$.) We wish to find *a* with f(a) = 0. Start with $x_0 = 2$. Then $x_1 = 2 - \frac{1}{12} = \frac{23}{12}$. We compute $(\frac{23}{12})^3 - 7 \approx 0.04$. The next approximation is $x_2 = \frac{18215}{9522} \approx 1.912938458$ while $(\frac{18215}{9522})^3 - 7 \approx 0.00008$.

8

A final example

9

Find a solution to $e^x = 2x + 1$.

Solution

Here $f(x) = e^x - 2x - 1$ so that $f'(x) = e^x - 2$. If we start with $x_0 = 1$, then $x_1 \approx 1.39221, x_2 \approx 1.27396, x_3 \approx 1.25678, x_4 \approx 1.25643,$ $x_5 \approx 1.25643.$ (Note: There is another zero: f(0) = 0!)

10