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Abstract. In the present article, we develop tensorial analysis for solutions
w of the following nonlinear elliptic system

@
⇡
w = 0, d(w⇤� � j) = 0,

associated to a contact triad (M,�, J). The novel aspect of this approach
is that we work directly with this elliptic system on the contact manifold
without involving the symplectization process. In particular, when restricted
to the case where the one-form w⇤� � j is exact, all a priori estimates for
w-component can be written in terms of the map w itself without involving
the coordinate from the symplectization. We establish a priori Ck coercive
pointwise estimates for all k � 2 in terms of the energy density kdwk2 by
means of tensorial calculations on the contact manifold itself. Further, for any
solution w under the finite ⇡-energy assumption and the derivative bound, we
also establish the asymptotic subsequence convergence to ‘spiraling’ instantons
along the ‘rotating’ Reeb orbit.
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Appendix A. The Weitzenböck formula for vector valued forms 25

Appendix B. Wedge products of vector-valued forms 28

Appendix C. Local coercive estimates 29

References 31

2010 Mathematics Subject Classification. Primary 53D42.
Key words and phrases. Contact triad connection, contact Cauchy–Riemann map, a priori
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1. Introduction

Let (M, ⇠) denote a 2n+1 dimensional contact manifoldM equipped with contact

structure ⇠ (a completely non-integrable distribution of rank 2n). Moreover, assume

that ⇠ is co-oriented, so that one is able to choose a one form � such that ker� = ⇠.
Such a one form is called a contact one form, and is not unique but is determined

only up to multiplication by nowhere vanishing functions. Given a contact one form,

the Reeb vector field X� associated to it is uniquely determined by the equations

X�c� ⌘ 1, X�cd� ⌘ 0.

As an immediate consequence from the definition of contact structure, (⇠, d�|⇠) is
a symplectic vector bundle over M of rank 2n. In the presence of the contact form

�, one considers the set of endomorphisms J : ⇠ ! ⇠ that are compatible with d�
in the sense that the bilinear form g⇠ = d�(·, J ·) defines a Hermitian vector bundle

(⇠, J, g⇠) on M . We call such an endomorphism J a CR-almost complex structure.

As in [5], we extend J to an endomorphism of TM by setting JX� = 0. We call

the triple (M,�, J) a contact triad and equip M with the Riemannian metric

g� = g⇠ + �⌦ �

which we refer to as the contact triad metric. With the contact triad metric, a

contact triad carries the same information as a contact metric manifold. (See [5]

and the references therein for more information about contact triads.)

Our goal is to understand the contact manifold without directly using its sym-

plectization. Therefore, we focus on maps w :

˙

⌃ ! M from the (punctured)

Riemann surface (

˙

⌃, j) to the contact manifold M . By decomposing the tangent

bundle as TM = ⇠�R{X�} and denoting the projection to ⇠ by ⇡, one can further

decompose d⇡w := ⇡dw = @⇡w + @
⇡
w into the J-linear and anti-J-linear part as

w⇤⇠-valued 1-forms on the punctured Riemann surface

˙

⌃. We begin by considering

maps w satisfying just @
⇡
w = 0, which is a nonlinear degenerate elliptic equation.

Definition 1.1 (Contact Cauchy–Riemann Map). Let (M,�, J) be a contact triad

and let (

˙

⌃, j) be a (punctured) Riemann surface. We call a smooth map w :

˙

⌃ ! M
a contact Cauchy–Riemann map if it satisfies @

⇡
w = 0.

To maximize the advantage of using tensor calculus in the analytic study of

contact Cauchy–Riemann maps, we use the contact triad connection the authors

introduced in [13] associated to the contact triad (M,�, J). The contact triad

connection, in particular, preserves the triad metric. We review the contact triad

connection in Section 2.

Denote by r the contact triad connection on M and by r⇡
the associated Her-

mitian connection on the Hermitian vector bundle (⇠, d�|⇠, J). Various symmetry

properties of the connections r and r⇡
enable us to derive precise formulae con-

cerning the second covariant di↵erential of w and the Laplacian of the ⇡-harmonic

energy density function for any contact Cauchy–Riemann map w.
The following a priori on-shell equation for the ⇡-harmonic energy density is

the basis of our a priori estimates for the contact Cauchy–Riemann map w. This

on-shell equation is the contact analog to the equation for symplectic manifolds

derived by the first-named author in Theorem 7.3.4 [11].
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Theorem 1.2 (Fundamental Equation). Let w be a contact Cauchy–Riemann map.
Then

dr
⇡

(d⇡w) = �w⇤� � j ^
✓
1

2

(LX�J) d
⇡w

◆
.

