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In this paper we construct two groupoids from morphisms of groupoids, with one from
a categorical viewpoint and the other from a geometric viewpoint. We show that for
each pair of groupoids, the two kinds of groupoids of morphisms are equivalent. Then
we study the automorphism groupoid of a groupoid.
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1. Introduction

In this paper we study morphisms and automorphisms of groupoids. Our motivation comes from the study of maps
between orbifolds and group actions on orbifolds. It is well-known that an orbifold can be considered as a Morita
equivalence class of proper étale Lie groupoids (cf. [1]). Hence, among various definitions for morphisms between orbifold
groupoids, it turns out that the orbifold homomorphism (cf. [1]) is most adapted to the purpose of understanding
maps between orbifolds. The orbifold homomorphism is the motivation of the morphism we consider in this paper
(cf. Definition 3.1). Furthermore, motivated by the study of the space of the orbifold homomorphisms in orbifold
Gromov–Witten theory [4,5], it is important to build up a groupoid structure for morphisms of groupoids. This is the
main issue we deal with in this paper.

We now outline our approach.

1.1. Morphism groupoids

Given a pair of groupoids G and H, by a morphism (cf. Definition 3.1) we mean a pair of strict morphisms

G K
ψ
←← u →→ H (1.1)

with ψ being an equivalence of groupoids. We denote the morphism by (ψ,K, u) : G⇀ H.
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An arrow between two such morphisms is captured by the following diagram, with α being a natural transformation
for the diagram on the right:

G K1 ×G K2

K1

K2

H.⇓ α

ψ1

ψ2

u1

u2

π1

π2

(1.2)

We denote the arrow by (ψ1,K1, u1)
α
−→ (ψ1,K2, u2).

We define the (vertical) composition of arrows in Section 3.1 (cf. Construction 3.3). The main ingredient in the
construction is the fiber product of groupoids. Then we get a groupoid of morphisms (cf. Theorem 3.7)

Mor(G,H) = (Mor1(G,H) ⇒ Mor0(G,H)).

In Section 3.2, we replace the fiber product by strict fiber product (cf. Definition 2.10) to simplify the constructions. For
this purpose, we focus on full-morphisms (a morphism (ψ,K, u) is called a full-morphism if ψ0 is surjective). With the
same procedure as in Section 3.1, we get a groupoid of full-morphisms (cf. Theorem 3.14)

FMor(G,H) = (FMor1(G,H) ⇒ FMor0(G,H)).

We show in Theorem 3.15 that there is a natural equivalence of groupoids i : FMor(G,H)→ Mor(G,H).
In Section 4, we consider the composition functors:

◦ : Mor(G,H)×Mor(H,N)→ Mor(G,N), and ◦̃ : FMor(G,H)× FMor(H,N)→ FMor(G,N).

For instance, the composition of (ψ,K, u) : G⇀ H and (φ, L, v) : H⇀ N, denoted by (φ, L, v) ◦ (ψ,K, u), is given by

G K×H L
ψ◦π1←←

v◦π1 →→ N.

Furthermore, we study the horizontal composition of arrows in (1.2) to get the functor ◦. We show that these
compositions are associative (modulo certain canonical isomorphisms).

As an application, we study the automorphisms of G in Section 5. An automorphism of G is defined as a morphism
(ψ,K, u) : G⇀ G, such that after composing with another morphism (φ, L, v) : G⇀ G there are arrows

(ψ,K, u) ◦ (φ, L, v)
α
−→ 1G, and (φ, L, v) ◦ (ψ,K, u)

β
−→ 1G,

where

1G = (idG,G, idG) : G G
idG←←

idG →→ G .

Denote by Aut0(G) the set of all automorphisms of G. We restrictMor(G,G) to Aut0(G) to get a groupoid of automorphisms
Aut(G) of G. We show that the coarse space |Aut(G)| is a group, and the automorphism groupoid Aut(G) is a K(G)-gerbe
over |Aut(G)| (cf. Theorem 5.6). As an application we introduce a definition of group action on a groupoid G with trivial
K(G) (see Definition 5.9).

1.2. Relation with other literatures

Moderijk–Pronk [12] found the relation between effective (or reduced) orbifolds and effective orbifold groupoids, that
is an orbifold corresponds to a Morita equivalence class of effective orbifold groupoids. So there are two ways to study
effective orbifolds, one by effective orbifold groupoids, the other one by orbifold charts/atlases. See also for example [1,8]
the relation between orbifold atlases and orbifold groupoids. As the category of manifolds people also want to get a
category of orbifolds. However, it turns out that 2-category and bicategory appear naturally.

On the groupoid side, there is a 2-category 2Gpd of groupoids (or topological groupoids, or Lie groupoids or etc.),
with morphism categories consisting of strict morphisms and natural transformations. Pronk [14] proposed a method,
called right bicalculus of fractions, to construct a new bicategory A[W−1] out of a bicategory A from a collection W
of morphisms in A that satisfies various axioms. By applying right bicalculus of fractions to 2Gpd with W being the
collection of all equivalences of groupoids, one could get a bicategory 2Gpd[W−1] of groupoids. Tommasini revisited this
construction in [19] and constructed a bicategory of effective orbifold groupoids with W consisting of equivalence of
effective orbifold groupoids in [18]. The 1-morphisms in the resulting bicategory correspond to our morphisms (1.1).
In a bicategory obtained via right bicalculus of fractions, the compositions of 1-morphisms and 2-morphisms depend
on certain choices. In particular, although different choices for the compositions of 2-morphisms will lead to the same
bicategory when the choices for the compositions of 1-morphism are fixed, different choices for the compositions of
1-morphisms would lead to different resulting bicategories, even if they are equivalent. In this paper, we construct the



B. Chen, C.-Y. Du and R. Wang / Journal of Geometry and Physics 145 (2019) 103486 3

morphism groupoids and write down the composition functor explicitly. Hence we have explicit formulae for compositions
of 1-morphisms and 2-morphisms. On the other hand, the strict fiber product gives a more geometric way to compose
full-morphisms. This would be useful for us to assign smooth structure over the morphism groupoids when we deal
with Lie groupoids. Moreover, we also show that the (horizontal) composition functors are associative under canonical
isomorphisms between fiber products. This implies that what we get are two bicategories with morphism groupoids being
Mor(G,H) and FMor(G,H) respectively.

On the orbifold charts/atlases side, Pohl [13] studied the category of effective (or reduced) orbifolds by using local
charts/orbifold atlas, Borzellino–Brunsden [2] and Schmeding [15] studied the group of orbifold diffeomorphisms of an
orbifold, where they viewed orbifold morphisms as equivalence classes of collections of local liftings that satisfy some
certain compatible conditions, which in fact corresponds to the coarse space |Aut(G)| of our construction. There is also
a 2-category of effective orbifold atlases (cf. [6,17]), which in fact corresponds to the 2-category of effective orbifold
groupoids, a sub-category of 2Gpd. Tommasini [18] also constructed a bicategory of effective orbifold atlases by modifying
the construction of the 2-category of effective orbifold atlases, followed his construction of bicategory of effective orbifold
groupoids.

The groupoid structure over |Mor(G,H)| constructed here gives a more concrete description of orbifold morphisms and
would be useful in the study of moduli spaces of pseudo-holomorphic curves in orbifold Gromov–Witten theory. On the
other hand, non-effective orbifolds appear naturally in orbifold Gromov–Witten theory. However, there is no easy way
to describe non-effective orbifolds. It is better to study non-effective orbifolds via orbifold groupoids. Therefore we study
the morphisms between orbifolds via groupoids in this paper.

1.3. Topological and Lie groupoids

All discussions can be easily generalized to the cases of topological groupoids and Lie groupoids. For topological
groupoids, we only need to add the continuous conditions on various maps involved. For Lie groupoids we need first
add smooth conditions on various maps involved, and then replace surjective maps by surjective submersions.

When we construct FMor(G,H) we could also consider more restrictive full-morphisms. For example when we consider
topological/Lie groupoids, we could require that in every full-morphism (ψ,K, u) : G ⇀ H the ψ0

: K 0
→ G0 is an open

covering of G0, and K is the pull-back groupoid over K 0 via ψ0. Under this constraint we could make FMor(G,H) into a
topological groupoid. We discuss this issue in the Appendix.

2. Basic concepts of groupoids

For basic concepts about groupoids we refer readers to [1,9,11].

2.1. Groupoids

Let G be a small category with the set of objects denoted by G0 and the set of morphisms denoted by G1. Here G1 is
the collection of morphisms

G1
=

⨆
(a,b)∈G0×G0

G1(a, b),

where G1(a, b)1 is the set of morphisms from a to b. We call a morphism x ∈ G1(a, b) an arrow from a to b, and call a and
b to be the source and the target of α respectively. We write

a = s(x), b = t(x), and x : a→ b (or a
x
−→ b),

where s, t : G1
→ G0 are called the source map and the target map of the category G respectively. Denote the composition

of arrows2 by

· : G1(a, b)× G1(b, c)→ G1(a, c), (x, y) ↦→ x · y.

Definition 2.1. We say that G is a groupoid if

(1) for any a ∈ G0, there exists a unit 1a ∈ G1(a, a) with respect to the composition ‘‘·’’, i.e, 1a · x = x and x · 1a = x;
(2) for any x ∈ G1(a, b), there exists a unique inverse y ∈ G1(b, a) such that x · y = 1a and y · x = 1b. We denote y by

x−1.

1 In literatures on category, this is denoted by Hom(a, b). In this paper, we use this notation to emphasize the groupoid structure.
2 In this paper we use the convention that the composition of arrows of a groupoid is going from left to right, not the usual notation of

composition of maps.
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Define two maps:

• the unit map u : G0
→ G1, a ↦→ 1a;

• the inverse map i : G1
→ G1, x ↦→ x−1.

Therefore a groupoid G is a pair of sets (G0,G1) with structure maps (·, s, t, u, i). We may denote G by (G1 ⇒ G0), where
the double arrows denote the source and target maps s and t .

If we assume that G0 and G1 are topological space and the structure maps are continuous, we call G a topological
groupoid.

G1 defines an equivalence relation on G0: we say that

a ∼ b ⇐⇒ G1(a, b) ̸= ∅.

We call the quotient space G0/G1 to be the coarse space of G and denote it by |G|. The projection map from G0 to |G| is
denoted by |·| : G0

→ |G|. When G is a topological groupoid, |G| is equipped with the quotient topology.

Definition 2.2. By a strict morphism from a groupoid G = (G1 ⇒ G0) to a groupoid H = (H1 ⇒ H0), we mean a functor
from the category G to H. We denote a strict morphism by f = (f 0, f 1) with

f 0 : G0
→ H0, f 1 : G1

→ H1.

A strict morphism f : G→ H is an isomorphism if it has an inverse strict morphism.

For a groupoid G we denote by idG = (idG0 , idG1 ) : G→ G the identity strict morphism.

Definition 2.3. Let f, g : G→ H be two strict morphisms. A natural transformation from f to g, denoted by f
α
⇒ g : G→ H

or simply by f
α
⇒ g, is a natural transformation between the two functors.

A strict morphism from f : G→ H induces a map |f| : |G| → |H| on coarse spaces. If there is an f
α
⇒ g : G→ H, then

|f| = |g|.

2.2. Equivalence of groupoids

Definition 2.4. Let G and H be two groupoids. A strict morphism f : G→ H is called an equivalence if

(1) the map t ◦ proj2 : G0
×f 0,H0,s H1 proj2

−−→ H1 t
−→ H0 is surjective;

(2) the square

G1 f 1
→→

s×t
↓↓

H1

s×t
↓↓

G0
× G0 f 0×f 0

→→ H0
× H0.

is a fiber product.

