
Math 16B, Section 1 Spring 2006
Sarason

FINAL EXAMINATION SOLUTIONS

1. Evaluate the integrals:

(a) I1 =

∫∫
R

ex+ydx dy, where R is the triangle with vertices (0, 0), (1, 0), (1, 1).

(b) I2 =

∫ ∞

0

xe−x2

dx (c) I3 =

∫ π2

0

sin
√
xdx

Solution. (a) Since ex+y = exey, we have

I1 =

∫ 1

0

ex

[∫ x

0

eydy

]
dx =

∫ 1

0

ex(ey)|y=x
y=0 dx

=

∫ 1

0

ex(ex − 1)dx =

∫ 1

0

(e2x − ex)dx

=

(
1

2
e2x − ex

)∣∣∣∣1
0

=
1

2
e2 − e− 1

2
+ 1

=
1

2
e2 − e+

1

2

(b) Using the substitution u = x2, du = 2x dx, we get, for b > 0,∫ b

0

xe−x2

dx =
1

2

∫ b2

0

e−udu = −1

2
e−u

∣∣∣∣b2
0

=
1

2
(1− e−b2) −→

(b→∞)

1

2
.

Thus

I2 = lim
b→∞

∫ b

0

xe−x2

dx =
1

2

(c) We make the substitution x = u2, dx = 2du, and then integrate by parts:

I3 = 2

∫ π

0

u sinu du = −2

∫ π

0

u d(cosu)

= (−2u cosu)|π0 + 2

∫ π

0

cosu du

= 2π + (2 sinu)|π0 = 2π .

2. Let

E(a, b) =

∫∫
R

[(x− a)2 + (y − b)2]dx dy,

where R is the square with vertices (0, 0), (1, 0), (0, 1), (1, 1). For which (a, b) is E(a, b) a
minimum?



Solution. We have

E(a, b) =

∫ 1

0

[∫ 1

0

((x− a)2 + (y − b)2)dy

]
dx

=

∫ 1

0

(
y(x− a)2 +

(y − b)3

3

)∣∣∣∣y=1

y=0

dx

=

∫ 1

0

(
(x− a)2 +

(1− b)3

3
+
b3

3

)
dx

=
(x− a)3

3

∣∣∣∣1
0

+
(1− b)3

3
+
b3

3

=
(1− a)3

3
+
a3

3
+

(1− b)3

3
+
b3

3
.

Hence
∂E

∂a
= −(1− a)2 + a2 = 2a− 1,

∂E

∂b
= −(1− b)2 + b2 = 2b− 1.

We see that
(

1
2
, 1

2

)
is the unique critical point of E(a, b), hence is the minimum of E(a, b).

3. The Pauvre Suceur Gambling Accessories Manufacturing Company has a contract to produce
960,000 decks of cards. For the plant where the cards are made, the production function
f(x, y) = 12, 000x2/3y1/3 gives the number of decks that can be produced with the utilization
of x units of labor and y units of capital. Each unit of labor costs $1,000 and each unit of
capital costs $4,000.

(a) Write down the function g(x, y) giving the cost to the company when it utilizes x units
of labor and y units of capital.

(b) Determine the values of x and y that minimize the cost of producing 960,000 decks of
cards. Use Lagrange’s method and take care not to confuse the objective and constraint
functions. (You will lose points if you do confuse them.)

(c) Compare labor costs with capital costs for the minimizing values of x and y.

Solution. (a) g(x, y) = 1000x+ 4000y

(b) The problem is to minimize g(x, y) under the constraint f(x, y) = 960, 000. Using La-
grange’s method, we introduce the function

F (x, y, λ) = 1000x+ 4000y + λ(960, 000− 12, 000x2/3y1/3),

and we look for the x and y coordinates of its critical points in the region x > 0, y > 0. We
have

∂F

∂x
= 1000− 8000λx−1/3y1/3

∂F

∂y
= 4000− 4000λx2/3y−2/3.

Setting ∂F
∂x

and ∂F
∂y

equal to 0 and solving for λ, we obtain

λ =
1

8
x1/3y−1/3, λ = x−2/3y2/3.