The upshot of this equation is that the second derivatives (the left hand side) of

w are expressed in terms of the first derivatives of w (the right hand side).

Define the ⇠-component of the standard harmonic energy density function of

general smooth map w by

e⇡ = e⇡(w) := |d⇡w|2g� := |⇡dw|2g� ,
and further introduce the following.

Definition 1.3. For any smooth map w :

˙

⌃ ! M , the ⇡-harmonic energy E⇡
(�,J)(w, j)

of the smooth map w is defined as

E⇡
(�,J)(w, j) :=

1

2

Z
⌃̇
e⇡(w) =

1

2

Z
⌃̇
|d⇡w|2g� .

Since we do not vary � or j or J in the present article, we will use the shorthand

notation E⇡
(w) for E⇡

(�,J)(w, j) from now on. Also, we will omit the subindex g�
from the norm | · |g� .

Theorem 1.4. Let w be a contact Cauchy–Riemann map. Then

�1

2

�e⇡ = |r⇡
(@⇡w)|2 +K |@⇡w|2 + hRicr

⇡

(w)@⇡w, @⇡wi

+h�r
⇡

((w⇤� � j) ^ (LX�J)@
⇡w) , @⇡wi

where K is the Gaussian curvature of the given Kähler metric h on (

˙

⌃, j) and

Ric

r⇡

(w) is the Ricci curvature operator of the contact Hermitian connection r⇡

along the map w.

Again the upshot of this theorem is that for a contact Cauchy–Riemann map,

the Laplacian of e⇡(w) which involves the 3rd derivatives of w is expressible in

terms of the second and the first derivatives of w.
Notice that due to dimension, the contact Cauchy–Riemann map equation itself

is not an elliptic system. To conduct geometric analysis, we augment the equation

@
⇡
w = 0 by an additional equation,

d(w⇤� � j) = 0,

and define the following.

Definition 1.5 (Contact Instanton). Let (

˙

⌃, j) be a (punctured) Riemann surface

and w :

˙

⌃ ! M be a smooth map. We call a pair (j, w) a contact instanton if they

satisfy

@
⇡
w = 0, d(w⇤� � j) = 0. (1.1)

We would like to point out that the system (1.1) (for fixed j) forms an elliptic

system, which is a natural elliptic twisting of the Cauchy–Riemann equation @
⇡
w =

0. (We refer to [12] for an elaboration of this point of view.)

Another worthwhile point is that while the first equation involves first deriva-

tives, the second equation involves second derivatives of w. Therefore it is not

enough to have a W 2,2
-bound to get a classical solution out of a weak solution.
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Rather it is crucial to establish at least a W 3,2
coercive estimate to start the stan-

dard bootstrapping arguments. With this in mind, we will derive an a priori local

Ck
-estimates for contact instantons with the help of the contact triad connection.

We start with the following

Theorem 1.6. Let ( ˙⌃, j) be a punctured Riemann surface with a possibly empty

set of punctures. Equip ˙

⌃ with a metric which is cylindrical near each puncture.
Let w :

˙

⌃ ! M be a contact instanton. For any relatively compact domains D1

and D2 in ˙

⌃ such that D1 ⇢ D2, we have

kdwk2W 1,2(D1)
 C1kdwk2L2(D2)

+ C2kdwk4L4(D2)
,

where C1, C2 are some constants which depend only on D1, D2 and (M,�, J).

We also establish the following iterative local W 2+k,2
-estimates on punctured

surfaces

˙

⌃ in terms of the W `,p
-norms with `  k + 1. Combined with Theorem

1.6, this theorem in turn provides a priori local W 2+k,2
-estimates in terms of (local)

L2
, L4

norms of |d⇡w|, and |w⇤�|.

Theorem 1.7. Let w be a contact instanton. Then for any pair of domains D1 ⇢
D2 ⇢ ˙

⌃ such that D1 ⇢ D2,Z
D1

|(r)

k+1
(dw)|2 

Z
D2

Jk(d
⇡w,w⇤�).