Two groupoids G and H are Morita equivalent if there is a third groupoid K and two equivalences

G K
ψ
→→

φ
←← H.

Remark 2.5. We have the following two simple facts about the definition of equivalence.
(1) The first condition means that f is essentially surjective.
(2) The second condition means that f is full and faithful, that is for any a, b ∈ G0, f 1 induces a bijection

f 1 : G1(a, b)→ H1(f 0(a), f 0(b)). (2.1)

Consequently, consider three arrows x, y, z ∈ H1 with z = x · y, i.e. they fit into a commutative diagram

a x →→

z
↘↘

b

y

↓↓
c,
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and a′, b′, c ′ ∈ G0 such that f 0(a′) = a, f 0(b′) = b, f 0(c ′) = c. Then from (2.1) we get a commutative diagram in G1

a′
(f 1)−1(x)

→→

(f 1)−1(z)
↘↘

b′

(f 1)−1(y)
↓↓

c ′.

(2.2)

We state two simple facts without proofs.

Lemma 2.6. Given a natural transformation f
α
⇒ g : G→ H, if one of f and g is an equivalence then so is the other one.

Lemma 2.7. Given a pair of equivalences G
ψ
−→ H

φ
−→ N, the composition φ ◦ ψ : G→ N is also an equivalence.

In the following we use ψ, φ, ϕ, . . . to denote equivalences, and use f, g, h, u, v,w, . . . to denote general strict
morphisms.

On the other hand we have the following obvious criterion for the equivalence between a special kind of subgroupoid3
and the ambient one.

Lemma 2.8. Suppose G0
⊆ H0 and G := H|G0 is the restriction4 of H on G0. If under the map |·| : H0

→ |H| we have
|G0
| = |H0

| = |H|, then the natural inclusion i : G ↪→ H is an equivalence.

2.3. Fiber product

Let f : F→ H and g : G→ H be two strict morphisms. The fiber product F×f,H,g G (or simply F×H G) is defined to be
a groupoid as the following (cf. [1]):

1. The object space is

(F×H G)0 = F 0
×f 0,H0,s H

1
×t,H0,g0 G0

= F 0
×H0 H1

×H0 G0.

An object is a triple (a, x, b), with a ∈ F 0, b ∈ G0 and x ∈ H1(f 0(a), g0(b)). We draw it as

a x →→ b or a x

H
→→ b. (2.3)

2. Given two objects (a, x, b) and (a′, x′, b′), an arrow from (a, x, b) to (a′, x′, b′) consists of a pair of arrows (y, z) with
y ∈ F 1(a, a′), z ∈ G1(b, b′), such that x · g1(z) = f 1(y) · x′, i.e. we have the following commutative diagrams

a x →→

y
↓↓

b

z
↓↓

a′ x′ →→ b′

(2.4)

after all arrows are transferred into H1. Hence the arrow space is

(F×H G)1 = F 1
×s,F0,proj1

(
F 0
×H0 ×H1

×H0 G0)
×proj3,G0,s G

1.

Denote an arrow by (y, (a, x, b), z). The source and target maps are obvious from the diagram (2.4).
3. All other structure maps are obvious.

There are two natural strict morphisms, called projections:

π1 : F×H G→ F, (a, x, b) ↦→ a, (y, (a, x, b), z) ↦→ y,
π2 : F×H G→ G, (a, x, b) ↦→ b, (y, (a, x, b), z) ↦→ z.

It is known that f ◦ π1 and g ◦ π2 are different up to a natural transformation.
We have the following useful result, which can be verified straightforwardly.

Lemma 2.9. When g : G → H is an equivalence, π1 : F ×H G → F is an equivalence. Similarly, when f : F → H is an
equivalence, π2 : F×H G→ G is an equivalence.

3 Here we do not need the precise definition of sub-groupoid. One can think it as a subcategory. For explicit definition of subgroupoid see [9,
Definition 2.4 in Chapter 1].
4 This restriction groupoid G := H|G0 has object space G0 and morphism space

⨆
a,b∈G0 H

1(a, b) ⊆ H1 . The structure maps are inherited from H
naturally.
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2.4. Strict fiber product

In this paper we will also consider a simpler version of fiber product which we call strict fiber product. Lemma 2.13
explains that under certain conditions, we may replace fiber products by strict fiber products.

Definition 2.10. Given two strict morphisms fi : Gi = (G1
i ⇒ G0

i ) → H = (H1 ⇒ H0) for i = 1, 2, we define the strict
fiber product G1

◦

×f1,H,f2 G2 (or simply G1
◦

×H G2) as

G1
◦

×H G2 := (G1
1 ×H1 G1

2 ⇒ G0
1 ×H0 G0

2),

where

G0
1 ×H0 G0

2 = {(a, b) | f
0
1 (a) = f 02 (b) ∈ H0

}, and G1
1 ×H1 G1

2 = {(x, y) | f
1
1 (x) = f 12 (y) ∈ H1

}

are fiber products of sets.

In the following, we will sometimes also write an object in G0
1 ×H0 G0

2 in the way as (2.3). For example

a
1
f 01 (a)

H
→→ a′ ∈ G0

1 ×H0 G0
2.

There are natural strict morphisms, also called projections:

π̃1 : G1
◦

×H G2 → G1, (a, b) ↦→ a, (x, y) ↦→ x

π̃2 : G1
◦

×H G2 → G2, (a, b) ↦→ b, (x, y) ↦→ y.

It is clear that f1 ◦ π̃1 = f2 ◦ π̃2.
There is an injective strict morphism connecting these two kinds of fiber products

q = (q0, q1) : G1
◦

×H G2 → G1 ×H G2,

(a, b) ↦→ (a, 1f 01 (a), b), (2.5)

(x, y) ↦→ (x, (s(x), 1f 01 (s(x)), s(y)), y).

Set

U0
:= Im q0 ⊆ (G1 ×H G2)0.

Via q we could view G1
◦

×H G2 as a sub-groupoid of G1 ×H G2. In fact we have

Lemma 2.11. q : G1
◦

×H G2 → (G1 ×H G2)|U0 is an isomorphism.

Proof. Since both q0 and q1 are injective, we only need to show that

q1 : (G1
◦

×H G2)1((a, b), (a′, b′))→ (G1 ×H G2)1((a, 1f 01 (a), b), (a
′, 1f 01 (a′), b

′))

is surjective. Suppose we have an arrow

(x, (a, 1f 01 (a), b), y) : (a, 1f 01 (a), b)→ (a′, 1f 01 (a′), b
′) (2.6)

in (G1 ×H G2)1. Then f 11 (x) · 1f 01 (a′) = 1f 01 (a) · f
1
2 (y), i.e. f

1
1 (x) = f 12 (y). Hence we get an arrow (x, y) in G1

◦

×H G2 which is a
preimage of the arrow (2.6). □

Definition 2.12. An equivalence ψ : G→ H is called a full-equivalence if ψ0 is surjective.

Lemma 2.13. When one of f1 and f2 is a full-equivalence, q : G1
◦

×H G2 → G1 ×H G2 is an equivalence. In that case,
(G1 ×H G2)|U0 is equivalent to G1 ×H G2.

Proof. By Lemma 2.8 we only need to show that every object (a, x, b) ∈ (G1 ×H G2)0 is connected to an object in U0.
Without loss of generality, we assume that f1 is a full-equivalence. Hence f 01 is surjective.

Take a pre-image a′ of f 02 (b) under f 01 , i.e. f
0
1 (a
′) = f 02 (b). Then (a′, 1f 01 (a′), b) ∈ U0. Since x : f 01 (a)→ f 02 (b) = f 01 (a

′) and
f1 is an equivalence, we get a unique arrow (f 11 )

−1(x) : a→ a′. Then one can see that

((f 11 )
−1(x), (a, x, b), 1b) : (a, x, b)→ (a′, 1f 01 (a′), b)

is an arrow in (G1 ×H G2)1 that connects (a, x, b) with (a′, 1f 01 (a′), b) ∈ U0. □
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We also have analogues of Lemmas 2.7 and 2.9.

Lemma 2.14. Let ψ : G → H and φ : H → N both be full-equivalences. Then the composition φ ◦ ψ : G → N is also a
full-equivalence.

Lemma 2.15. When f2 is a full-equivalence, π̃1 : G1
◦

×H G2 → G1 is a full-equivalence. When f1 is a full-equivalence,
π̃2 : G1

◦

×H G2 → G2 is a full-equivalence.

2.5. Canonical isomorphisms for (strict) fiber products

Lemma 2.16. Given four strict morphisms f : H → G, g : K → G, u : K → L, and v : M → L, we have two canonical
isomorphisms and the following commutative diagram

(H
◦

×f,G,g K)
◦

×u◦π2,L,v M
∼= →→

q

↓↓

H
◦

×f,G,g◦π1 (K
◦

×u,L,v M)

q

↓↓

(H×f,G,g K)×u◦π2,L,v M
∼= →→ H×f,G,g◦π1 (K×u,L,v M).

Lemma 2.17. For a strict morphism f : G→ H, there are canonical isomorphisms H
◦

×idH,H,f G ∼= G ∼= G
◦

×f,H,idH H given by
projections.

3. Morphism groupoids

In this section for each pair (G,H) of groupoids we construct two groupoids of morphisms, Mor(G,H) and FMor(G,H).
Then we will show that these two groupoids are equivalent to each other.

3.1. Morphism groupoids via fiber products

Definition 3.1. By a morphism5 from G to H, we mean two strict morphisms in the diagram

G K
ψ
←← u →→ H

with ψ being an equivalence. We denote such a morphism by (ψ,K, u) : G⇀ H, and the set of morphisms from G to H
by Mor0(G,H).

Definition 3.2. Given two morphisms (ψ1,K1, u1) : G⇀ H and (ψ2,K2, u2) : G⇀ H, an arrow (ψ1,K1, u1)
α
→ (ψ2,K2, u2)

is a natural transformation u1 ◦ π1
α
⇒ u2 ◦ π2, i.e.

G K1 ×G K2

K1

K2

H.⇓ α

ψ1

ψ2

u1

u2

π1

π2

Denote by Mor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2)), the set of all arrows from (ψ1,K1, u1) to (ψ2,K2, u2), and by

Mor1(G,H) :=
⨆

(ψi,Ki,ui)∈Mor0(G,H), i=1,2

Mor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2))

the set of all arrows between morphisms from G to H.

In the following we will define the vertical6 composition of arrows and show that

Mor(G,H) = (Mor1(G,H) ⇒ Mor0(G,H))

is a groupoid.

5 Such a morphism between orbifold groupoids is called an orbifold homomorphism (cf. [1]).
6 We use ‘‘vertical composition’’ to distinguish it from another composition of arrows constructed in the next section. This also fits with the

terminology in 2-category/bicategory (cf. [7,10,16]).
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Given two arrows αi ∈ Mor1(G,H)((ψi,Ki, ui), (ψi+1,Ki+1, ui+1)) for i = 1, 2, the vertical composition

α1 • α2 ∈ Mor1(G,H)((ψ1,K1, u1), (ψ3,K3, u3)),

is constructed as follow.

