Section 9.6: Improper integrals

We have considered only integrals of the form $\int_a^b f(x)dx$ where $a \leq b$ are real numbers and f is a function which is defined and continuous on the interval $[a, b] := \{x \mid a \leq x \leq b\}.$

Sometimes, it makes sense to consider integrals over infinite intervals and for functions that are discontinuous or not necessarily defined at every point in the interval.

1

Example

 $\mathbf{2}$

What sense can we make of $\int_0^\infty e^{-x} dx$?

A solution

The function $f(x) = e^{-x}$ is positive for every value of x. Thus, $\int_0^\infty e^{-x} dx \text{ ought}$ to be the area of the region bounded by the graph of $y = e^{-x}$, the y-axis, and the x-axis.

This region is eventually covered by the regions bounded by $y = e^{-x}$, the *y*-axis, *x*-axis, and the line x = r for *r* a sufficiently large real number.

In this case, $\int_0^\infty e^{-x} dx = \lim_{r \to \infty} \int_0^r e^{-x} dx = \lim_{r \to \infty} [-e^{-x}|_0^r] = \lim_{r \to \infty} [-e^{-r} + 1] = 1.$

3

Integration over infinite intervals

If a is a real number and f is a function which is continuous on the interval $[a, \infty) = \{x \mid a \leq x\}$, then we define $\int_a^\infty f(x)dx = \lim_{r \to \infty} \int_a^r f(x)dx$.

4

Nota Bene: This limit might not exist!

5

Solution

$$\int_0^\infty \sin(x) dx = \lim_{r \to \infty} -\cos(x) |_0^r$$
$$= \lim_{r \to \infty} (-\cos(r) + \cos(0))$$
$$= 1 - \lim_{r \to \infty} \cos(r)$$

This limit does not exist! For each value of r, there are s and t bigger than r with $\cos(s) = 1$ and $\cos(t) = -1$ (take s to be an even multiple of π and t an odd multiple of π).

 $\overline{7}$

Solution $\int_{1}^{\infty} \frac{dx}{x} = \lim_{r \to \infty} [\ln(x)|_{1}^{r}]$ $= \lim_{r \to \infty} [\ln(r) - \ln(1)]$ $= \lim_{r \to \infty} \ln(r)$ $= \infty$

9

Compute $\int_2^\infty \frac{dx}{x(\ln(x))^2}$.

Solution

Via the change of variables $u = \ln(x)$ (with $du = \frac{dx}{x}$), we see that

$$\int \frac{dx}{x(\ln(x))^2} = \int u^{-2} du$$
$$= \frac{-1}{u} + C$$
$$= \frac{-1}{\ln(x)} + C$$

Solution, continued

Thus,

$$\int_{2}^{\infty} \frac{dx}{x(\ln(x))^{2}} = \lim_{r \to \infty} \int_{2}^{r} \frac{dx}{x(\ln(x))^{2}}$$
$$= \lim_{r \to \infty} \frac{-1}{\ln(x)} \Big|_{2}^{r}$$
$$= \lim_{r \to \infty} \left(\frac{-1}{\ln(r)} - \frac{-1}{\ln(2)}\right)$$
$$= \frac{1}{\ln(2)}$$

11

Integrals over the real line

Analogously to integrals of the form $\int_a^{\infty} f(x)dx$, we define $\int_{-\infty}^a f(x)dx := \lim_{r \to -\infty} \int_r^a f(x)dx$. If this limit does not exist, then we say that the integral is undefined. We define $\int_{-\infty}^{\infty} f(x)dx := \int_{-\infty}^0 f(x)dx + \int_0^{\infty} f(x)dx$.

A warning

Nota Bene: There are *two* separate limits involved in the definition of $\int_{-\infty}^{\infty} f(x) dx$. Namely,

$$\int_{-\infty}^{\infty} f(x)dx = (\lim_{r \to -\infty} \int_{r}^{0} f(x)dx) + (\lim_{s \to \infty} \int_{0}^{s} f(x)dx)$$

If the limits defining $\int_{-\infty}^{\infty} f(x) dx$ exist, then

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{r \to \infty} \int_{-r}^{r} f(x)dx$$

However, the limit on the righthand side of this equation may exist without $\int_{-\infty}^{\infty} f(x) dx$ being defined.

13

Compute $\int -\infty^{\infty} x dx$.

Solution $\begin{aligned} \int_{0}^{\infty} x dx &= \lim_{r \to \infty} \int_{0}^{r} x dx \\ &= \lim_{r \to \infty} [\frac{1}{2}x^{2}|_{0}^{r}] \\ &= \lim_{r \to \infty} \frac{1}{2}r^{2} \\ & \text{``='' } \infty \end{aligned}$ That is, the limit does not exist. Therefore, $\int_{-\infty}^{\infty} x dx$ is undefined. However, $\lim_{r \to \infty} \int_{-r}^{r} x dx = \lim_{r \to \infty} [\frac{1}{2}x^{2}|_{-r}^{r}] = \lim_{r \to \infty} [\frac{1}{2}r^{2} - \frac{1}{2}(-r)^{2}] = 0.$

15

Vertical asymptotes

If f(x) is continuous for $a < x \le b$, then we define $\int_a^b f(x)dx := \lim_{r \to a} \int_r^b f(x)dx$. When f is continuous at a as well, then this definition agrees with the old definition.

