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Error Estimate for Approximation by Taylor Polynomials

Recall that the nth Taylor polynomial for the function f(x) at the point x = a is the polynomial

f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

It is the unique polynomial of degree at most n that agrees with f at the point a and whose first n
derivatives agree with those of f at the point a. With the summation notation it can be rewritten
as

n∑
k=0

f (k)(a)

k!
(x− a)k,

with the conventions f (0) = f and 0! = 1.
The nth Taylor polynomial for f at a not only agrees with f at a, also its rate of change at a

agrees with that of f , and the same is true for the rates of change of the first n− 1 derivatives. It
is thus reasonable to expect that the Taylor polynomial will approximate f closely for x near a. To
quantify this expectation one needs an estimate for the error in the approximation.

The difference between f and its nth Taylor polynomial at a is given by

Rn(x, a) = f(x)− f(a)− f ′(a)(x− a)− f ′′(a)

2
(x− a)2 − f (3)(a)

3!
(x− a)3 − · · · − f (n)(a)

n!
(x− a)n.

This is the error in the approximation. Often it is referred to as the remainder in the nth Taylor
approximation. How can we obtain a useful estimate of the size of Rn(x, a)?

The simplest case is the case n = 0, 0th-order Taylor approximation. In this case we are
approximating f by the constant function f(a), ridiculous perhaps, but nevertheless indicative of
the general case. We have

R0(x, a) = f(x)− f(a) =

∫ x

a

f ′(t)dt.

If M as an upper bound of |f ′(t)| for t between a and x, then the preceding integral has absolute
value at most M |x− a|, i.e., |R0(x, a)| ≤ M |x− a|. As we shall see, a similar estimate holds in the
general case.

Let’s look at the next simplest case, the case n = 1, 1st-order (i.e., linear) approximation. We
have

R1(x, a) = f(x)− f(a)− f ′(a)(x− a).

We now do something clever: instead of keeping the center of approximation a fixed, we let it be
variable. We introduce the function

R1(x, t) = f(x)− f(t)− f ′(t)(x− t)

of the two variables x and t. We differentiate R(x, t) with respect to t:

∂R1(x, t)

∂t
= −f ′(t)− ∂

∂t
(f ′(t)(x− t))

= −f ′(t)− f ′′(t)(x− t) + f ′(t) = −f ′′(t)(x− t).

Now we integrate with respect to t from a to x to get

R1(x, x)−R1(x, a) = −
∫ x

a

f ′′(t)(x− t)dt.



But R(x, x) = 0, so

R1(x, a) =

∫ x

a

f ′′(t)(x− t)dt.

If now M is an upper bound of |f ′′(t)| between a and x, then the absolute value of the preceding
integral is at most

M

∣∣∣∣∫ x

a

|x− t|dt

∣∣∣∣ =
M |x− a|2

2
,

giving us the error estimate

|R1(x, a)| ≤ M |x− a|2

2
.

The preceding method works in the general case to give the following result.

Theorem. Rn(x, a) =
1

n!

∫ x

a

f (n+1)(t)(x− t)ndt.

The preceding expression is called the integral form of the remainder in Taylor’s formula. Before
deriving it, let’s note the following consequence.

Corollary. If |f (n+1)(t)| is bounded by M for t between a and x, then

Rn(x, a) ≤ M |x− a|n+1

(n + 1)!
.

In fact, if M is an upper bound for |f (n+1)(t)| for t in the interval with endpoints a and x, then
the integral in the expression for Rn(x, t) is in absolute value no larger than

M

∣∣∣∣∫ x

a

|x− t|ndt

∣∣∣∣ =
M |x− a|n+1

n + 1
.

To derive the integral formula for the remainder, we look at the function

(1) Rn(x, t) = f(x)− f(t)− f ′(t)(x− t)− f ′′(t)

2
(x− t)2 − f (3)(t)

3!
(x− t)3 − · · · − f (n)(t)

n!
(x− t)n

of the two variables x and t. We take the partial derivative with respect to t. There are n + 2
summands on the right side of (1). The first of those is f(x), which is independent of t, so its
derivative with respect to t is 0. The second is −f(t), whose derivative with respect to t is −f ′(t).
The third is −f ′(t)(x − t), whose derivative with respect to t is −f ′′(t)(x − t) + f ′(t). Note that
the sum of the derivatives with respect to t of the first three summands is just −f ′′(t)(x − t) (as

we found when treating the case n = 1). The fourth summand is −f ′′(t)
2

(x − t)2, whose derivative

with respect to t is −f (3)(t)
2

(x − t)2 + f ′′(t)(x − t). The sum of the derivatives with respect to t of

the first four summands is thus −f (3)(t)
2

(x− t)2. This pattern repeats as we go along. The (k + 2)nd

summand is −f (k)(t)
k!

