11.1: Taylor polynomials

The derivative as the first Taylor polynomial
If $f(x)$ is differentiable at a, then the function $p(x)=b+m(x-a)$ where $b=f(0)$ and $m=f^{\prime}(x)$ is the "best" linear approximation to f near a.

For $x \approx a$ we have $f(x) \approx p(x)$.
Note that $f(a)=b=p(a)$ and $f^{\prime}(a)=m=p^{\prime}(a)$.

Higher degree Taylor polynomials

If $f(x)$ is a function which is n times differentiable at a, then the $n^{\text {th }}$ Taylor polynomial of f at a is the polynomial $p(x)$ of degree (at most n) for which $f^{(i)}(a)=p^{(i)}(a)$ for all $i \leq n$.

Example

Compute the third Taylor polynomial of $f(x)=e^{x}$ at $a=0$.

Solution

Write $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$. We need to find c_{0}, c_{1}, c_{2}, and c_{3} so that $p^{(i)}(0)=f^{(i)}(0)$ for $i=0,1,2$, and 3 .
In our case $f^{(i)}(x)=e^{x}$ for all $i \geq 0$ and $e^{0}=1$. So, $f^{(i)}(0)=1$ for all i.

We compute $p^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}, p^{\prime \prime}(x)=2 c_{2}+6 c_{3} x$, and $p^{\prime \prime \prime}(x)=6 c_{3}$. Thus,
$1=f^{(0)}(0)=p^{(0)}(0)=c_{0}$.
$1=f^{(1)}(0)=p^{(1)}(0)=c_{1}$.
$1=f^{(2)}(0)=p^{(2)}(0)=2 c_{2}$ so that $c_{2}=\frac{1}{2}$.
Finally, $1=f^{(3)}(0)=p^{(3)}(0)=6 c_{3}$ so that $c_{3}=\frac{1}{6}$.
Thus, the third Taylor polynomial of $f(x)=e^{x}$ at $a=0$ is $p(x)=\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+x+1$.

Another Example

Find the third Taylor polynomial of $f(x)=\ln (x)$ at $a=1$.

A solution

As before, we write $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ and we find $p^{\prime}(x)=c_{1}+2 c_{2} x+3 c_{3} x^{2}, p^{\prime \prime}(x)=2 c_{2}+6 c_{3} x$, and $p^{\prime \prime \prime}(x)=6 c_{3}$.
Differentiating, $f^{\prime}(x)=\frac{1}{x}=x^{-1}, f^{\prime \prime}(x)=-x^{-2}$, and
$f^{\prime \prime \prime}(x)=2 x^{-3}$. Thus,
$0=f^{(0)}(1)=p^{(0)}(1)=c_{0}+c_{1}+c_{2}+c_{3}$
$1=f^{(1)}(1)=p^{(1)}(1)=c_{1}+2 c_{2}+3 c_{3}$
$-1=f^{(2)}(1)=p^{(2)}(1)=2 c_{2}+6 c_{3}$
$2=f^{(3)}(1)=p^{(3)}(1)=6 c_{3}$
Solving these equations, we find $c_{3}=\frac{1}{3}, c_{2}=\frac{-3}{2}, c_{1}=3$, and $c_{0}=\frac{-11}{6}$.

That is, the third Taylor polynomial of $\ln (x)$ at $a=1$ is $\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+3 x-\frac{11}{6}$.

Another solution

We may write any polynomial of degree three as $p(x)=d_{0}+d_{1}(x-1)+d_{2}(x-1)^{2}+d_{3}(x-1)^{3}$.
Differentiating, we have $p^{\prime}(x)=d_{1}+2 d_{2}(x-1)+3 d_{3}(x-1)^{2}$, $p^{\prime \prime}(x)=2 d_{2}+6 d_{3}(x-1)$, and $p^{\prime \prime \prime}(x)=6 d_{3}$.
So, $p(1)=d_{0}, p^{\prime}(1)=d_{1}, p^{\prime \prime}(1)=2 d_{2}$, and $p^{\prime \prime \prime}(1)=6 d_{3}$.
Hence, if p is the third Taylor polynomial of $\ln (x)$ at $a=1$, we have $d_{0}=0, d_{1}=1, d_{2}=\frac{-1}{2}$, and $d_{3}=\frac{1}{3}$.
That is, the third Taylor polynomial of $\ln (x)$ at $a=0$ is $\frac{1}{3}(x-1)^{3}-\frac{1}{2}(x-1)^{2}+(x-1)$.

