Math 16B — S06 — Supplementary Notes 6
Error Estimate for Approximation by Taylor Polynomials

Recall that the n® Taylor polynomial for the function f(z) at the point z = a is the polynomial

’ f"(a) 2 f9(a)
f(a)+f(a)($—a)+T(a?—@) +3

It is the unique polynomial of degree at most n that agrees with f at the point a and whose first n
derivatives agree with those of f at the point a. With the summation notation it can be rewritten

as n *)
Zf kfa)(x_a)k7
k=0 '

with the conventions f(® = f and 0! = 1.

The n'* Taylor polynomial for f at a not only agrees with f at a, also its rate of change at a
agrees with that of f, and the same is true for the rates of change of the first n — 1 derivatives. It
is thus reasonable to expect that the Taylor polynomial will approximate f closely for x near a. To
quantify this expectation one needs an estimate for the error in the approximation.

The difference between f and its n'® Taylor polynomial at a is given by
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This is the error in the approximation. Often it is referred to as the remainder in the n'* Taylor
approximation. How can we obtain a useful estimate of the size of R,(x,a)?
The simplest case is the case n = 0, 0"-order Taylor approximation. In this case we are
approximating f by the constant function f(a), ridiculous perhaps, but nevertheless indicative of
the general case. We have

(x—a)®+-- +

Ro(z,a) = f(z) — f(a) = / " p)

If M as an upper bound of |f'(t)| for ¢ between a and x, then the preceding integral has absolute
value at most M|x — al, i.e., |Ro(z,a)| < M|z — a|. As we shall see, a similar estimate holds in the
general case.

Let’s look at the next simplest case, the case n = 1, 1%-order (i.e., linear) approximation. We
have

Ri(z,a) = f(z) = f(a) — f'(a)(z — a).
We now do something clever: instead of keeping the center of approximation a fixed, we let it be
variable. We introduce the function

Ry(z,t) = f(z) = f(t) = f'()(z — 1)
of the two variables  and t. We differentiate R(z,t) with respect to t:
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! a /
5 = T -5 (ft)@—1)

ot
= =S = (O —t)+ f1(t) = —f"({t)(z —1).

Now we integrate with respect to t from a to x to get

Ri(2,2) — R, a) = — / £1(8)(x — )dt.



But R(z,z) =0, so

Ry(x,a) = /ﬂf () (z —t)dt

If now M is an upper bound of |f”(t)| between a and x, then the absolute value of the preceding

integral is at most
€T M _ 2
M / 2 —t|dt‘ _ %

M|z — al?
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The preceding method works in the general case to give the following result.

giving us the error estimate

|R1(ZL',CL)| S

Theorem. R,( / FO @) (@ — t)ndt.

The preceding expression is called the integral form of the remainder in Taylor’s formula. Before
deriving it, let’s note the following consequence.

Corollary. If |f"T(t)| is bounded by M for t between a and x, then

M|z — a|™*!
< T
Rn(@,a) < (n+1)!

In fact, if M is an upper bound for |f("*1(¢)| for ¢ in the interval with endpoints a and x, then
the integral in the expression for R, (z,t) is in absolute value no larger than

/\x tndt| = Mz —a"™
n+1

To derive the integral formula for the remainder, we look at the function

1) F9)
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5 (x —t) —T(x—t) — =

n!

(1) Ru(z,t) = f(z) = f(t) = f(t)(x —t) - (x —t)"

of the two variables x and t. We take the partial derivative with respect to t. There are n + 2
summands on the right side of (1). The first of those is f(z), which is independent of ¢, so its
derivative with respect to ¢ is 0. The second is — f(t), whose derivative with respect to ¢ is —f'(¢).
The third is —f'(¢)(z — t), whose derivative with respect to t is —f"(t)(x — t) + f'(t). Note that
the sum of the derivatives with respect to t of the first three summands is just —f”(¢t)(x — t) (as

we found when treating the case n = 1). The fourth summand is —@(z —t)?, whose derivative

with respect to t is —@(:{: — )2+ f"(t)(x —t). The sum of the derivatives with respect to t of
f(s)(t) (I’ _ t)2
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the first four summands is thus — . This pattern repeats as we go along. The (k + 2)"¢

. f(k>(t) k . . . .
summand is —*—7= (2 — t)*, whose derivative with respect to ¢ is

(k+1) (k)
_f i <t>($—t)k+ (i _(?)!(x—t)k_l.

k!



In the derivative of the (k+ 1) summand, the second of these two terms occurs with a minus sign,
producing a cancellation. And the first of the two terms appears in the derivative of the (k + 3)"?
summand, but with the opposite sign, producing another cancellation — except for k& = n, because
the (n + 2)" summand is the last. Adding everything together, we get

ORy(z,t) _ fU () (@ —t)"

ot n!

Integration now gives
1 x
R.(z,x) — Ry(z,a) = ——/ FO @) (@ — t)ndt,

n! J,

which yields the expression in the theorem since R(x,z) = 0.
The following examples illustrate use of the corollary in estimating errors.

Example 1. f(z) = cosz, a = 0.
The first six Taylor polynomials of cosz at the origin are

po(z) = pi(z)=1

x
p2(r) = P3($)=1—§

2 xt

pa(z) —ps(z) = 1—3—1—%.

All derivatives of cosx are bounded in absolute value by 1, so in the corollary we can take M =1

to get, for example
2 ol 260 ||
|Rs(x,0)| = |cosz ( 5 —1—24)‘ <

When x is small the error is quite small. For instance,

1 1
- < —— < .000022
‘R"’ (2’())‘ = 46080 — ’

from which we get
1 1/2)? 1/2)*
1—</)+</)z.87760,

sy~ 2 24

with an error of at most .000022.

Example 2. f(z) =€, a=0.

For x < 0 the derivative of ¢* (which is e*) is positive and bounded by 1, so, by the corollary,
| x|n+1
(n+ 1)V
How large must we take n to guarantee that R,,(—1,0) is at most .0001 in absolute value? We must

have ﬁ < .0001, i.e., (n+1)! > 10,000. The smallest such n is 7 (7! = 5,760, 8! = 40320). The

7th Taylor polynomial of e? is

x < 0.

R,(x,0) <

2 (L’3 ZL’4 (L’S ZE6 l’7

T
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Setting x = —1, then, we see that the number

1 1—1—1 1+1 1—1—1 1’V367857
2 31 4 5 6 T

is within 1/40320 =~ .000025 of 1/e.

Example 3. f(z) =14z, a=0.

Let’s use the fourth Taylor polynomial at the origin to get an estimate for \/3/2. We have

Fla) = S0+ F0) =
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From this one finds that the fourth Taylor polynomial at the origin is given by
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Our approximation to 1/3/2 is thus
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To obtain an error estimate we note that

105
(5) -1 —9/2

which is bounded by 105/32 for > 0. By the corollary,

Our approximate value for 1/3/2 is accurate to within .00086.