Construction 3.3. Set K12 := K1 ×G K2, K23 := K2 ×G K3, K13 := K1 ×G K3, K12,23 := K12 ×K2 K23. We have the following
diagram

K23 K3→→

K12,23

K23

↓↓

K12,23 K13
Φ →→ K13

K3

↓↓

K2 H→→

K12

K2

↓↓

K12 K1→→ K1

H
↓↓

K13

K1→→

K12,23

K12→→

K23

K2→→

K3

H→→

↓↓ α1

↙↙ α2

↓↓ α1 • α2?
(3.1)

in which all unmarked strict morphisms are natural projections from fiber products to their factors. Objects and arrows in K12,23
are of the form

k1

a
↓↓

x →→
G
→→ k2

b
↓↓

z →→
K2
→→ k′2

c
↓↓

y
→→

G
→→ k3

d
↓↓

k̃1
x̃ →→
G
→→ k̃2

z̃ →→
K2
→→ k̃′2

ỹ
→→

G
→→ k̃3,

(3.2)

with two rows being two objects in K 0
12,23 and all four columns combine into an arrow in K 1

12,23, where

• k1, k̃1 ∈ K 0
1 , k2, k

′

2, k̃2, k̃
′

2 ∈ K 0
2 , k3, k̃3 ∈ K 0

3 , and
• a ∈ K 1

1 , b, c ∈ K 1
2 , d ∈ K 1

3 , and
• x, y, x̃, ỹ ∈ G1, z, z̃ ∈ K 1

2 , and
• ψ1

1 (a) · x̃ = x · ψ1
2 (b), b · z̃ = z · c, ψ1

2 (c) · ỹ = y · ψ1
3 (d).

The strict morphism Φ : K12,23 → K13 is given by

Φ0(k1, x, k2, z, k′2, y, k3) = (k1, x · φ1
2 (z) · y, k3),

Φ1(a, b, (k1, x, k2, z, k′2, y, k3), c, d) = (a, (k1, x · φ1
2 (z) · y, k3), d).

(3.3)

In the cube (3.1), the square with vertices {K12,23,K12,K23,K2} has a natural transformation between the two composed strict
morphisms from K12,23 to K2. By the definition of Φ and projections, the two squares with vertices {K12,23,K12,K13,K1} and
{K12,23,K23,K13,K3} are commutative. Therefore five faces of the cube (3.1) have natural transformations except the face on
the very right, which is the α1 • α2 that we will define.

The vertical composition α1 • α2 : K 0
13 → H1 is given by

α1 • α2(k1, x, k3) = α1(k1, x1, k2) · α2(k2, x2, k3) (3.4)

for some splitting of x into ψ0
1 (k1)

x1
−→ ψ0

2 (k2)
x2
−→ ψ0

3 (k3) in G1 with k2 ∈ K 0
2 and x = x1 ·x2. Therefore (k1, x1, k2, 1k2 , k2, x2, k3)

∈ K 0
12,23 and satisfies Φ0(k1, x1, k2, 1k2 , k2, x2, k3) = (k1, x, k3). It is direct to verify that this definition does not depend on the

choices of the splitting of x and (ψ1,K1, u1)
α1•α2
−−−→ (ψ3,K3, u3).

Lemma 3.4. The vertical composition ‘‘•’’ of arrows is associative.

Proof. Take three arrows αi ∈ Mor1(G,H)((ψi,Ki, ui), (ψi+1,Ki+1, ui+1)) for i = 1, 2, 3. First of all α1 •α2 : (K1 ×G K3)0 →
H1 is given by α1 • α2(k1, x, k3) = α1(k1, x1, k2) · α2(k2, x2, k3) with x = x1 · x2. Then (α1 • α2) • α3 : (K1 ×G K4)0 → H1 is
given by

(α1 • α2) • α3(k1, x, k4) = (α1 • α2)(k1, x1, k3) · α3(k3, x2, k4)
= α1(k1, x11, k2) · α2(k2, x12, k3) · α3(k3, x2, k4),

with x = x11 · x12 · x2 and x1 = x11 · x12.
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Similarly α1 • (α2 • α3) : (K1 ×G K4)0 → H1 is given by

α1 • (α2 • α3)(k1, x, k4) = α1(k1, x̃1, k̃2) · α2 • α3(k̃2, x̃2, k4)

= α1(k1, x̃1, k̃2) · α2(k̃2, x̃21, k3) · α3(k̃3, x̃22, k4).

with x = x̃1 · x̃21 · x̃22 and x̃2 = x̃21 · x̃22. We could take ki = k̃i for i = 2, 3, and x11 = x̃1, x12 = x̃21, x2 = x̃22. Therefore
(α1 • α2) • α3 = α1 • (α2 • α3). □

There are also unit arrows with respect to vertical composition.

Lemma 3.5. Given a morphism (ψ,K, u) ∈ Mor0(G,H), there is an arrow 1(ψ,K,u) that serves as the unit arrow over (ψ,K, u)
with respect to the vertical composition • in Mor1(G,H).

Proof. 1(ψ,K,u) is a natural transformation u ◦ π1 ⇒ u ◦ π2, which as a map 1(ψ,K,u) : (K×G K)0 → H1 is given by

1(ψ,K,u)(k, x, k′) := u1((ψ1)−1(x)). □ (3.5)

The inverse arrow of an arrow also exists.

Lemma 3.6. Given an arrow α ∈ Mor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2)), there is a natural induced arrow α−1 ∈

Mor1(G,H)((ψ2,K2, u2), (ψ1,K1, u1)) satisfying

α • α−1 = 1(ψ1,K1,u1), and α−1 • α = 1(ψ2,K2,u2).

We call α−1 the inverse arrow of α with respective to the vertical composition •.

Proof. By definition α is a natural transformation u1 ◦π1
α
⇒ u2 ◦π2 : K1×G K2 → H. Then we see that u2 ◦π1

α−1
⇒ u1 ◦π2 :

K2 ×G K1 → H is α−1(k2, x, k1) := α(k1, x−1, k2)−1. □

Combining Lemmas 3.4, 3.5 and 3.6 we get

Theorem 3.7. For each pair (G,H) of groupoids, Mor(G,H) is a groupoid.

3.2. Morphism groupoids via strict fiber products

Now we modify the construction in previous subsection via replacing all fiber products by strict fiber products to
construct another morphism groupoid for each pair of groupoids.

Definition 3.8. We call a morphism (ψ,K, u) : G⇀ H a full-morphism if ψ is a full-equivalence.

We denote the set of full-morphisms from G to H by FMor0(G,H). Hence FMor0(G,H) ⊆ Mor0(G,H). We could restrict
the groupoid Mor(G,H) to FMor0(G,H) to get a groupoid. Instead, we use strict fiber products to define arrows between
full-morphisms to get a new groupoid.

Definition 3.9. For any two full-morphisms (ψ1,K1, u1) : G ⇀ H and (ψ2,K2, u2) : G ⇀ H , an arrow (ψ1,K1, u1)
α
→

(ψ2,K2, u2) is a natural transformation α from the strict morphism u1 ◦ π̃1 to the strict morphism u2 ◦ π̃2 in the following
diagram

G K1
◦

×G K2

K1

K2

H⇓ α

ψ1

ψ2

u1

u2

π̃1

π̃2

where π̃i : K1
◦

×G K2 → Ki, i = 1, 2, are the projections.
Denote by FMor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2)) the set of arrows from (ψ1,K1, u1) to (ψ2,K2, u2), and set

FMor1(G,H) :=
⨆

(ψi,Ki,ui)∈FMor0(G,H), i=1,2

FMor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2))
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Given two arrows between full-morphisms αi ∈ FMor1(G,H)((ψi,Ki, ui), (ψi+1,Ki+1, ui+1)), i = 1, 2, the vertical
composition

α1 •̃α2 ∈ FMor1(G,H)((ψ1,K1, u1), (ψ3,K3, u3))

is constructed as follows.

Construction 3.10. Set K̃12 := K1
◦

×G K2, K̃23 := K2
◦

×G K3, K̃13 := K1
◦

×G K3, K̃12,23 := K12
◦

×K2 K23. We have the following
diagram

K̃23 K3→→

K̃12,23

K̃23

↓↓

K̃12,23 K̃13
Ψ →→ K̃13

K3

↓↓

K2 H→→

K̃12

K2

↓↓

K̃12 K1→→ K1

H
↓↓

K̃13

K1→→

K̃12,23

K̃12→→

K̃23

K2→→

K3

H→→

↓↓ α1

↙↙ α2

↓↓ α1 •̃α2?
(3.6)

with unmarked strict morphisms being natural projections from strict fiber products to their factors. An arrow of K̃12,23, denoted
by (a, b, (k1, k2, k2, k3), b, c), can be illustrated in the following form

k1

a
↓↓

1
ψ0
1 (k1)
→→ k2

b
↓↓

1k2 →→ k2

b
↓↓

1
ψ0
3 (k3)
→→ k3

c
↓↓

k̃1
1
ψ0
1 (k̃1)
→→ k̃2

1k̃2 →→ k̃2
1
ψ0
2 (k̃2)
→→ k̃3

(3.7)

with two rows being two objects in K̃ 0
12,23 and all four columns combine into an arrow in K̃ 1

12,23, where

• ki, k̃i ∈ K 0
i being objects of Ki for i = 1, 2, 3,

• a ∈ K 1
1 , b ∈ K 1

2 , c ∈ K 1
3 being arrows of Ki, for i = 1, 2, 3,

• ψ1
1 (a) = ψ

1
2 (b) = ψ

1
3 (c).

The strict morphism Ψ : K̃12,23 → K̃13 is given by

Ψ 0(k1, k2, k2, k3) = (k1, k3),

Ψ 1(a, b, (k1, k2, k2, k3), b, c) = (a, c).
(3.8)

Then from the definition of Ψ and natural projections we see that in the cube (3.6) the three squares with vertices
{K̃12,23, K̃12, K̃13,K1}, {K̃12,23, K̃23, K̃13,K3} and {K̃12,23, K̃12, K̃23,K2} are all commutative.

The composition α •̃β : K̃ 0
13 → G1 is given by

α •̃β(k1, k3) = α(k1, k2) · β(k2, k3) (3.9)

for a k2 ∈ K 0
2 satisfying ψ0

1 (k1) = ψ
0
2 (k2) = ψ

0
3 (k3). It is direct to verify that α •̃β is a natural transformation α •̃β : u1◦π̃1 ⇒

u3 ◦ π̃3, hence an arrow α •̃β : u1 → u3.

Similar as Lemmas 3.4, 3.5 and 3.6 we have

Lemma 3.11. The vertical composition

•̃ : FMor1(G,H)× FMor1(G,H)→ FMor1(G,H)

is associative.

Lemma 3.12. Given a full-morphism (ψ,K, u) ∈ FMor0(G,H), there is an arrow 1(ψ,K,u) that serves as the unit arrow over
(ψ,K, u) in FMor1(G,H) with respect to the vertical composition •̃, which is given by

1(ψ,K,u) : (K
◦

×G K)0 → H1, 1(ψ,K,u)(k, k′) := u1((ψ1)−1(1ψ0(k))).

Lemma 3.13. Given an arrow α ∈ FMor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2)) there is a natural induced arrow α−1 ∈
FMor1(G,H)((ψ2,K2, u2), (ψ1,K1, u1)), which is given by

α−1 : (K2
◦

×G K1)0 → H1, α−1(k2, k1) := α(k1, k2)−1.
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It satisfies

α •̃α−1 = 1(ψ1,K1,u1), and α−1 •̃α = 1(ψ2,K2,u2).

Therefore

Theorem 3.14. For each pair (G,H) of groupoids, FMor(G,H) = (FMor1(G,H) ⇒ FMor0(G,H)) is a groupoid.

3.3. Equivalence between Mor(G,H) and FMor(G,H)

We have the following equivalence of morphism groupoids.