Here Jk is a polynomial function of degree up to 2k+4 with nonnegative coe�cients
of the norms of the covariant derivatives of d⇡w, w⇤� up to 0, . . . , k with degree at
most 2k + 4 whose coe�cients depending on J , � and D1, D2 but independent of
w.

In particular, any weak solution of (1.1) in W 1,4
loc automatically becomes a clas-

sical solution.

We refer to Theorem 5.4 and the discussions around them for further exposition

on these estimates.

Next, we focus on cylindrical neighborhoods of the punctures and consider maps

w : [0,1)⇥ S1 ! M which satisfy (1.1). There are natural asymptotic invariants

T and Q which are defined as

T :=

1

2

Z
[0,1)⇥S1

|d⇡w|2 +
Z
{0}⇥S1

(w|{0}⇥S1
)

⇤�

Q :=

Z
{0}⇥S1

((w|{0}⇥S1
)

⇤� � j).

Call T the asymptotic contact action and Q the asymptotic contact charge.
For the study of the asymptotic behavior of the contact instanton map near the

punctures, it is important to classify all possiblemassless instantons (i.e., instantons
satisfying E⇡

(w) = 0) on the cylinder R⇥ S1
equipped with the standard complex

structure j. This classification of massless instantons di↵ers greatly between the

Q = 0 and Q 6= 0 regimes.

Proposition 1.8. Let w : R⇥S1 ! M be a massless contact instanton. Then there
exists a leaf of the Reeb foliation such that we can write w1(⌧, t) = �(�Q ⌧ + T t),
where � is a parameterization of the leaf satisfying �̇ = X�(�).

In particular, if T 6= 0, � is a closed Reeb orbit of X� with period T . In addition
if Q = 0, w1 is invariant under ⌧ -translations.
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If T = 0 and Q 6= 0, the leaf needs not be closed but must be the image of an
immersion of R.

With this classification result, we prove the following convergence result. We

refer readers to Theorem 6.4 for more precise assumption for the following theorem.

Theorem 1.9. Let w be any contact instanton on [0,1)⇥S1 with finite ⇡-harmonic
energy

E⇡
(w) =

1

2

Z
[0,1)⇥S1

|d⇡w|2 < 1,

and finite gradient bound
kdwkC0;[0,1)⇥S1 < 1.

Then for any sequence sk ! 1, there exists a subsequence, still denoted by sk, and
a massless instanton w1(⌧, t) (i.e., E⇡

(w1) = 0) on the cylinder R⇥S1 such that

lim

k!1
w(sk + ⌧, t) = w1(⌧, t)

uniformly on K ⇥ S1 for any given compact set K ⇢ R.
Furthermore if Q = 0 and T 6= 0, where w1(⌧, t) ⌘ �(T t) for some closed Reeb

orbit � of period T , the convergence is exponentially fast.

Proposition 1.8 and Theorem 1.9 generalize Hofer’s subsequence convergence

result in [9]. Hofer’s result in the context of symplectization, roughly corresponds

to the exact case (i.e., Q = 0 in our setting). Our asymptotic analysis for the

contact instanton equations reveals the new phenomenon of ‘spiraling’ instantons

along a ‘rotating’ Reeb orbit when the asymptotic charge is nonzero.

As outlined above, our original motivation to study this new elliptic system lies

in our attempt to better understand the contact manifold itself instead of its sym-

plectization. Indeed the question of whether two contact manifolds having symplec-

tomorphic symplectization are contactomorphic or not was addressed in the book

by Cieliebak and Eliashberg ([6, p.239]). Courte [7] provided a construction of two

contact manifolds which are not contactomorphic (actually, even not di↵eomor-

phic) but have symplectomorphic symplectizations. It would be interesting to see

whether our approach could lead to a construction of genuinely contact topological

quantum invariants of the Gromov–Witten or Floer- theoretic type that could be

used to investigate the following kind of question. (See [7] where a similar question

was explicitly stated.)

Question 1.10. Do there exist contact structures ⇠ and ⇠0 on a closed manifold

M that have the same classical invariants and are not contactomorphic, but whose

symplectizations are (exact) symplectomorphic?