Eliminating λ, we find that x = 8y at a critical point. Substituting 8y for x in our constraint,
we obtain

960, 000 = 12, 000(8y)2/3y1/3 = 48, 000y,

giving y = 20, x = 8y = 160. We can conclude that minimum cost is achieved when 160 units
of labor and 20 units of capital are utilized.

(c) We have
labor costs

capital costs
=

(160)(1000)

(20)(4000)
= 2.

4. (a) Find the general solution of the differential equation

2yy′ = −(y2 − 1)2.

(b) Find the solution satisfying the initial condition y(1) = −2.

(c) Find the solution satisfying the initial condition y(1) = −1.

Solution. (a) We see by inspection that there are two constant solutions, y = 1 and y = −1.

The equation is separable. We can rewrite it as

− 2yy′

(y2 − 1)2
= 1,

or, in differential notation, as

− 2y

(y2 − 1)2
dy = dt.

Integrating, we get

−
∫

2y

(y2 − 1)2
dy =

∫
dt = t+ C.

To perform the integration on the left side, we make the substitution u = y2 − 1, du = 2ydy:

−
∫

2y

(y2 − 1)2
dy = −

∫
1

u2
du =

1

u
=

1

y2 − 1
.

(We can ignore the constant of integration here, because it can be incorporated into the
constant C on the right side of the equality.) We get

1

y2 − 1
= t+ C,

y = ±
√

1 +
1

t+ C
,

which together with the constant solutions y = 1, y = −1, gives the general solution of the
equation.

(b) If y(1) = −2 then the minus sign in the preceding expression will be in effect. We obtain

−2 = −
√

1 +
1

1 + C

4 = 1 +
1

1 + C

C = −2

3
.



The solution satisfying y(1) = −2 is

y = −
√

1 +
1

t− 2
3

.

(c) If y(1) = −1, then y is the constant function y = −1.

5. Bianca Confucion takes out a $500,000 mortgage to buy a hovel near the Berkeley campus.
The yearly interest rate is 5%, compounded continuously, and yearly payments are $35,000,
applied continuously.

(a) Set up a differential equation satisfied by the unpaid amount P (t) of the mortgage at
time t (with t measured in years).

(b) Find the general solution of the differential equation.

(c) Find the solution satisfying the initial condition P (0) = 500, 000.

(d) Determine how long it will take Bianca to repay the loan in full. (You will need to use
the logarithm table on the cover sheet.)

Solution. (a) P ′ = .05P − 35, 000.

(b) The equation is linear. In standard form it becomes

P ′ − .05P = −35, 000.

Multiplying by the integrating factor e−.05t and integrating, we obtain

e−.05tP = −
∫

35, 000e−.05tdt

=
−35, 000e−.05t

−.05
+ C

= 700, 000e−.05t + C.

Thus our general solution is
P = 700, 000 + Ce.05t.

(c) If P (0) = 500, 000 then C = −200, 000, and our solution becomes

P = 700, 000− 200, 000e.05t.

(d) If t0 is the time at which the loan becomes fully repaid, then P (t0) = 0, so

e.05t0 =
7

2
,

t0 =
ln 7

2

.05
=

ln 7− ln 2

.05

=
1.9459− .6931

.05
(from the table)

= (20)(1.2528) = 25.056 years

CORRECTION. On the cover sheet of the exam, an incorrect value (.6391) is given for ln
2. In the solution of part (d) of question 5 the correct value (.6931) is used.



6. (a) Find the third Taylor polynomial p3(x) at x = 1 for the function f(x) =
√
x.

(b) Use the result from (a) to estimate
√

1.2. Express your answer in decimal form.

(c) Use the remainder estimate to get a bound on the error in the approximation obtained in
part (b). Again, express your answer in decimal form.

Solution. (a) We have

f(x) = x1/2, f ′(x) =
1

2
x−1/2, f ′′(x) = −1

4
x−3/2, f (3)(x) =

3

8
x−5/2

f(1) = 1, f ′(1) =
1

2
, f ′′(1) = −1

4
, f (3)(1) =

3

8
.