Theorem 3.15. There is a natural strict morphism i = (i0, i1) : FMor(G,H) → Mor(G,H). Moreover it is an equivalence
between groupoids.

Proof. We first construct the i. The i0 : FMor0(G,H)→ Mor0(G,H) is the inclusion.
We next define i1. Take an arrow α ∈ FMor1(G,H)((ψ,K, u), (φ, L, v)), then α is a natural transformation

u ◦ π̃1
α
⇒ v ◦ π̃2 : K

◦

×G L→ H.

By Lemma 2.13, q : K
◦

×G L→ K×G L, is an injective equivalence. This q together with the equalities u ◦ π̃1 = u ◦ π1 ◦ q,
v ◦ π̃2 = v ◦ π2 ◦ q, gives rise to a canonically induced natural transformation

u ◦ π1
α̃
⇒ v ◦ π2 : K×ψ,G,φ L→ H

described as follows. Since q is an equivalence, for any object b ∈ (K ×G L)0, there are an object a ∈ (K
◦

×G L)0 and an
arrow x : q0(a)→ b in (K×G L)1. Then we set

α̃(b) := [(u ◦ π1)1(x)]−1 · α(a) · (v ◦ π2)1(x). (3.10)

By using the fact that α is a natural transformation, it is direct to verify that this definition of α̃ does not depend on the
choices of a and x and is a natural transformation. Then we set i1(α) = α̃.

We next show that i = (i0, i1) is a strict morphism and an equivalence. By the construction above i0(ψ,K, u)
i1(α)
−−→

i0(φ, L, v). We next show that it also preserves the vertical composition. For two arrows (ψ,K, u)
α
−→ (φ, L, v), (ψ, L, v)

β
−→

(φ,M,w) in FMor1(G,H) we have α •̃β : (K
◦

×G M)0 → H1, with

α •̃β(k,m) = α(k, l) · β(l,m)

for some l ∈ L0 satisfying φ0(l) = ψ0(k) = ϕ0(m). We next show that i1(α •̃β) = i1(α) • i1(β) : (K×G M)0 → H1.
Objects in (K×G M)0 are of the form (k, x,m) with x : ψ0(k)→ ϕ0(m) in G1. Take an arrow in (K×G M)1

(1k, (ϕ1)−1(x)) : q0(k,m′)→ (k, x,m),

where m′ satisfies φ0(m′) = ψ0(k) (see similar construction in the proof of Lemma 2.13). Then

i1(α •̃β)(k, x,m) = [(u ◦ π1)1(1k, (ϕ1)−1(x))]−1 · α •̃β(k,m′) · (w ◦ π2)1(1k, (ϕ1)−1(x))

= u1(1k) · α •̃β(k,m′) · w1((ϕ1)−1(x))

= α(k, l′) · β(l′,m′) · w1((ϕ1)−1(x))

for some l′ ∈ L0 such that ψ0(k) = φ0(l′) = ϕ0(m′).
On the other hand, for this l′, we have (k, 1ψ0(k), l′) ∈ Im q0 and (1l′ , (ϕ1)−1(x)) : (l′, 1ψ0(k),m′) → (l′, x,m) is also an

arrow in (L×G M)1. Therefore

i1(α) • i1(β)(k, x,m)

= i1(α)(k, 1ψ0(k), l
′) · i1(β)(l′, x,m)

= i1(α)(k, 1ψ0(k), l
′) · [(v ◦ π1)1(1l′ , (ϕ1)−1(x))]−1 · β(l′,m′) · (w ◦ π2)1(1l′ , (ϕ1)−1(x))

= α(k, l′) · v1(1l′ ) · β(l′,m′) · w1((ϕ1)−1(x))

= α(k, l′) · β(l′,m′) · w1((ϕ1)−1(x)).

Hence i1(α) • i1(β) = i1(α •̃β). Consequently i = (i0, i1) : FMor(G,H)→ Mor(G,H) is a strict morphism.
We next show that i is an equivalence. First of all, for every morphism (ψ,K, u) ∈ Mor0(G,H) there is another

morphism (idG ◦ π1,G×G K, u ◦ π2) ∈ Mor0(G,H). Obviously (idG ◦ π1,G×G K, u ◦ π2) is a full-morphism, hence belongs
to Im i0. We claim that there is an arrow α ∈ Mor1(G,H)((ψ,K, u), (idG ◦π1,G×G K, u ◦π2)). Now we construct the α. By
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definition α is a natural transformation u ◦ π1
α
⇒ u ◦ π2 ◦ π2 : K×G (G×G K)→ H. Set Q = (Q 1 ⇒ Q 0) := K×G (G×G K).

An object in Q 0 is of the form

k x

G
→→ (g

y

G
→→ k′)

denoted by (k, x, g, y, k′). It is mapped by u ◦ π1 and u ◦ π2 ◦ π2 respectively to u0(k), u0(k′). From (k, x, g, y, k′) we get
an arrow x · y : ψ0(k)→ ψ0(k′) in G1. Then since ψ is an equivalence we get a unique arrow (ψ1)−1(x · y) : k→ k′ in K 1.
We define

α(k, x, g, y, k′) := u1((ψ1)−1(x · y)) = u1
◦ (ψ1)−1(x) · u1

◦ (ψ1)−1(y).

Then it is direct to check that this is the arrow we want. Hence i0 is essentially surjective.
Finally we show that i is full and faithful. In fact the inverse map (i1)−1 of

i1 : FMor1(G,H)((ψ1,K1, u1), (ψ2,K2, u2))→ Mor1(G,H)(i0(ψ1,K1, u1), i0(ψ2,K2, u2))

is given by

(i1)−1(α) := α ◦ q0 : (K1
◦

×G K2)0 → (K1 ×G K2)0 → H1.

Hence i is an equivalence. □

This i : FMor(G,H)→ Mor(G,H) factors through

i : FMor(G,H)→ Mor(G,H)|FMor0(G,H)↪→ Mor(G,H).

Hence all three groupoids are equivalent.

Remark 3.16. We can give another definition of •̃ via the construction of i1 and definition of •. Suppose we have two
arrows in α, β ∈ FMor1(G,H)((ψ,K, u), (φ, L, v)), then via i1 we get two arrows

i1(α), i1(β) ∈ Mor1(G,H)((ψ,K, u), (φ, L, v)).

Then we have i1(α) • i1(β), and

α •̃β = (i1)−1(i1(α) • i1(β)) = (i1(α) • i1(β)) ◦ q0,

with q0 : K̃ 0
13,23 → K 0

13,23.
In fact, the injective strict morphism q in (2.5) from strict fiber product to fiber product together with identity strict

morphisms of K1,K2,K3,H gives us a strict morphism from the cube (3.6) to the cube (3.1), and Ψ is the composition of
Φ and q0 : K̃ 0

13,23 → K 0
13,23.

4. Composition of morphism groupoids

In this section we show that there are natural composition functors on morphism groupoids:

◦ : Mor(G,H)×Mor(H,N)→ Mor(G,N),
and ◦̃ : FMor(G,H)× FMor(H,N)→ FMor(G,N).

4.1. Composition functor ‘‘◦’’

Given two morphisms (ψ,K, u) : G⇀ H and (φ, L, v) : H⇀ N, let M := K×H L be the fiber product of u : K→ H and
φ : L→ H, let π1 : M→ K and π2 : M→ L be the corresponding projections. By Lemma 2.9, π1 is an equivalence. Hence
by Lemma 2.7, ψ ◦ π1 : M→ G is also an equivalence.

Definition 4.1. The composition of (ψ,K, u) and (φ, L, v) is defined to be

(φ, L, v) ◦ (ψ,K, u) := (ψ ◦ π1,M, v ◦ π2) : G⇀ N.

This can be summarized in the following diagram

M
π1

↙↙

π2

↘↘
G K

ψ
←← u →→ H L

φ
←← v →→ N.
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For a groupoid G, we call

1G := (idG,G, idG) : G G
idG←←

idG →→ G

the identity morphism of G. We also denote it by 1G. However it is not the unit for composition of morphisms since
G×G H ̸= H.

Now we describe the horizontal composition of arrows. Take two arrows

(ψ1,K1, u1)
α
−→ (ψ2,K2, u2) : G⇀ H, (φ1, J1, v1)

β
−→ (φ2, J2, v2) : H⇀ N.

The horizontal composition β ◦ α of α and β is an arrow

(φ1, J1, v1) ◦ (ψ1,K1, u1)
β◦α
−−→ (φ2, J2, v2) ◦ (ψ2,K2, u2) : G⇀ N.

We describe the construction.

Construction 4.2. Set K12 := K1 ×G K2, L := K1 ×H J1, J12 := J1 ×H J2, M := K2 ×H J2, and U := L ×G M. We have the
following diagram

G

K1

K12

K2

L

H

M

J1

J12

J2

N⇓ α ⇓ βU

ψ1

ψ2

π1

π2

u1

u2

π1

π1

π2

π2

φ1

φ2

π1

π2

v1

v2

π1

π2

v1◦π2

v2◦π2

(4.1)

The arrow β ◦ α we want is a natural transformation β ◦ α : v1 ◦ π2 ◦ π1 ⇒ v2 ◦ π2 ◦ π2 : U→ N. An object in U0 is of the
form

j1 k1
x←←
H

←← z →→
G
→→ k2

y
→→

H
→→ j2,

denoted by (j1, x, k1, z, k2, y, j2). We define the horizontal composition by

β ◦ α(j1, x, k1, z, k2, y, j2) := β(j1, x−1 · α(k1, z, k2) · y, j2).

It is direct to verify that this is an arrow β ◦ α : (φ1, J1, v1) ◦ (ψ1,K1, u1)→ (φ2, J2, v2) ◦ (ψ2,K2, u2).

Lemma 4.3. Combining with composition of morphisms we get a horizontal composition functor

◦ : Mor(H,N)×Mor(G,H)→ Mor(G,N).

So ‘‘◦’’ is a strict morphism of groupoids.

Proof. For i = 1, 2, take

αi : (ψi,Ki, ui)→ (ψi+1,Ki+1, ui+1) : G⇀ H

βi : (φi, Ji, vi)→ (φi+1, Ji+1, vi+1) : H⇀ N.

Then we need to show that

(β1 ◦ α1) • (β2 ◦ α2)
?
= (β1 • β2) ◦ (α1 • α2).

Note that they are both defined on the object space of

Q = (Q 1 ⇒ Q 0) := (K1 ×H J1)×G (K3 ×H J3).

We first compute (β1 ◦ α1) • (β2 ◦ α2). Take an object (j1, x, k1, z, k3, y, j3) ∈ Q 0. By definition

(β1 ◦ α1) • (β2 ◦ α2)(j1, x, k1, z, k3, y, j3)
=β1 ◦ α1(j1, x, k1, z1, k2, w, j2) · β2 ◦ α2(j2, w, k2, z2, k3, y, j3)

for some (k2, w, j2) ∈ (K2 ×H J2)0 and z = z1 · z2 in G1. Then we get

(β1 ◦ α1) • (α2 ◦ β2)(j1, x, k1, z, k3, y, j3)

=β1(j1, x−1 · α1(k1, z1, k2) · w, j2) · β2(j2, w−1 · α2(k2, z2, k3) · y, j3)
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Similarly

(β1 • β2) ◦ (α1 • α2)(j1, x, k1, z, k3, y, j3)

= β1 • β2(j1, x−1 · α1 • α2(k1, z, k3) · y, j3)

= β1 • β2(j1, x−1 · α1(k1, z1, k2) · α2(k2, z2, k3) · y, j3)

= β1(j1, x−1 · α1(k1, z1, k2) · w, j2) · β2(j2, w−1 · α1(k1, z1, k2) · y, j3),

with k2, w, j2, z1, z2 being same as those above. This finishes the proof. □

Lemma 4.4. Under the canonical isomorphism of fiber products in Lemma 2.16, the horizontal composition functor ‘‘◦’’ is
associative.

