
Math 16B – S06 – Supplementary Notes 5
The Differential Notation

The differential notation is a convenient formalism which, once one becomes accustomed to it,
can often provide a smooth way of carrying out integrations. The differential df(x) of the function
f(x) is by definition the formal expression f ′(x)dx. Here, the “dx” in the expression is not to be
thought of as “d” times “x”. It is rather “the differential of x,” a formal expression. Frequently
one notationally suppresses the dependence of the function f on the variable x and writes simply

(1) df = f ′dx.

In a formal sense, then, f ′ is the ratio of df by dx; you can imagine that f ′ is obtained by dividing
through by dx in (1). The differential notation is thus an adjunct to the notation df

dx
for f ′. (If you

wish, you may interpret the symbol dx on the right side of (1) as a mechanism for keeping track of
the variable x on which f depends.)

The notation goes back to G. Leibniz, one of the founders of calculus. Leibniz thought of dx as
an “infinitesimal” change in the variable x and of df as the corresponding change in the function
f . For him, the derivative f ′ was the actual ratio of the two “infinitesimals” df and dx. When
calculus was put on a rigorous basis in the 19th century the imprecise notion of an infinitesimal
was discarded, replaced by the notion of a limit (although infinitesimals can still be helpful on an
intuitive level). Leibniz’s notation, however, is still with us.

Below are some of the differentiation formulas we have learned, expressed in the language of
differentials.

d(xa) = axa−1dx

d(ex) = exdx

d(ln |x|) =
1

x
dx

d(sin x) = cos x dx

d(cos x) = − sin x dx

d(tan x) = sec2 x dx

d(sec x) = sec x tan x dx

In differential notation, the sum rule, product rule, and quotient rule for differentiation read as
follows.

d(f + g) = df + dg

d(fg) = gdf + fdg

d

(
f

g

)
=

gdf − fdg

g2
.

The chain rule requires a bit of explanation. Suppose we have a composite function f(u(x)), i.e., f
is a function of the variable u and u is a function of the variable x. We can then write df in two
different ways, namely,

(2) df = f ′(u)du = f ′(u(x))u′(x)dx.

Thus, for example,

(3) d(ex2

) = ex2

d(x2) = 2x ex2

dx.



To compare (3) with (2) think of ex2
as eu(x) where u(x) = x2, and recall that d

du
(eu) = eu.

In (2) we have been explicit about the dependencies among the variables f , u and x. Often,
to unclutter the notation, one suppresses those dependencies. For example, in place of (2) one can
write

df =
df

du
du =

df

du

du

dx
dx.

When using this shorthand notation, one must take care not to lose track of which variables depend
on which others.

The Differential Notation and Integration

The fundamental theorem of calculus, in one of its versions, reads∫
f ′(x)dx = f(x) + C.

Translated into differential notation, this becomes

(4)

∫
df = f + C.

Integration by Substitution. The method of substitution can be used when an integrand has
the form f ′(u(x))u′(x). Using the differential notation, we can write∫

f ′(u(x))u′(x)dx =

∫
df(u).

Accordingly, by (4), ∫
f ′(u(x))u′(x)dx = f(u) + C,

or, more explicitly, ∫
f ′(u(x))u′(x)dx = f(u(x)) + C.

The key to using the method lies in recognizing when a given integrand has the appropriate form.

Example 1.
∫

x ex2
dx.

We have (compare with (3))∫
x ex2

dx =
1

2

∫
ex2

d(x2) =
1

2
ex2

+ C.

Here, we have recognized that, except for the factor 1
2
, the integrand can be written as eu(x) with

u(x) = x2. We then, without writing it out explicitly, used the formula
∫

eu du = eu + C. After
a little practice one is often able to make the appropriate substitution “in one’s head,” as in this
example.

Example 2.
∫

tan x sec2 x dx.



Since d
dx

(tan x) = sec2 x, we have∫
tan x sec2 x dx =

∫
tan x d(tan x) =

tan2 x

2
+ C.

Example 3.
∫

sin x cos3 x dx.
We’ll perform this integration in two ways. First,

(5)

∫
sin x cos3 x dx = −

∫
cos3 x d(cos x) = −cos4 x

4
+ C.

On the other hand, since cos2 x = 1 − sin2 x, we have∫
sin x cos3 x dx =

∫
(sin x − sin3 x) cos x dx(6)

=

∫
(sin x − sin3 x)d(sin x) =

sin2 x

2
− sin4 x

4
+ C.

To reconcile the right sides of (5) and (6) we note that

cos4 x

4
=

(1 − sin2 x)2

4
=

1

4
− sin2 x

2
+

sin4 x

4
.

The functions − cos4 x
4

and sin2 x
2

− sin4 x
4

on the right sides of (5) and (6) thus differ by the constant
−1

4
. The right sides of (5) and (6) are accordingly equivalent, because the “C” appearing in each

expression represents an arbitrary constant. (Remember that an indefinite integration produces a
family of functions, not a single function.)

Example 4.
∫

cot x dx.
We have ∫

cot x dx =

∫
cos x

sin x
dx =

∫
1

sin x
d(sin x)

= ln| sin x| + C.

Integration by Parts. The differential version of the product rule, d(fg) = gdf + fdg, can be
rewritten as

fdg = d(fg) − gdf.

It follows that

(7)

∫
fdg = fg −

∫
gdf,

which is the formula for integration by parts. The method is useful when we want to perform the
integration

∫
fdg and already know how to perform the integration

∫
gdf . As with the method of

substitution, the key to using the method of integration by parts lies in recognizing when a given
integrand is of the appropriate form. (One must occasionally resort to trial and error.)

Example 1.
∫ ln x

x2 dx.



We have ∫
ln x

x2
dx = −

∫
ln x d

(
1

x

)
= −1

x
ln x +

∫
1

x
d(ln x)

= −1

x
ln x +

∫
1

x2
dx

= −1

x
ln x − 1

x
+ C.

Here, without being explicit, we have used (7) with f(x) = −ln x and g(x) = 1
x
.

Example 2.
∫

x2 e−x dx.
Here we integrate by parts twice:∫

x2 e−x dx = −
∫

x2 d(e−x)

= −x2 e−x +

∫
e−x d(x2)

= −x2 e−x + 2

∫
x e−x dx

= −x2 e−x − 2

∫
x d(e−x)

= −x2 e−x − 2x e−x + 2

∫
e−x dx

= −x2 e−x − 2x e−x + 2e−x + C.

Example 3.
∫

x2 cos x dx.
This is similar to the preceding example:∫

x2 cos x dx =

∫
x2 d(sin x)

= x2 sin x −
∫

sin x d(x2)

= x2 sin x − 2

∫
x sin x dx

= x2 sin x + 2

∫
x d(cos x)

= x2 sin x + 2x cos x − 2

∫
cos x dx

= x2 sin x + 2x cos x − 2 sin x + C.