We obtain

p3(x) = 1 +
1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3.

(b)

√
1.2 ≈ p3(1.2) = 1 +

1

2
(.2)− 1

8
(.2)2 +

1

16
(.2)3

= 1 + .1− 1

8
(.04) +

1

16
(.008)

= 1 + .1− .005 + .0005 = 1.0955 .

(c) We have f (4)(x) = −15
16
x−7/2, which in absolute value is at most 15

16
for x ≥ 1. By the

remainder estimate, the error in the approximation from (b) is bounded by

15
16

(.2)4

4!
=

15(.0016)

(16)(4)(3)(2)
=

5(.0001)

8

= (.625)(.0001) = .0000625 .

7. For a continuous random variableX with probability density function f(x) = sin 2x, 0 ≤ x ≤ π

2
,

compute the expected value E(X) and the variance Var(X).

Solution. We use integration by parts to perform the required integrations:

E(X) =

∫ π/2

0

x sin 2x dx = −1

2

∫ π/2

0

x d(cos 2x)

= −1

2
x cos 2x

∣∣∣∣π/2

0

+
1

2

∫ π/2

0

cos 2x dx

=
π

4
+

1

4
sin 2x

∣∣∣∣π/2

0

=
π

4



E(X2) =

∫ π/2

0

x2 sin 2x dx = −1

2

∫ π/2

0

x2 d(cos 2x)

= −1

2
x2 cos 2x

∣∣∣∣π/2

0

+
1

2

∫ π/2

0

cos 2x d(x2)

=
π2

8
+

∫ π/2

0

x cos 2x dx

=
π2

8
+

1

2

∫ π/2

0

x d(sin 2x)

=
π2

8
+

1

2
x sin 2x

∣∣∣∣π/2

0

− 1

2

∫ π/2

0

sin 2x dx

=
π2

8
+

1

4
cos 2x

∣∣∣∣π/2

0

=
π2

8
− 1

4
− 1

4

=
π2

8
− 1

2

Var(x) = E(X2)− E(X)2 =
π2

8
− 1

2
− π2

16

=
π2

16
− 1

2

8. Suppose the possible values of the discrete random variable X range over the nonnegative
integers, and the associated probabilities are given by pn = Pr(X = n) = 6n/7n+1 (n =
0, 1, 2, . . . ). Compute Pr(X is even).

Solution. We have

Pr(X is even) =
∞∑

n=0

p2n =
∞∑

n=0

62n

72n+1
.

The infinite series on the right side is a geometric series with initial term 1/7 and ratio 62/72.
Thus

Pr(X is even) =
1/7

1− 36
49

=
7

13
.

9. (a) Derive the formula∫ b

a

x2e−x2/2dx =

∫ b

a

e−x2/2dx+ ae−a2/2 − be−b2/2.

(b) Let X be a standard normal random variable, i.e., a continuous random variable whose

density function is the function ψ(x) =
1√
2π
e−x2/2, −∞ < x <∞. Use the result from (a) to

show that Var(X) = 1.



Solution. (a) We integrate by parts:∫ b

a

x2e−x2/2dx = −
∫ b

a

x d(e−x2/2)

= −x e−x2/2
∣∣∣b
a
+

∫ b

a

e−x2/2dx

= −be−b2/2 + ae−a2/2 +

∫ b

a

e−x2/2dx.

(b) Since E(X) = 0 (xψ(x) being an odd function), Var(X) = E(X2). For b > 0 we obtain,
by (a), ∫ b

−b

x2 ψ(x)dx =
1√
2π

∫ b

−b

x2e−x2/2dx

=
1√
2π

∫ b

−b

e−x2/2dx− 2be−b2/2

√
2π

=

∫ b

−b

ψ(x)dx− 2be−b2/2

√
2π

.

As b → ∞, the first summand on the right side tends to 1 (since ψ is a probability density
function) and the second summand tends to 0, giving the desired conclusion:

1 =

∫ ∞

−∞
x2ψ(x)dx = Var(X).