Proof. Take three arrows in Mor1 as follows:

G I12 H J12 N K12 M

I1 J1 K1

I2 J2 K2

ψ1

ψ2

π1

π2

u1

u2

φ1

φ2

π1

π2

v1

v2

ϕ1

ϕ2

π1

π2

w1

w2

⇓ α1 ⇓ α2 ⇓ α3

with I12 = I1 ×G I2, J12 = J1 ×H J2, K12 = K1 ×N K2. We first consider the compositions of (ψ1, I1, u1), (φ1, J1, v1) and
(ϕ1,K1,w1). We get two compositions

(ψ ◦ π1, I1 ×H (J1 ×N K),w ◦ π2 ◦ π2) and (ψ ◦ π1 ◦ π1, (I1 ×H J1)×N K,w ◦ π2).

Then via the canonical isomorphism I1×H(J1×NK) ∼= (I1×HJ1)×NKwe could identify them. From this natural identification
we could get a natural arrow between them. We next show that via such canonical isomorphisms of fiber products, we
can also identify (α3 ◦ α2) ◦ α1 with α3 ◦ (α2 ◦ α1).

The arrow (α3 ◦ α2) ◦ α1 is a natural transformation between strict morphisms over

A := [(I1 ×H J1)×N K1] ×G [(I2 ×H J2)×N K2]

and α3 ◦ (α2 ◦ α1) is a natural transformation between strict morphisms over

B := [I1 ×H (J1 ×N K1)] ×G [I2 ×H (J2 ×N K2)].

Under the canonical isomorphisms for fiber products given by Lemma 2.16 we get a canonical isomorphism A ∼= B. In
particular, the identification over objects is given by

(i1
x →→
H
→→

z

↓↓

G

↓↓

j1)
y
→→

N
→→ k1

(i2
x̃ →→
H
→→ j2)

ỹ
→→

N
→→ k2,

i1
x →→
H
→→

z

↓↓

G

↓↓

(j1
y
→→

N
→→ k1)

i2
x̃ →→
H
→→ (j2

ỹ
→→

N
→→ k2).

↔

We write them both as ((i1, x, j1, y, k1), z, (i2, x̃, j2, ỹ, k2)). Then by definition of horizontal composition of arrows we have

(α3 ◦ α2) ◦ α1((i1, x, j1, y, k1), z, (i2, x̃, j2, ỹ, k2)) = α3 ◦ α2(j1, y, k1, x−1 · α1(i1, z, i2) · x̃, j2, ỹ, k2)

= α3(k1, y−1 · α2(j1, x−1 · α1(i1, z, i2) · x̃, j2) · ỹ, k2),

and

α3 ◦ (α2 ◦ α1)((i1, x, j1, y, k1), z, (i2, x̃, j2, ỹ, k2)) = α3(k1, y−1 · α2 ◦ α1(i1, x, j1, z, i2, x̃, j2) · ỹ, k2)

= α3(k1, y−1 · α2(j1, x−1 · α1(i1, z, i2) · x̃, j2) · ỹ, k2).

Hence we could identify the two kinds of compositions of morphisms and arrows simultaneously via the canonical
isomorphisms of fiber products. This finishes the proof. □

4.2. Composition functor ‘‘◦̃’’

Definition 4.5. Given two full-morphisms (ψ,K, u) : G⇀ H and (φ, L, v) : H⇀ N, the composition is defined to be

(ψ,K, u) ◦̃ (φ, L, v) := (ψ ◦ π̃1,K
◦

×H L, v ◦ π̃2) : G⇀ N,
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which is summarized in the following diagram

K
◦

×H L

π̃1

↙↙

π̃2

↘↘
G K

ψ
←← u →→ H L

φ
←← v →→ N.

Now suppose we have two arrows between full-morphisms (ψ1,K1, u1)
α
−→ (ψ2,K2, u2) : G ⇀ H, (φ1, J1, v1)

β
−→

(φ2, J2, v2) : H⇀ N. The horizontal composition β ◦̃α should be an arrow

(φ1, J1, v1) ◦̃ (ψ1,K1, u1)
β ◦̃α
−−→ (φ2, J2, v2) ◦̃ (ψ2,K2, u2),

i.e. an arrow (ψ1 ◦ π̃1,K1
◦

×H J1, v1 ◦ π̃2)
β ◦̃α
−−→ (ψ2 ◦ π̃2,K2

◦

×H J2, v2 ◦ π̃2).
Unlike the horizontal composition of arrows between morphisms in previous subsection, the construction of horizontal

composition of arrows between full-morphisms is slightly subtle. We now describe the construction.

Construction 4.6. Set K̃12 := K1
◦

×G K2, L̃ := K1
◦

×H J1, J̃12 := J1
◦

×H J2, M̃ := K2
◦

×H J2, and Ũ := L
◦

×G M. We have the
following diagram (comparing with (4.1))

G

K1

K̃12

K2

L̃

H

M̃

J1

J̃12

J2

N⇓ α ⇓ βŨ

ψ1

ψ2

π̃1

π̃2

u1

u2

π̃1

π̃1

π̃2

π̃2

φ1

φ2

π̃1

π̃2

v1

v2

π̃1

π̃2

v1◦π̃2

v2◦π̃2

(4.2)

The arrow β ◦̃α we want is a natural transformation v1 ◦ π̃2 ◦ π̃1
β ◦̃α
H⇒ v2 ◦ π̃2 ◦ π̃2 : Ũ→ N. An object in Ũ0 is of the form

(k1, j1, k2, j2) with u0
1(k1) = φ0

1 (j1), u
0
2(k2) = φ0

2 (j2) in H0 and ψ0
1 (k1) = ψ0

2 (k2) in G0. It is mapped by v1 ◦ π̃2 ◦ π̃1 and
v2 ◦ π̃2 ◦ π̃2 respectively to v01(j1) and v

0
2(j2). From ψ0

1 (k1) = ψ
0
2 (k2) we see that (k1, k2) ∈ K̃ 0

12, hence we get an arrow in H1

from the arrow (ψ1,K1, u1)
α
−→ (ψ2,K2, u2)

φ0
1 (j1) = u0

1(k1)
α(k1,k2)
−−−−→ u0

2(k2) = φ
0
2 (j2).

This gives us an object

j1
α(k1,k2) →→ j2 ∈ (J1 ×φ1,H,φ2 J2)0.

Only if φ0
1 (j1) = φ

0
2 (j2) and α(k1, k2) = 1φ01 (j1) we get an object

j1
α(k1,k2) →→ j2 ∈ J̃012 = (J1

◦

×φ1,H,φ2 J2)0.

In general this is not the case. However since by Lemma 2.13, the natural strict morphism q : J̃12 → J1 ×φ1,H,φ2 J2 is an
equivalence, we could get an arrow in J̃12 as follows.

Since φ1 and φ2 are both full-equivalences, there are j1,2 ∈ J02 , and j2,1 ∈ J01 such that

φ0
1 (j2,1) = φ

0
2 (j2), and φ0

2 (j1,2) = φ
0
1 (j1).

Therefore (j1, j1,2), (j2,1, j2) ∈ J̃012. Via the equivalence φ1 ◦ π̃1, (by Lemma 2.7, φ1 ◦ π̃1 is an equivalence), these two objects in
J̃012 are mapped respectively to φ0

1 (j1) and φ
0
1 (j2,1) = φ

0
2 (j2), which are connected by α(k1, k2). Hence by Remark 2.5 there is a

unique arrow in J̃112

(j1, j1,2)
[(φ1◦π̃1)1]−1(α(k1,k2))
−−−−−−−−−−−−→ (j2,1, j2).

Denote by (xα, yα) = [(φ1 ◦ π̃1)1]−1(α(k1, k2)).

Remark 4.7. In fact

xα = (φ1
1 )
−1(α(k1, k2)), yα = (φ1

2 )
−1(α(k1, k2)).
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We now explain this. Since φ1 and φ2 are both full-equivalences, then from (j1, j2,1) and (j1,2, j2) we get unique arrows

(φ1
1 )
−1(α(k1, k2)) : j1 → j2,1, and (φ1

2 )
−1(α(k1, k2)) : j1,2 → j2.

Then by the bijections of arrows under equivalence we have

((φ1
1 )
−1(α(k1, k2)), (φ1

2 )
−1(α(k1, k2))) = [(φ1 ◦ π̃1)1]−1(α(k1, k2)) = (xα, yα).

We can also use φ2 ◦ π̃2 to get [(φ2 ◦ π̃2)1]−1(α(k1, k2)). However we get nothing else but

[(φ1 ◦ π̃1)1]−1(α(k1, k2)) = [(φ2 ◦ π̃2)1]−1(α(k1, k2)) = (xα, yα).

Let us continue the construction. By applying the natural transformation β to the arrow (xα, yα) we get a commutative
diagram in N1

v01(j1)
β(j1,j1,2)

→→

v11 (xα )
↓↓

v02(j1,2)

v12 (yα )
↓↓

v01(j2,1)
β(j2,1,j2)

→→ v02(j2)

We define β ◦̃α : Ũ0
→ N1 to be

β ◦̃α(k1, j1; k2, j2) := β(j1, j1,2) · v12(yα) = v
1
1(xα) · β(j2,1, j2).

It is direct to see that this definition does not depend on the choices of j1,2 and j2,1, and gives us an arrow (φ1, L1, v1) ◦

(ψ1,K1, u1)
β ◦̃α
−−→ (φ2, L2, v2) ◦ (ψ2,K2, u2). This finishes the construction.

Remark 4.8. We can also get β ◦̃α via the horizontal composition in Mor1 and i1 in Theorem 3.15. The procedure is
similar to the way to get •̃ from • in Remark 3.16. Given α and β as above, we get i1(α) and i1(β). Then we have

β ◦̃α = (i1(β) ◦ i1(α)) ◦ q0

with q0 : Ũ0
→ U0.

Via this remark we have similar results for ◦̃ as Lemma 4.3.

Lemma 4.9. Combining with composition of full-morphisms we also get a horizontal composition functor

◦̃ : FMor(G,H)× FMor(H,M)→ FMor(G,N)

i.e. the vertical and horizontal composition of arrows between full-morphisms are compatible. Therefore ◦̃ is a strict groupoid
morphism.

Similar to Lemma 4.4 we have

Lemma 4.10. The horizontal composition functor ◦̃ is associative under the canonical isomorphism of strict fiber product of
three groupoids in Lemma 2.16.

5. Automorphism groupoids

In this section we study the morphism groupoid Mor(G,G) of a groupoid G.

5.1. Center of a groupoid

To study the automorphisms of groupoids we introduce a new concept of centers of groupoids. We first recall the
concept of groupoid action on spaces.

Definition 5.1. For a groupoid G and a space X , a (left) G-action on X consists of

• a map, called the anchor map, ρ : M → G0,
• an action map µ : G1

×s,G0,ρ M → M satisfying

ρ(µ(x, p)) = t(x), µ(1a, p) = p, and µ(x, µ(y, p)) = µ(y · x, p)

whenever the terms are well defined.
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Given an action of G on M there is an induced groupoid G ⋉M with

(G ⋉M)0 = M, (G ⋉M)1 = G1
×s,G0,ρ M,

and source and target maps given by

s(x, p) = p, t(x, p) = µ(x, p).