(x− t)k, whose derivative with respect to t is

−f (k+1)(t)

k!
(x− t)k +

f (k)(t)

(k − 1)!
(x− t)k−1.



In the derivative of the (k +1)st summand, the second of these two terms occurs with a minus sign,
producing a cancellation. And the first of the two terms appears in the derivative of the (k + 3)rd

summand, but with the opposite sign, producing another cancellation — except for k = n, because
the (n + 2)nd summand is the last. Adding everything together, we get

∂Rn(x, t)

∂t
= −f (n+1)(t)(x− t)n

n!
.

Integration now gives

Rn(x, x)−Rn(x, a) = − 1

n!

∫ x

a

f (n+1)(t)(x− t)ndt,

which yields the expression in the theorem since R(x, x) = 0.
The following examples illustrate use of the corollary in estimating errors.

Example 1. f(x) = cos x, a = 0.

The first six Taylor polynomials of cos x at the origin are

p0(x) = p1(x) = 1

p2(x) = p3(x) = 1− x2

2

p4(x)− p5(x) = 1− x2

2
+

x4

24
.

All derivatives of cos x are bounded in absolute value by 1, so in the corollary we can take M = 1
to get, for example

|R5(x, 0)| =
∣∣∣∣cos x−

(
1− x2

2
+

x4

24

)∣∣∣∣ ≤ |x|6

6!
=
|x|6

720
.

When x is small the error is quite small. For instance,∣∣∣∣R5

(
1

2
, 0

)∣∣∣∣ ≤ 1

46080
≤ .000022,

from which we get

cos
1

2
≈ 1− (1/2)2

2
+

(1/2)4

24
≈ .87760,

with an error of at most .000022.

Example 2. f(x) = ex, a = 0.

For x < 0 the derivative of ex (which is ex) is positive and bounded by 1, so, by the corollary,

Rn(x, 0) ≤ |x|n+1

(n + 1)!
, x < 0.

How large must we take n to guarantee that Rn(−1, 0) is at most .0001 in absolute value? We must
have 1

(n+1)!
< .0001, i.e., (n + 1)! > 10, 000. The smallest such n is 7 (7! = 5, 760, 8! = 40320). The

7th Taylor polynomial of ex is

1 + x +
x2

2
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
.



Setting x = −1, then, we see that the number

1− 1 +
1

2
− 1

3!
+

1

4!
− 1

5!
+

1

6!
− 1

7!
≈ .367857

is within 1/40320 ≈ .000025 of 1/e.

Example 3. f(x) =
√

1 + x, a = 0.

Let’s use the fourth Taylor polynomial at the origin to get an estimate for
√

3/2. We have

f ′(x) =
1

2
(1 + x)−1/2, f ′(0) =

1

2

f ′′(x) = −1

4
(1 + x)−3/2, f ′′(0) = −1

4

f (3)(x) =
3

8
(x + 1)−5/2, f (3)(0) =

3

8

f (4)(x) = −15

16
(1 + x)−7/2, f (4)(0) = −15

16
.

From this one finds that the fourth Taylor polynomial at the origin is given by

p4(x) = 1 +
1

2
x− 1

8
x2 +

3

48
x3 − 15

384
x4.

Our approximation to
√

3/2 is thus

p4

(
1

2

)
= 1 +

(
1

2

) (
1

2

)
− 1

8

(
1

4

)
+

3

48

(
1

8

)
− 15

384

(
1

16

)
≈ 1.22412.

To obtain an error estimate we note that

f (5)(x) =
105

32
(1 + x)−9/2,

which is bounded by 105/32 for x > 0. By the corollary,∣∣∣∣R4

(
1

2
, 0

)∣∣∣∣ ≤ 105

32

(
2−5

5!

)
< .00086.

Our approximate value for
√

3/2 is accurate to within .00086.


