Section 10.3: Solving First-Order Linear Differential Equations: Integration Factors

A first order linear differential equation is a differential equation of the form

$$
y^{\prime}+a(t) y=b(t)
$$

Example

Solve the differential equation

$$
y^{\prime}+t y=0
$$

Solution

In this case we can use the method of separation of variables.
If y is constant, then $t y \equiv y^{\prime} \equiv 0$ so that $y \equiv 0$.
Otherwise, we may express the equation as $\frac{y^{\prime}}{y}=-t$. Let $C=y(0)$. Integrating with respect to t, we have

$$
\begin{aligned}
-\frac{1}{2} T^{2} & =\int_{0}^{T}-t d t \\
& =\int_{0}^{T} \frac{y^{\prime} d t}{y} \\
& =\int_{C}^{y(T)} \frac{d y}{y} \\
& =\ln \left|\frac{y(T)}{C}\right|
\end{aligned}
$$

3

Solution, continued

(As our solution must be continous and cannot take the value zero, the signs of $y(T)$ and $C=y(0)$ must agree. So, we may drop the absolute value bars.)

Exponentiating both sides of this equation and multiplying by C, we obtain $y(T)=C e^{\frac{-1}{2} T^{2}}$.

Another Example

Solve the differential equation

$$
y^{\prime}+y=10 e^{-t}
$$

Solution

In this case, we cannot apply the separation of variables technique.
However, as e^{t} is never equal to zero, the solutions to the original equation and to the equation

$$
e^{t} y^{\prime}+e^{t} y=10
$$

are the same.
Observe that

$$
\frac{d}{d t}\left(e^{t} y\right)=e^{t} y^{\prime}+e^{t} y
$$

Solution, continued

Thus, if our differential equation holds, we have $\frac{d}{d t}\left(e^{t} y\right)=10$.
We integrate with respect to t.

$$
\begin{aligned}
e^{T} y(T)-y(0) & =\left.e^{t} y(t)\right|_{t=0} ^{t=T} \\
& =\int_{0}^{T} \frac{d}{d t}\left(e^{t} y\right) d t \\
& =\int_{0}^{T} 10 d t \\
& =10 T
\end{aligned}
$$

So, if we write $C=y(0)$, then we have $y(T)=10 e^{-T} T+C e^{-T}$.

7

A Third Example

Solve the differential equation

$$
y^{\prime}+\frac{1}{t} y=\cos (t)
$$

Solution

In this case, multiplying by t we may express the equation as $t y^{\prime}+y=t \cos (t)$. Using the product rule we check that $\frac{d}{d t}(t y)=t y^{\prime}+y$.

We integrate this expression.
Note: The original equation is singular at $t=0$ in the sense that the function $\frac{1}{t}$ is not defined. We need to take for the lower limit of integration some other constant. The number π is a convenient choice in this case.

Solution, continued

$$
\begin{aligned}
T y(T)-\pi y(\pi)= & \int_{\pi}^{T} \frac{d}{d t}(t y) d t \\
& =\int_{\pi}^{T} t \cos (t) d t \\
= & t \sin (t)+\left.\cos (t)\right|_{t=\pi} ^{t=T} \text { integrate by parts } \\
& \quad \operatorname{with} u=t \text { and } d v=\cos (t) d t \\
= & T \sin (T)+\cos (T)+1
\end{aligned}
$$

Write $C:=y(\pi)$. Then we conclude that
$y(T)=\sin (T)+\frac{1}{T}(\cos (T)+1+\pi C)$.

General Solution

In general, if $A^{\prime}(t)=a(t)$, then

$$
\begin{aligned}
\frac{d}{d t}\left(e^{A(t)} y\right) & =e^{A(t)} y^{\prime}+A^{\prime}(t) e^{A(t)} y \\
& =e^{A(t)}\left(y^{\prime}+a(t) y\right)
\end{aligned}
$$

Thus, a differential equation of the form $y^{\prime}+a(t) y=b(t)$ may be expressed as $\frac{d}{d t}\left(e^{A(t)} y\right)=e^{A(t)}\left(y^{\prime}+a(t)\right)=e^{A(t)} b(t)$.

General solution, continued

So, if α is in the domain of the functions $a(t)$ and $b(t)$, we have

$$
\begin{aligned}
e^{A(T)} y(T)-e^{A(\alpha)} y(\alpha) & =\int_{\alpha}^{T} \frac{d}{d t}\left(e^{A(t)} y\right) d t \\
& =\int_{\alpha}^{T} e^{A(t)} b(t) d t
\end{aligned}
$$

Set $C:=e^{A(\alpha)} y(\alpha)$, then $Y(T)=e^{-A(T)} \int_{\alpha}^{T} e^{A(t)} b(t) d t+C e^{-A(T)}$.

An example reconsidered

In solving the equation $y^{\prime}+\frac{1}{t} y=\cos (t)$, we multiplied by t and then observed that $\frac{d}{d t}(t y)=t y^{\prime}+y=t\left(y^{\prime}+\frac{1}{t} y\right)$.

In terms of the general solution, $a(t)=\frac{1}{t}$ and if $A(t)=\ln |t|$, then we have $A^{\prime}(t)=a(t)$.
Note that $e^{A(t)}=e^{\ln |t|}=|t|$. So, multiplying by t is the same as multiplying by $e^{A(t)}$ for $t>0$.
Our general method gives

$$
\begin{aligned}
y(T) & =e^{-A(T)} \int_{\alpha}^{T} e^{A(t)} b(t) d t+C e^{-A(T)} \\
& =\frac{1}{T} \int_{\alpha}^{T} t \cos (t) d t+\frac{\alpha y(\alpha)}{T}
\end{aligned}
$$

To finish, we must choose α and evaluate the above integral.

