Chapter 9: Integration Techniques Section 9.1: Integrations by Substitution

Perform the following indefinite integration.

$$\int x\sqrt{x^2+1}dx$$

.

Answer

$$\int x\sqrt{x^2+1}dx = \frac{1}{3}(x^2+1)^{\frac{3}{2}} + C$$

Chain Rule Recalled

$$\frac{d}{dx}(f(g(x))) = \frac{df}{du}|_{u=g(x)}\frac{dg}{dx}$$

3

Inverting the Chain Rule: Integration by Substitution

$$\int f'(g(x))g'(x)dx = f(g(x)) + C$$

Formalism of Integration by Substitution

Often, one writes the substitution as u = g(x) and du = g'(x)dx and attempts to write the integrand as f(u)du = f(g(x))g'(x)dx. One is then charged with integrating $\int f(u)du = F(u) + C$. We conclude that

$$\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C = F(g(x)) + C.$$

5

An integral revisited

Making the substitution $u = x^2 + 1$, so that du = 2xdx we have

$$\int x\sqrt{x^2+1}dx = \frac{1}{2}\int \sqrt{u}du$$

Writing $\sqrt{u} = u^{\frac{1}{2}}$, we find

$$\int \sqrt{u}du = \frac{2}{3}u^{\frac{3}{2}} + C$$

Thus,

$$\int x\sqrt{x^2+1}dx = \frac{1}{3}(x^2+1)^{\frac{3}{2}} + \widetilde{C}$$

Example

Integrate:

$$\int xe^{x^2}dx$$

,

Solution

Set $u = x^2$. Then du = 2xdx.

$$\int xe^{x^2}dx = \frac{1}{2} \int e^{x^2}(2x)dx$$
$$= \frac{1}{2} \int e^u du$$
$$= \frac{1}{2}e^u + C$$
$$= \frac{1}{2}e^{x^2} + C$$

Another Example

Integrate

$$\int \sin(x)\cos(x)dx$$

9

Solution

Set $u = \sin(x)$ so that $du = \cos(x)dx$.

$$\int \sin(x)\cos(x)dx = \int udu$$
$$= \frac{1}{2}u^2 + C$$
$$= \frac{1}{2}\sin^2(x) + C$$

A third example

Integrate

$$\int \frac{\sqrt{\ln(x)}}{x} dx$$

11

Solution

Set $u = \ln(x)$ so that $du = \frac{1}{x}dx$.

$$\int \frac{\sqrt{\ln(x)}}{x} dx = \int \sqrt{u} du$$

$$= \int u^{\frac{1}{2}} du$$

$$= \frac{2}{3} u^{\frac{3}{2}} + C$$

$$= \frac{2}{3} (\ln(x))^{\frac{3}{2}} + C$$

A final example

Integrate

$$\int \frac{\sin(x)}{\cos^3(x)} dx$$

13

Solution

Set $u = \tan(x)$. Then $du = \sec^2(x)dx$.

$$\int \frac{\sin(x)}{\cos^3(x)} dx = \int \tan(x) \sec^2(x) dx$$
$$= \int u du$$
$$= \frac{1}{2} u^2 + C$$
$$= \frac{1}{2} \tan^2(x) + C$$

An alternate solution

Set $v = \cos(x)$ so that $dv = -\sin(x)dx$.

$$\int \frac{\sin(x)}{\cos^3(x)} dx = -\int v^{-3} du$$
$$= \frac{1}{2} v^{-2} + C'$$
$$= \frac{1}{2} \sec^2(x) + C'$$

15

Error?

Why are these answers different?

Answer

$$\tan^2(x) + 1 = \sec^2(x)$$

So,
$$C = \frac{1}{2} + C'$$
.