Other structure maps are obvious.
For a groupoid G and an object a ∈ G0 the isotropy group of a in G is Γa := G1(a, a), which is a group. Denote by Z(Γa)

the center of the isotropy group Γa. Set

ZG0
=

⋃
a∈G0

Z(Γa) ⊆ G1.

There is a G-action on ZG0, whose anchor map and action map are

ρ : ZG0
→ G0, x ↦→ s(x) = t(x),

µ : G1
×s,G0,ρ ZG0

→ ZG0, (y, x) ↦→ y−1 · x · y.

Definition 5.2. We define the center groupoid of G as ZG := G ⋉ ZG0.

There is a natural strict morphism π : ZG→ G with π0
= ρ and π1 given by

π1
: G1
×s,G0,ρ ZG0

→ G1, (y, x) ↦→ y.

Definition 5.3. By a section of π : ZG→ G we means a section σ : G0
→ ZG0 of the projection π0

: ZG0
→ G0 such that

it is invariant under the G-action in the meaning of that for every arrow x : a→ b in G1

σ (b) = µ(x, σ (a)) = x−1 · σ (a) · x, i.e. x · σ (b) = σ (a) · x. (5.1)

We denote by K(G) the set of sections of π : ZG→ G. It is easy to see that

Lemma 5.4. K(G) is a group.

Proof. The multiplication is induced from the composition of arrows in G1. The identity for the multiplication is the unit
section 1 : G0

→ ZG0, a ↦→ (a, 1a). □

We call K(G) to be the center of the groupoid G.

5.2. Automorphisms

Definition 5.5. Let (ψ,K, u) ∈ Mor0(G,G). If there exist another morphism (φ, L, v) ∈ Mor0(G,G) and two arrows

(ψ,K, u) ◦ (φ, L, v)
α
−→ 1G, (φ, L, v) ◦ (ψ,K, u)

β
−→ 1G

in Mor1(G,G), we call (ψ,K, u) an automorphism of G. So is (φ, L, v).

Let Aut0(G) be the set of automorphisms of G and Aut1(G) be the induced arrows from Mor1(G,G), i.e. we have the
following groupoid

Aut(G) = (Aut1(G) ⇒ Aut0(G)) = Mor(G,G)|Aut0(G).

The main theorem of this section is:

Theorem 5.6. Aut(G) is a K(G)-gerbe over its coarse space |Aut(G)|. Moreover, |Aut(G)| is a group.

The proof of this theorem consists of Section 5.4 (See Corollary 5.12) and Section 5.5.

5.3. Group action on trivial center topological groupoids

Motivated by Theorem 5.6 we may consider group actions on topological groupoids.

Definition 5.7. The automorphism group Aut(G) of G is defined to be |Aut(G)|.
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Example 5.8 (Automorphism Groupoid of Classifying Groupoid). Consider the Classifying Groupoid [•/G] := (G ⇒ •) of
a Group G. The automorphism groupoid is equivalent to the action groupoid G ⋉ Aut(G), where Aut(G) is the group of
automorphisms of G and G acts on it by conjugation. This is a Z(G)-gerbe over the coarse space

Aut(G)/(G/Z(G)) = Aut(G)/Inn(G) = Out(G),

where Inn(G) and Out(G) are the group of inner and outer automorphisms of G.

Now suppose that G is a groupoid with trivial K(G). Then the automorphism groupoid Aut(G) is equivalent to the
group |Aut(G)|. This observation leads to the following definition.

Definition 5.9. Let K be a group and G be a groupoid with trivial K(G). A K -action on G is a morphism

(ψ,H,Φ) : K × G⇀ G

satisfying the following two conditions:

(1) For every k ∈ K , the composition {k}×G
ik
↪→ K ×G

(ψ,H,Φ)
⇀ G induces an automorphism of G, where ik is the natural

embedding. This defines a map Φ̃ : K → Aut0(G).
(2) |Φ̃| : K → |Aut(G)| is a group homomorphism.

5.4. Isotropy groups of automorphisms

Proposition 5.10. For a (ψ,K, u) : G⇀ G in Aut0(G), there is a group isomorphism

Ψ : K(G)
∼=
−→ Γ(ψ,K,u), σ ↦→ σ ⋆ 1(ψ,K,u), (5.2)

where σ ⋆ 1(ψ,K,u) is defined by (5.3) in the proof. Hence Γ(ψ,K,u) is canonically isomorphic to K(G).

First we find that automorphisms of G have the following nice properties.

Lemma 5.11. Suppose (ψ,K, u), (φ, L, v) ∈ Aut0(G), and

(ψ,K, u) ◦ (φ, L, v)
α
−→ 1G, (φ, L, v) ◦ (ψ,K, u)

β
−→ 1G.

Then the strict morphisms

u ◦ π2 ◦ π1 : (L×G K)×G G→ G, and v ◦ π2 ◦ π1 : (K×G L)×G G→ G

are both equivalences. Consequently

u1
: K 1(k1, k2)→ G1(u0(k1), u0(k2)), and |u| : |K| → |G|

are both surjective. Same properties hold for v.

Now we proceed to prove the proposition.

Proof of Proposition 5.10. First of all we define the arrow Ψ (σ ) = σ ⋆ 1(ψ,K,u) ∈ Γ(ψ,K,u). Since it is an arrow from
(ψ,K, u) to itself, it is defined over (K×G K)0 = {(k1, x, k2) | x : ψ0(k1)→ ψ0(k2) in G1

}. It is given by

σ ⋆ 1(ψ,K,u)(k1, x, k2) : = σ (u0(k1)) · 1(ψ,K,u)(k1, x, k2) (5.3)

= σ (u0(k1)) · u1((ψ1)−1(x)) (Eq. (3.5)).

= u1((ψ1)−1(x)) · σ (u0(k2)), (Eq. (5.1)).

where (ψ1)−1(x) : k1 → k2 is the unique arrow in K 1(k1, k2) that is mapped to x by ψ1. We next show σ ⋆1(ψ,K,u) belongs
to Γ(ψ,K,u), i.e. it is a natural transformation u ◦ π1 ⇒ u ◦ π2 : K×G K→ G. Take an arrow in (K×G K)1

(a, (k1, x, k2), b) : (k1, x, k2)→ (k̃1, x̃, k̃2). (5.4)

Hence ψ1(a) · x̃ = x ·ψ1(b) in G1. Consequently a · (ψ1)−1(x̃) = (ψ1)−1(x) · b in K 1 and u1(a) : u0(k1)→ u0(k̃1) in G1. Then
we have

σ ⋆ 1(ψ,K,u)(k1, x, k2) · u1(b) = σ (u0(k1)) · u1((ψ1)−1(x)) · u1(b)

= σ (u0(k1)) · u1((ψ1)−1(x) · b)

= σ (u0(k1)) · u1(a · (ψ1)−1(x̃))



B. Chen, C.-Y. Du and R. Wang / Journal of Geometry and Physics 145 (2019) 103486 19

= σ (u0(k1)) · u1(a) · u1((ψ1)−1(x̃))

= u1(a) · σ (u0(k̃1)) · u1((ψ1)−1(x̃)) (Eq. (5.1))

= u1(a) · σ ⋆ 1(ψ,K,u)(k̃1, x̃, k̃2).

Therefore σ ⋆ 1(ψ,K,u) ∈ Γ(ψ,K,u), and hence Ψ is well defined. We next show that Ψ is a group homomorphism.
For two sections σ , δ ∈ K(G) we have

(σ ⋆ 1(ψ,K,u)) • (δ ⋆ 1(ψ,K,u))(k1, x, k2)
= σ ⋆ 1(ψ,K,u)(k1, x1, k′2) · δ ⋆ 1(ψ,K,u)(k

′

2, x2, k2)

= σ (u0(k1)) · u1((ψ1)−1(x1)) · u1((ψ1)−1(x2)) · δ(u0(k2))

= σ (u0(k1)) · u1((ψ1)−1(x1) · (ψ1)−1(x2)) · δ(u0(k2))

= σ (u0(k1)) · u1((ψ1)−1(x1 · x2)) · δ(u0(k2))

= σ (u0(k1)) · u1((ψ1)−1(x)) · δ(u0(k2))

= σ (u0(k1)) · δ(u0(k1)) · u1((ψ1)−1(x))

= (σ · δ)(u0(k1)) · u1((ψ1)−1(x))
= (σ · δ) ⋆ 1(ψ,K,u)(k1, x, k2),

where x = x1 · x2. Hence Ψ (σ ) • Ψ (δ) = Ψ (σ · δ), and Ψ is a group homomorphism.
We next construct the inverse map Φ of Ψ . Given an arrow (ψ,K, u)

α
−→ (ψ,K, u), by applying both α and 1(ψ,K,u) to

the arrow (5.4) in (K×G K)1, we get two commutative diagrams

u0(k1)
α(k1,x,k2) →→

u1(a)
↓↓

u0(k2)

u1(b)
↓↓

u0(k̃1)
α(k̃1,x̃,k̃2) →→ u0(k̃2),

and

u0(k1)
1(ψ,K,u)(k1,x,k2)

→→

u1(a)
↓↓

u0(k2)

u1(b)
↓↓

u0(k̃1)
1(ψ,K,u)(k̃1,x̃,k̃2)

→→ u0(k̃2).

Consequently we have

α(k1, x, k2) · 1(ψ,K,u)(k1, x, k2)−1 · u1(a) = u1(a) · α(k̃1, x̃, k̃2) · 1(ψ,K,u)(k̃1, x̃, k̃2)−1.

By Lemma 5.11, the map u1
: K 1(k1, k̃1)→ G1(u0(k1), u0(k̃1)) is surjective. Therefore

α(k1, x, k2) · 1(ψ,K,u)(k1, x, k2)−1 · y = y · α(k̃1, x̃, k̃2) · 1(ψ,K,u)(k̃1, x̃, k̃2)−1

for every y ∈ G1 with s(y) = u0(k1). In particular when k1 = k2 = k, x = 1ψ0(k), k̃1 = k̃2 = k̃, x̃ = 1ψ0(k̃), for every
y : u0(k)→ u0(k̃) we have

α(k, 1ψ0(k), k) · y = y · α(k̃, 1ψ0(k̃), k̃). (5.5)

Therefore by taking k = k̃ we see that for every k ∈ K 0, α(k, 1ψ0(k), k) ∈ Z(Γu0(k)).
For every a ∈ Im (u0) take a pre-image k ∈ K 0 of a under u0. We first define Φ(α) on Im u0 by

Φ(α)(a) := α(k, 1ψ0(k), k) ∈ Z(Γa). (5.6)

This is independent of the choices of k. Suppose there is another k′ ∈ K 0 satisfying u0(k′) = a. Then since u1
: K 1(k, k′)→

G1(a, a) is surjective, there is an arrow x : k→ k′ in K 1 satisfying u1(x) = 1a, which gives us an arrow

(x, (k, 1ψ0(k), k), x) : (k, 1ψ0(k), k)→ (k′, 1ψ0(k′), k
′)

in (K×G K)1. By applying α to this arrow we get

α(k, 1ψ0(k), k) · u
1(x) = u1(x) · α(k′, 1ψ0(k′), k

′),

i.e. α(k, 1ψ0(k), k) = α(k′, 1ψ0(k′), k′).
We next extend Φ(α) to the whole G0. Since by Lemma 5.11 |u| : |K| → |G| is surjective, every object b ∈ G0 is

connected to an object a = u0(k) ∈ Im u0 by an arrow x : a→ b. We then extend Φ(α) to the whole G0 by

Φ(α)(b) := x−1 ·Φ(α)(a) · x.