General formula for Taylor polynomials

If we write $p(x)=\sum_{i=0}^{n} d_{i}(x-a)^{i}$, then
$p^{(j)}(x)=\sum_{i=j}^{n} \frac{i!}{(i-j)!} d_{i}(x-a)^{i-j}$ where $i!=i \cdot(i-1) \cdot(i-2) \cdots 2 \cdot 1$.
(We define $0!=1$ and $(i+1)!=(i+1) \cdot i!$.)
In particular, $p^{(j)}(a)=j!d_{j}$. So, if p is the $n^{\text {th }}$ Taylor polynomial of f at a, we have $j!d_{j}=p^{(j)}(a)=f^{(j)}(a)$.
Thus, $d_{j}=\frac{1}{j!} f^{(j)}(a)$ or to put it another way, the $n^{\text {th }}$ Taylor polynomial of f at a is $\sum_{j=0}^{n} \frac{1}{j!} f^{(j)}(a)(x-a)^{j}$.

Example

Compute the fifth Taylor polynomial of $f(x)=\sin (x)$ at $a=0$.

Solution

We compute $f^{\prime}(x)=\cos (x), f^{\prime \prime}(x)=-\sin (x), f^{\prime \prime \prime}(x)=-\cos (x)$, $f^{(4)}(x)=\sin (x)$, and $f^{(5)}(x)=\cos (x)$. Thus, $f^{(0)}(0)=0$, $f^{(1)}(0)=1, f^{(2)}(0)=0, f^{(3)}(0)=-1, f^{(4)}(0)=0$, and $f^{(5)}(0)=1$.

We compute the first few factorials: $0!=1,1!=1 \cdot 0!=1 \cdot 1=1$, $2!=2 \cdot 1!=2 \cdot 1=2,3!=3 \cdot 2!=3 \cdot 2=6,4!=4 \cdot 3!=4 \cdot 6=24$, and $5!=5 \cdot 4!=5 \cdot 24=120$.

Therefore, the fifth Taylor polynomial of $f(x)=\sin (x)$ at $a=0$ is $\frac{1}{120} x^{5}-\frac{1}{6} x^{3}+x$.

Error estimates

If $f(x)$ is $(n+1)$ times differentiable between on the interval $[a, x]$ (or $[x, a]$ if $x<a$) and $p(x)$ is the $n^{\text {th }}$ Taylor polynomial of f at a, then there is a number $a \leq c \leq x$ so that
$f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$.
So, if we can find M so that $\left|f^{(n+1)}(y)\right| \leq M$ whenever $a \leq y \leq x$, we would know that $|f(x)-p(x)| \leq \frac{M}{(n+1)!}(x-a)^{n+1}$.

Example

Find a decimal approximation to e valid to the hundredths place.

Solution

We will find n so that if $p(x)$ is the $n^{\text {th }}$ Taylor polynomial for $f(x)=e^{x}$ at $a=0$, then $|e-p(1)|=|f(1)-p(1)|<\frac{1}{200}$.
We know that $f^{(n+1)}(x)=e^{x}$ and that on the interval from zero to one this function is bounded by 3 .
Thus, $|e-p(1)| \leq \frac{3}{(n+1)!}(1-0)^{n+1}=\frac{3}{(n+1)!}$.
So, we want n so that $\frac{3}{(n+1)!}<\frac{1}{120}$ or what is the same thing $(n+1)!>360$. If $n=5$, then $(n+1)!=6!=720>360$.
Now, $p(x)=\frac{1}{120} x^{5}+\frac{1}{24} x^{4}+\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+x+1$. So,
$e \approx \frac{1}{120}+\frac{1}{24}+\frac{1}{6}+\frac{1}{2}+1+1=\frac{1+5+20+60+120+120}{120}=\frac{326}{120}=\frac{163}{60} \approx$ 2.7166666666......

A better approximation to e

In point of fact, $e \approx 2.718281828459045235360287471$ 352662497757247093699959574966967627724076630353547 594571382178525166427427466391932003059921817413 5966290435729003342952605956307381323286279434907632 338298807531952510190115738341879307021540891 49934884167509244761460668082264800168477411853742 34544243710753907774499206955170276183860626133 13845830007520449338265602976067371132007093287091 274437470472306969772093101416928368190255151 0865746377211125238978442505695369677078544996996794686 44549059879316368892300987931277361782154249992295763 51482208269895193668033182528869398496465105820939239 8294887933203625094431.

