Section 10.2: Separation of variables
The method of separation of variables applies to differential equations of the form

$$
y^{\prime}=p(t) q(y)
$$

where $p(t)$ and $q(x)$ are functions of a single variable.

Example

Find the general solution to the differential equation

$$
y^{\prime}=t y^{2}
$$

Solution

Any constant solution to this equation would have $0 \equiv t y^{2}$ so that $y \equiv 0$.

Avoiding the constant solution, we may divide both sides of the equation by y^{2} and then we solve:

$$
\begin{aligned}
\frac{T^{2}}{2} & =\int_{0}^{T} t d t \\
& =\int_{0}^{T} \frac{y^{\prime}}{y^{2}} d t \\
& =\int_{y(0)}^{y(T)} y^{-2} d y \\
& =\left.\frac{-1}{y}\right|_{y(0)} ^{y(T)} \\
& =\frac{1}{y(0)}-\frac{1}{y(T)}
\end{aligned}
$$

So, if we set $C:=y(0)$, we have $y=\frac{2 C}{2-C t^{2}}$.

General procedure

To solve the differential equation $y^{\prime}=p(t) q(y)$:

- Find the constant solutions by solving for $q(c)=0$.
- Find $P(t)$ an antiderivative of $p(t)$ and $Q(x)$ an antiderivative of $\frac{1}{q(x)}$.
- Write $c=y(0)$. We find
$Q(y)-Q(c)=\int_{0}^{y} \frac{d y}{q(y)}=\int_{0}^{T} p(t) d t=P(T)-P(0)$.
- Solve for y.

Example

Find the general solution of $y^{\prime}=y \sin (t)-\sin (t)$

Solution

We begin by rewriting the equation at $y^{\prime}=(y-1) \sin (t)$.
The only constant solution is $y \equiv 1$.
Integrating, we find that $\ln (|y-1|)$ is an antiderivative of $\frac{1}{y-1}$ while $-\cos (t)$ is an antiderivative of $\sin (t)$.

Let $C=y(0)$. Then we have $\ln (|y-1|)-\ln (|C-1|)=1-\cos (t)$.
Adding $\ln (|C-1|)$ to both sides and applying the exponential function, we conclude that $|y-1|=|C-1| e^{1-\cos (t)}$.

As the solution y must be continuous, the signs of $y-1$ and $C-1$ agree. Thus, $y=1+(C-1) e^{1-\cos (t)}$.
Note: In this case the constant solution has the same form.

Yet another example

Find the general solution to the differential equation $y^{\prime}=t y+1$

No elementary solution!

The method of separation of variables does not apply as the function $t y+1$ cannot be written as the product of a function of y by a function of t.

Scholium: Using Taylor series expansions (a topic which we shall discuss next month), one can compute an expression for solutions to the equation $y^{\prime}=t y+1$.

Another Example

Find the general solution to the equation

$$
y^{\prime}=\frac{\sec ^{2} t}{y+1}
$$

Solution

There are no constant solutions as $\frac{1}{x+1}$ is never zero. Note, however, that we cannot have $y(t)=-1$ as the differential equation would require y to be nondifferentiable at such a point.

As before, we set $C=y(0)$. Multiplying by $y+1$ and integrating, we find

$$
\begin{aligned}
\tan (T) & \left.=\int_{0}^{T} \sec ^{(} t\right) d t \\
& =\int_{0}^{T}(y(t)+1) y^{\prime}(t) d t \\
& =\int_{C}^{y(T)}(y+1) d y \\
& =\frac{1}{2} y(T)^{2}+y(T)-\frac{1}{2} C^{2}-C
\end{aligned}
$$

Solution, continued

So, y satisfies the equation

$$
y^{2}+2 y-C^{2}-2 C-2 \tan (t)=0
$$

From the quadratic formula, we compute that

$$
\begin{aligned}
y & =\frac{-2 \pm \sqrt{2^{2}-4\left(-C^{2}-2 C-2 \tan (t)\right)}}{2} \\
& =-1 \pm \sqrt{1+C^{2}+2 C+2 \tan (t)} \\
& =-1 \pm \sqrt{(C+1)^{2}+2 \tan (t)}
\end{aligned}
$$

Undefined solutions, multiple solutions

- For each choice of $C \neq-1$, we found two solutions to the initial value problem $y^{\prime}=\frac{\sec ^{2}(t)}{y+1}$, namely
$y=-1+\sqrt{(C+1)^{2}+2 \tan (t)}$ and
$y=-1-\sqrt{(C+1)^{2}+2 \tan (t)}$. However, only $y=-1+\sqrt{(C+1)^{2}+2 \tan (t)}$ satisfies $y(0)=C$.
- Strictly speaking, there is no solution with $y(0)=-1$, but there is a solution having $\lim _{t \rightarrow O^{+}} y(t)=-1$.
- No solution to the differential equation is defined for all values of t. If $t \ll 0$ so that $\tan (t)<\frac{-(C+1)^{2}}{2}$, then $\sqrt{(C+1)^{2}+2 \tan (t)}$ is not a real number.

Another Example

Find a function y satisfying $y(0)=5$ and $y^{\prime}=\frac{t}{e^{y}}$.

Solution

As the exponential function never attains the value zero, there are no constant solutions to this differential equation. Multiplying both sides of the equation by e^{y} and integrating, we obtain:

$$
\begin{aligned}
\frac{1}{2} T^{2} & =\int_{0}^{T} t d t \\
& =\int_{0}^{T} e^{y(t)} y^{\prime}(t) d y \\
& =\int_{5}^{y(T)} e^{y} d y \\
& =e^{y(T)}-e^{5}
\end{aligned}
$$

Solution, continued

Addding e^{5} to both sides of this equation and taking the natural logarithm, we compute

$$
\begin{aligned}
y & =\ln \left(e^{y}\right) \\
& =\ln \left(e^{5}+\frac{1}{2} t^{2}\right)
\end{aligned}
$$

