11.2: Newton's Method

For a general function $f(x)$ it may be difficult to find a solution to $f(a)=0$. However, if $f(x)=b+m x$ is a linear function, then we may solve for $0=f(a)=b+m a$ as $a:=\frac{-b}{m}$.
Newton's method is a way to solve for $f(a)=0$ by approximating $f(x)$ by a linear function.

Newton's method: the theory

If $f(x)$ is differentiable, then for any point c we may approximate $f(x)$ by the tangent line to the graph of f at $\langle c, f(c)\rangle$. That is,

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)
$$

So, if the tangent line is a good approximation to f between c and a zero of f, then we may find an approximate zero by solving for $0=f(a) \approx f(c)+f^{\prime}(c)(a-c)$ giving $a=c-\frac{f(c)}{f^{\prime}(c)}$.

Newton's method: the algorithm

Given: A differentiable function $f(x)$.
Goal: Find a solution (or an approximate solution) to $f(a)=0$.
Process: Step 0: Guess an approximate zero x_{0} and set $d:=x_{0}$.
Step 1: Compute $f(d)$. If $f(d)$ is close enough to zero for you, then set $a=d$ and quit.

Step 2: Compute $f^{\prime}(d)$. If $f^{\prime}(d)=0$, then this method fails. Go back to step 0 .

Step 3: Approximate $f(x) \approx f(d)+f^{\prime}(d)(x-d)$. Set the approximation equal to zero and solve for x finding $x:=d-\frac{f(d)}{f^{\prime}(d)}$. If this is the $n^{\text {th }}$ iteration of this process, call this number x_{n}. Reset $d:=x_{n}$ and return to step 1 .

3

Example

Find a solution to $0=f(x)=x^{6}-5 x^{2}+x+1$.

A solution

We compute $f^{\prime}(x)=6 x^{5}-10 x+1$.

i	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$
0	-1	-4	-5
1	-0.20000	0.60007	2.99808
2	-0.40015	-0.19664	4.93994
3	-0.36034	-0.00739	4.56698
4	-0.35873	-0.00001	4.55161
5	-0.35872	$\approx 2 \times 10^{-10}$	4.55158

Difficulties with the method

- If $f^{\prime}\left(x_{0}\right)=0$, then the method fails completely.
- If there is a point c for which $f^{\prime}(c)=0$ but $f(c) \approx 0$, then by choosing $x_{0} \approx c$, even if the process converges, then it may take many steps.
- If there are many solutions to $f(x)=0$, then this process may produce a solution far away from the initial guess, and not necessarily the nearest zero.

Another Example

Use Newton's method to approximate $\sqrt[3]{7}$.

Let $f(x)=x^{3}-7$. (So that $f^{\prime}(x)=3 x^{2}$.) We wish to find a with $f(a)=0$.

Start with $x_{0}=2$. Then $x_{1}=2-\frac{1}{12}=\frac{23}{12}$. We compute
$\left(\frac{23}{12}\right)^{3}-7 \approx 0.04$. The next approximation is
$x_{2}=\frac{18215}{9522} \approx 1.912938458$ while $\left(\frac{18215}{9522}\right)^{3}-7 \approx 0.00008$.

A final example

Find a solution to $e^{x}=2 x+1$.

Solution

Here $f(x)=e^{x}-2 x-1$ so that $f^{\prime}(x)=e^{x}-2$. If we start with $x_{0}=1$, then
$x_{1} \approx 1.39221, x_{2} \approx 1.27396, x_{3} \approx 1.25678, x_{4} \approx 1.25643$,
$x_{5} \approx 1.25643$.
(Note: There is another zero: $f(0)=0$!)