One can see that this is similar to the construction of i1 in the proof of Theorem 3.15. It is also direct to check that the
definition of Φ(α) does not depend on various choices and it is indeed a section in K(G). It is direct to see that Φ is the
inverse map of Ψ . This finishes the proof. □
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This proposition implies that all objects of the groupoid Aut(G) have isomorphic isotropy groups. Consider the following
subset of Aut1(G)

kerAut(G) := {α ∈ Aut1(G) | s(α) = t(α)}.

Then source and target maps restrict to a projection s = t : kerAut(G)→ Aut0(G). From the proof of Proposition 5.10 we
see that the fiber of kerAut(G)→ Aut0(G) is a group isomorphic to K(G). On the other hand, from this subset we could
construct a new groupoid (Ãut

1
(G) ⇒ Aut0(G)) with

Ãut
1
(G) := Aut1(G)/kerAut(G),

where the quotient is taken by identifying an arrow α ∈ Aut1(G) with an arrow β • α for β ∈ kerAut(G) satisfying
s(α) = s(β). Denote the corresponding projection to quotient set by p1 : Aut1(G) → Ãut

1
(G). Then we have a strict

morphism

(p1, idAut0(G)) : Aut(G)→ (Ãut
1
(G) ⇒ Aut0(G)), (5.7)

which is surjective over arrows and the kernel of p1 is (p1)−1(u(Aut0(G))) = kerAut(G). Note that p1|kerAut(G)= s = t , hence
p1 : ker p1 → Aut0(G) is a projection with fiber isomorphic to K(G). Therefore the groupoid Aut(G) is a K(G)-gerbe7

over (Ãut
1
(G) ⇒ Aut0(G)). By Proposition 5.10 we see that (Ãut

1
(G) ⇒ Aut0(G)) is equivalent to the trivial groupoid

(|Aut(G)| ⇒ |Aut(G)|) which represents the space |Aut(G)|. Therefore

Corollary 5.12. The groupoid Aut(G) is a K(G)-gerbe over its coarse space |Aut(G)|.

5.5. Group structure over |Aut(G)|

In this section we show that the coarse space |Aut(G)| of the automorphism groupoid of G is a group. The proof consists
of the following five lemmas.

Lemma 5.13 (Multiplication). The composition ◦ induces a multiplication over the coarse space |Mor(G,G)|.

Proof. Let (ψ,K, u), (ψ ′,K′, u′), (φ, L, v) ∈ Mor0(G,G) and (ψ,K, u)
α
−→ (ψ ′,K′, u′) be an arrow. Then we have two arrows

(see Construction 4.2)

(ψ,K, u) ◦ (φ, L, v)
α◦1(φ,L,v)
−−−−−→ (ψ ′,K′, u′) ◦ (φ, L, v), (φ, L, v) ◦ (ψ,K, u)

1(φ,L,v)◦α
−−−−−→ (φ, L, v) ◦ (ψ ′,K′, u′).

Therefore we get a well-defined multiplication |(ψ,K, u)| ◦ |(φ, L, v)| = |(ψ,K, u) ◦ (φ, L, v)| on |Mor(G,G)|. This finishes
the proof. □

Lemma 5.14 (Associativity). The induced multiplication over |Mor(G,H)| is associative.

Proof. For simplicity, here we denote morphisms by a single word. The associativity means that every triple A,B,C of
morphisms in Mor0(G) satisfies

(|A| ◦ |B|) ◦ |C| = |A| ◦ (|B| ◦ |C|).

We have shown in Lemma 4.4 that via the isomorphism of fiber products of a triple of groupoids, the composition (A◦B)◦C
is identified with A ◦ (B ◦ C). Then it is direct to construct an arrow (A ◦ B) ◦ C→ A ◦ (B ◦ C). The lemma follows. □

Lemma 5.15 (Identity). The identity in with respect to the multiplication over |Mor(G,G)| is the image of 1G = (idG,G, idG)
in |Mor(G,G)|.

Proof. We construct two arrows 1G ◦ (ψ,K, u)
α1,(ψ,K,u)
−−−−−→ (ψ,K, u), and (ψ,K, u) ◦ 1G

α(ψ,K,u),1
−−−−−→ (ψ,K, u) for every

automorphism (ψ,K, u) ∈ Aut0(G). The composed morphism (ψ,K, u) ◦ 1G is

G
idG◦π1
←−−− W := G×idG,G,ψ K

u◦π2
−−→ H.

7 Here by a K(G)-gerbe we mean a set level gerbe. It consists of a strict morphism p = (p0, p1) : G → H of groupoids such that object sets
G0
= H0 , maps p0 = idG0 and the fibers of the kernel ker p1 → G0 are isomorphic to K(G) as groups.



B. Chen, C.-Y. Du and R. Wang / Journal of Geometry and Physics 145 (2019) 103486 21

The arrow α(ψ,K,u),1 we want is a natural transformation in the diagram

G

W

L

K

H⇓ ¸(,K,u),1

idG◦π1

ψ

π1

π2

u◦π2

u

with L = (L1 ⇒ L0) := W×idG◦π1,G,ψ K. Elements in L0 are of the form

k′ (g
y

G
←← x

G
→→ k),

with x : g → ψ0(k), and y : g → ψ0(k′). We denote it by (k′, y, g, x, k). From this object we get y−1 · x : ψ0(k′)→ ψ0(k).
Since ψ is an equivalence, we get a unique arrow (ψ1)−1(y−1 · x) : k′ → k. We set

α(ψ,K,u),1(k′, y, g, x, k) = u1((ψ1)−1(y−1 · x)).

Then it is direct to check that this is the arrow we want. α1,(ψ,K,u) is defined similarly. □

Lemma 5.16 (Closedness). |Aut(G)| is closed with respect to the multiplication on |Mor(G,G)|.

Proof. For simplicity, here we also denote morphisms by a single word. Suppose we have automorphisms A,B,A′,B′ ∈

Aut0(G,G) and arrows A ◦ A′
α
−→ 1G, A′ ◦ A

β
−→ 1G, B ◦ B′

γ
−→ 1G, B′ ◦ B

δ
−→ 1G. We next show A ◦ B ∈ Aut0(G). We have

arrows

(A ◦ B) ◦ (B′ ◦ A′)→ A ◦ (B ◦ (B′ ◦ A′))→ A ◦ ((B ◦ B′) ◦ A′)
1A◦(γ ◦1A′ )
−−−−−→ A ◦ (1G ◦ A′)→ (A ◦ 1G) ◦ A′

αA,1◦1A′
−−−−→ A ◦ A′

α
−→ 1G

and

(B′ ◦ A′) ◦ (A ◦ B)→ B′ ◦ (A′ ◦ (A ◦ B))→ B′ ◦ ((A′ ◦ A) ◦ B)
1A′ ◦(β◦1B)
−−−−−→ B′ ◦ (1G ◦ B)→ (B′ ◦ 1G) ◦ B

αB′,1◦1B
−−−−→ B′ ◦ B

δ
−→ 1G,

where unmarked arrows are obtained from Lemma 4.4 and αA,1, αB′,1 are the arrows defined in the proof of last lemma.
Therefore A ◦ B ∈ Aut0(G,G), and |Aut(G)| is closed under the multiplication. □

Lemma 5.17 (Inverse). Every |u| ∈ |Aut(G)| has an inverse.

Proof. This follows from the definition of Aut0(G). □

Combining these five lemmas and noting that 1G ∈ Aut0(G), we finish the proof of that |Aut(G)| is a group.
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Appendix. Topology on morphism groupoid

In this appendix we restrict ourselves to topological groupoids and explain how to assign topology for a morphism
groupoid. Since the general case is rather technically complicated and away from central topic of the paper, instead of
working for Mor(G,H) or FMor(G,H), we focus ourselves on a natural sub-groupoid of FMor(G,H), which we denote by
OFMor(G,H), together with certain assumption on G. We point out that such assumption does not rule out the case we are
interested in. In particular, this appendix explains how one can assign topology for the refinement morphism groupoid of
orbifold groupoids and shows that the coarse space of the automorphism groupoid of an orbifold groupoid has a natural
topological group structure.

We call a full-equivalence ψ : K → G an open refinement, if K 0 is a disjoint union of open subsets of G0 and K is
the pull back groupoid along the inclusion K 0 ↪→ G0 with ψ being the corresponding strict morphism of groupoids. We
denote by

OFMor0(G,H) =
⨆

ψ :K→G, open refinement

SMor0(K,H)
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the set of open refinements of G. By restricting FMor(G,H) over OFMor0(G,H), we obtain a subgroupoid

OFMor(G,H) = FMor(G,H)
⏐⏐
OFMor0(G,H)

of FMor(G,H). We remark that when G and H are both orbifold groupoids, OFMor(G,H) is Morita equivalent to the
groupoid of orbifold homomorphisms (cf. [1]).

In the following we construct a natural topology over OFMor(G,H) by using compact-open topology. In later context,
the space of continuous maps C(X, Y ) between two topological spaces X and Y is always assigned with the compact-open
topology.

A.1. Topology on SMor(K,H)

We first consider the topology over the groupoid

SMor(K,H) = (SMor1(K,H) ⇒ Smor0(K,H))

of strict morphisms from K to H, where SMor0(K,H) is the space of all (continuous) strict morphisms from K to H, and
SMor1(K,H) is the space of all (continuous) natural transformations.

As

SMor0(K,H) ⊆ C(K 0,H0)× C(K 1,H1),

we use the induced topology over SMor0(K,H).
As

SMor1(K,H) ⊆ SMor0(K,H)× C(K 0,H1),

we use the induced topology over SMor1(K,H).

Lemma A.1. SMor(K,H) is a topological groupoid.

Proof. We first show that the source and target maps

S, T : SMor1(K,H)→ SMor0(K,H)

are continuous. As S is the composition

SMor1(K,H) ↪→ SMor0(K,H)× C(K 0,H1)
proj1
−−→ SMor0(K,H),

it is continuous. On the other hand, the map T (u = (u0, u1), σ ) = v = (v0, v1) is given by

v0(x) = t(σ (x)), v1(g) = σ (s(g))−1 · u1(g) · σ (t(g)).

Note that σ is a section of (u0)∗s : (u0)∗H1
→ K 0, and t ◦ σ is the composition

X0 (u0(x),σ (x))
−−−−−→ H1 t

−→ H0.

Hence t ◦ σ is continuous on (u0, σ ) since t is continuous. Similarly, since multiplication, inverse map on H1, s and t are
all continuous, σ (s(g))−1 · u1(g) · σ (t(g)) is continuous on u1.

We next consider the inverse map I : SMor1(K,H)→ SMor1(K,H) and the multiplication

M : SMor1(K,H)×T ,S SMor1(K,H)→ SMor1(K,H).

For the inverse map we have

I(u, σ ) = (T (u, σ ), σ−1).

Hence it is continuous, since inverse map on H1 is continuous. For the multiplication map we have

M((u, σ ), (T (u, σ ), σ ′)) = (u, σ · σ ′).

