Section 7.3: Maxima and Minima of Functions of Several Variables Review of Single Variable Case

If $f(x)$ is a (sufficiently differentiable) function of a single variable and f has a relative minimum or maximum (generically an extremum) at $x=a$ then $f^{\prime}(a)=0$.

Recall that a function may have $f^{\prime}(a)=0$ without a being an extremum.

- $f(x)=x^{2}+1$ and $a=0$
- $g(x)=e^{x}-x$ and $a=0$
- $g(x)=x^{3}$ and $a=0$

First Derivative Test for Extrema of Functions of Two Variables

If (a, b) is a relative extremum of $F(x, y)$, then a is a relative extremum of $g(x):=F(x, b)$ and b is a relative extremum of $h(y):=F(a, y)$. So,

$$
0=g^{\prime}(a)=\left.\frac{\partial F}{\partial x}\right|_{(a, b)}
$$

and

$$
0=h^{\prime}(b)=\left.\frac{\partial F}{\partial y}\right|_{(a, b)}
$$

(In fact, this test applies to functions in any number of variables.)

Counterexamples

As with functions of a single variable, there may be points (a, b) which are not relative extrema but for which
$\left.\frac{\partial F}{\partial x}\right|_{(a, b)}=0=\left.\frac{\partial F}{\partial y}\right|_{(a, b)}$.

- $F(x, y)=x^{3} y^{2}$
- $G(x, y)=\sin (x) \cos (y)$

Second Derivative Test: One Variable

Recall that for a function of a single variable, one can look at the second derivative to test for concavity and thereby also the existence of a local minimum or maximum.

A (sufficiently smooth) function of one variable $f(x)$ has a relative extremum at $x=a$ if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a) \neq 0$. If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then a is a relative minimum and if $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, then a is a relative maximum.

Second Derivative Test: Two Variables

Given a function $F(x, y)$ of two variables we define a new function

$$
D_{F}(x, y):=\frac{\partial F}{\partial x} \cdot \frac{\partial F}{\partial y}-\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}
$$

If

- $\left.\frac{\partial F}{\partial x}\right|_{(a, b)}=0=\left.\frac{\partial F}{\partial y}\right|_{(a, b)}$,
- $D_{F}(a, b)>0$, and
- $\left.\frac{\partial^{2} F}{\partial x^{2}}\right|_{(a, b)} \neq 0 ;$
then F has a relative extremum at (a, b) (maximum if $\left.\frac{\partial^{2} F}{\partial x^{2}}\right|_{(a, b)}<0$ and minimum if this second derivative is positive).

Second Derivative Test for Two Variables: No Extremum

Conversely, if

- $\left.\frac{\partial F}{\partial x}\right|_{(a, b)}=0=\left.\frac{\partial F}{\partial y}\right|_{(a, b)}$ and
- $D_{F}(a, b)<0$;
then F does not have a relative extremum at (a, b).
When $D_{F}(a, b)=0$, this test yields no information.

Second Derivative Test: Example 1
Find the relative extrema of $f(x, y)=x^{3}-y^{2}-3 x+2 y$.

Solution

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =3 x^{2}-3 \\
\frac{\partial f}{\partial y} & =2-2 y \\
\frac{\partial^{2} f}{\partial x^{2}} & =6 x \\
\frac{\partial^{2} f}{\partial x \partial y} & =0 \\
\frac{\partial^{2} f}{\partial y^{2}} & =-2 \\
D_{f} & =-12 x
\end{aligned}
$$

Solution continued

The solutions to $\frac{\partial f}{\partial x}=0=\frac{\partial f}{\partial y}$ are $(-1,1)$ and $(1,1)$. We compute the $D_{f}(-1,1)=12>0$ and $D_{f}(1,1)=-12<0$. Thus, the only potential relative extremum is at $(-1,1)$.
We compute $\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{(-1,1)}=-6<0$. Thus, $(-1,1)$ is a relative maximum.

Second Derivative Test: Example 2
Find the extrema of $F(x, y)=y e^{x}-3 x-y+2$.

$$
\begin{gathered}
\text { Solution } \\
\frac{\partial F}{\partial x}=y e^{x}-3 \\
\frac{\partial F}{\partial y}=e^{x}-1
\end{gathered}
$$

Setting both of these equal to zero, we find $x=0$ and $y=3$.

Solution, continued

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial x^{2}} & =y e^{x} \\
\frac{\partial^{2} F}{\partial y^{2}} & =0 \\
\frac{\partial^{2} F}{\partial x \partial y} & =e^{x} \\
D_{F} & =-e^{x}
\end{aligned}
$$

As $D_{F}(0,3)=-1<0$, the point $(0,3,2)$ is not an extremum, there are no local extrema of F.