We would like also to recall a celebrated result by Ruan [16] in symplectic ge-

ometry. Using Gromov–Witten invariants, he described a pair of algebraic surfaces

which have the same classical invariants but whose products with S2
are not sym-

plectically deformation equivalent.

We note that a similar equation to (1.1) was first mentioned by Hofer in p.698

of [10]. Then Abbas–Cielibak–Hofer in [2] and Abbas [1], as well as by Bergmann

in [3, 4] used this equation to attack the Weinstein conjecture for dimension 3. We

would like to point out that their equations correspond to our instanton equations

of vanishing charge, i.e., Q = 0.
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However as far as the authors are aware of, systematic a priori estimates without

involving symplectization such as those presented in this article have not been

developed in the previous literature. In this regard, our a priori estimates for w
are stronger than those in the literature in that the s-coordinates do not enter in

the a priori estimates of w even for the pseudoholomorphic maps u = (s, w) in the

context of symplectization. We hope that this kind of s-independent estimate for

w will lead to a better understanding of the convergence behavior of the contact

instanton w even for the exact case. For this reason, we split Part I of the preprint

[14] and write the present article. We view this one self-contained with focus on

the tensorial derivation for a priori estimates.

2. Review of the contact triad connection

As defined in the introduction 1, assume (M,�, J) is a contact triad of dimension

2n+1 for the contact manifold (M, ⇠), and equip with it the contact triad metric g =

g⇠+�⌦�. In [13], the authors introduced the contact triad connection associated to

every contact triad (M,�, J) with the contact triad metric and proved its existence

and uniqueness.

Theorem 2.1 (Contact Triad Connection [13]). For every contact triad (M,�, J),
there exists a unique a�ne connection r, called the contact triad connection, sat-
isfying the following properties:

(1) The connection r is metric with respect to the contact triad metric, i.e.,
rg = 0;

(2) The torsion tensor T of r satisfies T (X�, ·) = 0;
(3) The covariant derivatives satisfy rX�X� = 0, and rY X� 2 ⇠ for any

Y 2 ⇠;
(4) The projection r⇡

:= ⇡r|⇠ defines a Hermitian connection of the vector
bundle ⇠ ! M with Hermitian structure (d�|⇠, J);

(5) The ⇠-projection of the torsion T , denoted by T⇡
:= ⇡T satisfies the fol-

lowing property:

T⇡
(JY, Y ) = 0 (2.1)

for all Y tangent to ⇠;
(6) For Y 2 ⇠, we have the following

@r
Y X� :=

1

2

(rY X� � JrJY X�) = 0.

From this theorem, we see that the contact triad connection r canonically in-

duces a Hermitian connection r⇡
for the Hermitian vector bundle (⇠, J, g⇠), and

we call it the contact Hermitian connection. This connection will be used to study

estimates for the ⇡-energy in later sections.

The following remark provides some intuition of constructing the contact triad

connection.

Remark 2.2. Recall that the leaf space of Reeb foliations of the contact triad

(M,�, J) canonically carries a (non-Hausdor↵) almost Kähler structure which we

denote by (

cM,cd�, bJ).We would like to note that Axioms (4) and (5) are nothing but

properties of the canonical connection on the tangent bundle of the (non-Hausdor↵)

almost Kähler manifold (

cM,cd�, bJ⇠) lifted to ⇠. In fact, as in the almost Kähler case,
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vanishing of the (1, 1)-component also implies vanishing of the (2, 0)-component and

hence the torsion must be of (0, 2)-type. On the other hand, Axioms (1), (2) and

(3) indicate this connection behaves like the Levi-Civita connection along the Reeb

direction X�. Axiom (6) is an extra requirement to connect the information in the

⇠ part and the X� part, which uniquely pins down the desired connection.

Moreover, the following fundamental properties of the contact triad connection

was proved in [13], which will be used to perform tensorial calculations later.

Corollary 2.3. Let r be the contact triad connection. Then

(1) For any vector field Y on M ,

rY X� =

1

2

(LX�J)JY ; (2.2)

(2) �(T |⇠) = d�.