It is continuous since the multiplication on H1 is continuous.
Finally, the unit map U : SMor0(K,H)→ SMor1(K,H) is given by

U(u) = (u, 1u),

where 1u(x) = 1u0(x). Since 1 : H0
→ H1 is continuous, U is continuous. □
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A.2. Topology on OFMor(G,H)

Now we consider the topology over OFMor(G,H) = (OFMor1(G,H) ⇒ OFMor0(G,H)). As

OFMor0(G,H) =
⨆

ψ :K→G, open refinement

SMor0(K,H),

we assign OFMor0(G,H) the topology of disjoint union of topologies of each component.
We next define the topology on OFMor1(G,H). Given any two open refinements ψ : K→ G and φ : W→ G, denote

the set of arrows from the component SMor0(K,H) to SMor0(W,H) by Mor1(ψ, φ). Then

OFMor1(G,H) =
⨆
ψ,φ

OFMor1(ψ, φ).

We define the topology on OFMor1(G,H) to be the disjoint union of topologies of each OFMor1(ψ, φ) described below.
Recall that we have the two projections π1 : K

◦

×G W→ K, π2 : K
◦

×G W→ W. So we have two continuous maps

π∗1 : SMor0(K,H)→ SMor0(K
◦

×G W,H), π∗2 : SMor0(W,H)→ SMor0(K
◦

×G W,H).

Consider the map

π∗1 × π
∗

2 : SMor0(K,H)× SMor0(W,H)→ SMor0(K
◦

×G W,H)× SMor0(K
◦

×G W,H)

and

S × T : SMor1(K
◦

×G W,H)→ SMor0(K
◦

×G W,H)× SMor0(K
◦

×G W,H).

Then OFMor1(ψ, φ) is the fiber product of these two maps, that is

OFMor1(ψ, φ) = SMor0(K,H)×π∗1 ,S SMor1(K
◦

×G W,H)×T ,π∗2
SMor0(W,H).

So it inherits a topology from this fiber product.

Theorem A.2. Suppose that G0 is a regular topological space, then OFMor(G,H) is a topological groupoid.

Proof. The source and target maps are

OFMor1(ψ, φ)
(proj1, proj3)
−−−−−−→ SMor0(K,H)× SMor0(W,H),

projections to factors, hence are continuous.
We next consider the multiplication map

M : OFMor1(ψ, φ)×T ,S OFMor1(φ, ϕ)→ OFMor1(ψ, ϕ).

Take two arrows α : u → w and β : w → v in OFMor1(ψ, φ),OFMor1(φ, ϕ) respectively. Let α •̃β : u → v be their
multiplication. Take an open neighborhood of α •̃β : u→ v:

Uu ×π∗1 ,S
Uα •̃β ×T ,π∗2

Uv.

We next construct two open neighborhoods of α : u → w and β : w → v whose images under M are contained in
Uu ×π∗1 ,S

Uα •̃β ×T ,π∗2
Uv.

Note that by the definition of topology over SMor1(K
◦

×G V,H),

Uα •̃β ⊆ SMor1(K
◦

×G V,H) ⊆ SMor0(K
◦

×G V,H)× C((K
◦

×G V)0,H1).

So for simplicity we could assume that

Uα •̃β =
(
π∗1Uu × [A,U]

)
∩ SMor1(K

◦

×G V,H),

where

[A,U] = {f : (K
◦

×G V)0 → H1
| f (A) ⊆ U} ⊆ C((K

◦

×G V)0,H1)

is an open set in C((K
◦

×G V)0,H1) with A ⊆ (K
◦

×G V)0 being a compact subset and U ⊆ H1 being an open subset. We
next construct open neighborhoods of α and β .

For simplicity, we could assume that A ⊆ Ka ∩ Vb with Ka a component of K 0 and Vb a component of V 0. So we can
view A ⊆ G0. Now A is covered by W 0 via W 0 ↪→ G0. Without loss of generality we could assume that A ⊆ W1 ∩ W2,
since A is compact. By the assumption that G0 is regular, for every x ∈ A ∩Wi, there is an open neighborhood Ux,i ⊆ Wi
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of x such that x ∈ Ux,i ⊆ Ux,i ⊆ Wi. These open neighborhoods form an open cover of A. So we get a finite sub-cover of
A, say Ux1,1, . . . ,Uxk,1,Uxk+1,2, . . . ,Uxn,2. Then we take

A1 :=

⎛⎝ k⋃
j=1

Uxj,1

⎞⎠ ∩ A, and A2 :=

⎛⎝ n⋃
j=k+1

Uxj,2

⎞⎠ ∩ A,

Both A1 and A2 are compact subsets of G0 and covered by W1 and W2 respectively. So A1 and A2 are compact subsets in
both (K

◦

×G W)0 and (W
◦

×G V)0.
Now consider the open subset m−1(U) ⊆ H1

×t,sH1, where m : H1
×t,sH1

→ H1 is the multiplication map of H. Suppose
the projections of m−1(U) to both factors of H1

×t,s H1 are U1 and U2. Note that U1 and U2 are both open subsets of H1

since the projections to both factors are open. Then we get two open subsets of C((K
◦

×G W)0,H1) and C((W
◦

×G V)0,H1)
respectively, which are

[A1,U1] ∩ [A2,U1] = {f : (K
◦

×G W)0 → H1
| f (A1), f (A2) ⊆ U1},

and [A1,U2] ∩ [A2,U2] = {f : (W
◦

×G V)0 → H1
| f (A1), f (A2) ⊆ U2}.

Then one sees that(
π∗1Uu × ([A1,U1] ∩ [A2,U1])

)
∩ SMor1(K

◦

×G W,H)

is an open neighborhood of α in SMor1(K
◦

×G W,H), denoted by Uα . Let Uw be an open neighborhood of w. So
Uu ×π∗1 ,S

Uα ×T ,π∗2
Uw is an open neighborhood of α : u → w in Mor(ψ, φ). Similarly we get a neighborhood Uβ of β

in SMor1(K
◦

×G W,H)

Uβ =
(
π∗1Uw × ([A1,U2] ∩ [A2,U2])

)
∩ SMor1(W

◦

×G V,H)

and an open neighborhood Uw ×π∗1 ,S
Uβ ×T ,π∗2

Uv of β : w→ v in Mor(φ, ϕ). Then we have

M
((

Uu ×π∗1 ,S
Uα ×T ,π∗2

Uw

)
×proj3,proj1

(
Uw ×π∗1 ,S

Uβ ×T ,π∗2
Uv

))
⊆ Uu ×π∗1 ,S

Uα •̃β ×T ,π∗2
Uv.

Therefore M is continuous.
The inverse map and unit map are obviously continuous. Therefore Mor(G,H) is a topological groupoid. □

One can see that the assumption that G0 is regular is used to construct a finite cover of a compact set A in terms of
compact sets subject to a given open cover of A. It is more subtle to construct smooth structure over OFMor(G,H) when
G and H are Lie groupoids, and we deal with this issue in [3].

A.3. Automorphisms

We can also define automorphisms in OFMor0(G,G) in the same manner as Definition 5.5. We denote the set of all
automorphisms in OFMor0(G,G) by OAut0(G). So OAut0(G) = OFMor0(G,G) ∩ Aut0(G). Then we also get a subgroupoid
of OFMor(G,G)

OAut(G) := OFMor(G,G)
⏐⏐⏐
OAut0(G)

.

Suppose G0 is regular, then OFMor(G,G) is a topological groupoid by Theorem A.2. We then assign OAut(G) the induced
topology. With the quotient topology, its coarse space |OAut(G)| is also a topological space.

As in Section 5 we have a group structure over |OAut(G)|, and OAut(G) is a (set level) K(G)-gerbe over |OAut(G)|.

Remark A.3. Since now G is a topological groupoid, we could endow ZG0 the subspace topology from the inclusion
ZG0
⊆ G1. Then one can see that the G-action on ZG0 is topological,8 hence ZG = G ⋉ ZG0 is a topological groupoid. So

now K(G) consists of all continuous sections of ZG→ G. We could view K(G) as a subspace of the space of continuous
sections of π : ZG0

→ G0, the latter one has the compact-open topology. Then we assign K(G) the induced topology, with
which K(G) becomes a topological group.

Theorem A.4. Suppose G0 is regular, then OAut(G) is a topological K(G)-gerbe over |OAut(G)|.

Here by a topological K(G)-gerbe p = (p0, p1) : G→ H we mean that p is a strict morphism of topological groupoids,
p0 = idG0 , and the kernel ker p1 is a locally trivial bundle of groups whose fiber is isomorphic to K(G).

8 A topological action of a topological groupoid on a topological space is a groupoid action for which the anchor and action maps are both
continuous.
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Proof. First as in (5.7), Section 5.4, we have the projection

p = (p1, idOAut0(G)) : OAut(G)→ (ÕAut
1
(G) ⇒ OAut0(G)).

We only have to show that p1 : ker p1 → OAut0(G) is a locally trivial bundle of group with fiber isomorphic to K(G).
By the map Ψ in (5.2), Proposition 5.10, we have a map

Ψ̃ : OAut0(G)× K(G)→ ker p1 = ker OAut1(G).

By the same proof used in the proof of Theorem A.2 we can see that Ψ̃ is continuous. By the map Φ in (5.6),
Proposition 5.10, we see that there is also another map

Φ̃ : ker p1 = ker OAut1(G)→ OAut0(G)× K(G).

The map ker p1 → OAut0(G) is continuous. We only have to show that the map proj2 ◦ Φ̃ : ker p1 → K(G) is
continuous. This also follows from the proof used in the proof of Theorem A.2. Therefore Φ̃ is also continuous. Then
by the proof of Proposition 5.10 we see that Φ̃ is the inverse map of Ψ̃ . So they are both homeomorphisms. This shows
that ker p1 is a globally trivial bundle of groups. Finally, by Proposition 5.10, Ψ̃ gives the isomorphisms between fibers
of ker p1 and K(G). Therefore p = (p1, idOAut0(G)) : OAut(G) → (ÕAut

1
(G) ⇒ OAut0(G)) gives rise to a topological

K(G)-gerbe over (ÕAut
1
(G) ⇒ OAut0(G)). On the other hand, (ÕAut

1
(G) ⇒ OAut0(G)) is equivalent to its coarse space

|(ÕAut
1
(G) ⇒ OAut0(G))| = |OAut(G)|, since for this groupoid the isotropy groups of objects in OAut0(G) are all trivial.

Therefore, OAut(G) is a K(G)-gerbe over |OAut(G)|. □

Remark A.5. Under the assumption that G0 is locally compact, Hausdorff and G is proper étale, we explain that |OAut(G)|
is a topological group. First notice that, under the current situation there is a continuous map

OFMor0(G,G) =
⨆

ψ :K→G, open refinement

SMor0(K,H)→
⨆

ψ :K→G, open refinement

C0(|K|, |G|)→ C0(|G|, |G|).

It is direct to see that this continuous map descends to a continuous map |OFMor(G,G)| → C0(|G|, |G|). In particular, we
get a continuous map |OAut(G)| → Homeo(|G|). From the definition of composition of morphisms in Definition 4.5 one
can see that |OAut(G)| → Homeo(|G|, |G|) is also a group homomorphism. Denote the image by Homeo∗(|G|).

Under the above assumption Homeo(|G|) is a topological group w.r.t. compact-open topology. So Homeo∗(|G|) is also
a topology group with induced topology.

Since G is proper étale one can show that |OAut(G)| → Homeo∗(|G|, |G|) is an open covering map. So from the
commutative diagram

|OAut(G)|×|OAut(G)| →→

↓↓

|OAut(G)|

↓↓

Homeo∗(|G|, |G|)× Homeo∗(|G|, |G|) →→ Homeo∗(|G|, |G|)

we see that the multiplication on |OAut(G)| is continuous. Similarly, the inverse map over |OAut(G)| is also continuous.
Hence |OAut(G)| is a topological group.

Therefore when G is an orbifold groupoid, |OAut(G)| is a topological group.
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