We refer readers to [13] for more discussion on the contact triad connection and

its relation with other related canonical type connections. In particular, we would

like to remark that

Remark 2.4. Using the identity LX�� = 0 = LX�d� it is not hard to see that, the

Reeb vector field is a Killing vector field with respect to the triad metric if and only

if LX�J = 0. In general, this is a strong additional requirement. For example, for

3-dimensional contact manifolds, it is equivalent to the Sasakian condition. Hence,

for the contact triad connection, rX� doesn’t vanish, which indicates that it is

di↵erent from the canonical connection for the symplectization when lifted. For

more details regarding this, refer [13] and the references therein.

This section ends with introducing the following notation for later use. Asso-

ciated to the projection ⇡ = ⇡� from TM to ⇠, we use ⇧ = ⇧� : TM ! TM
to denote the corresponding idempotent, i.e., the endomorphism of TM satisfying

⇧

2
= ⇧, Im⇧ = ⇠, ker⇧ = R{X�}.

3. The contact Cauchy–Riemann maps

Denote by (

˙

⌃, j) a punctured Riemann surface (including the case of closed

Riemann surfaces without punctures).

Definition 3.1. A smooth map w :

˙

⌃ ! M is called a contact Cauchy–Riemann
map (with respect to the contact triad (M,�, J)), if w satisfies the following

Cauchy–Riemann equation

@
⇡
w := @

⇡
j,Jw :=

1

2

(⇡dw + J⇡dw � j) = 0.

Recall that for a fixed smooth map w :

˙

⌃ ! M , the triple (w⇤⇠, w⇤J,w⇤g⇠)
becomes a Hermitian vector bundle over the punctured Riemann surface

˙

⌃. This

introduces a Hermitian bundle structure on Hom(T ˙

⌃, w⇤⇠) ⇠
=

T ⇤
˙

⌃ ⌦ w⇤⇠ over

˙

⌃,

with inner product given by

h↵⌦ ⇣,� ⌦ ⌘i = h(↵,�)g⇠(⇣, ⌘),

where ↵,� 2 ⌦

1
(

˙

⌃), ⇣, ⌘ 2 �(w⇤⇠), and h is the Kähler metric on the punctured

Riemann surface (

˙

⌃, j).
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Let r⇡
be the contact Hermitian connection. Combining the pulling-back of

this connection and the Levi-Civita connection of the Riemann surface, we get a

Hermitian connection for the bundle T ⇤
˙

⌃⌦w⇤⇠ ! ˙

⌃. By a slight abuse of notation,

we will still denote by r⇡
this combined connection.

The smooth map w has an associated ⇡-harmonic energy density defined as the

norm of the section d⇡w := ⇡dw of T ⇤
˙

⌃ ⌦ w⇤⇠ ! ˙

⌃. In other words, it is the

function e⇡(w) :

˙

⌃ ! R defined by e⇡(w)(z) := |d⇡w|2(z). (Here we use | · | to
denote the norm from h·, ·i which should be clear from the context.)

Similarly to the case of pseudoholomorphic curves on almost Kähler manifolds,

we obtain the following basic identities.

Lemma 3.2. Fix a Kähler metric h on (

˙

⌃, j), and consider a smooth map w :

˙

⌃ !
M . Then we have the following equations

(1) e⇡(w) := |d⇡w|2 = |@⇡w|2 + |@⇡
w|2;

(2) 2w⇤d� = (�|@⇡
w|2 + |@⇡w|2) dA where dA is the area form of the metric

h on ˙

⌃;
(3) w⇤� ^ w⇤� � j = �|w⇤�|2 dA.

As a consequence, if w satisfies @
⇡
w = 0, then

|d⇡w|2 = |@⇡w|2 and w⇤d� =

1

2

|d⇡w|2 dA. (3.1)

Proof. The proofs of (1) and (2) are exactly the same as the case of pseudo-

holomorphic maps in symplectic manifolds replacing dw by d⇡w and the symplectic

form by d� and so they are omitted. See e.g., Proposition 7.2.3 [11] for the state-

ments and their proofs in the symplectic case corresponding the statements (1) and

(2) here. Statement (3) follows from the definition of the Hodge star operator which

implies that for any 1-form � on the Riemann surface ⇤� = �� � j, and we take

� = w⇤�. ⇤

Notice that the contact Cauchy–Riemann equation itself is not an elliptic system

since the symbol is of rank 2n which is 1 dimension lower than TM . Here the

closedness condition d(w⇤� � j) = 0 leads to an elliptic system (see [12] for an

explanation)

@
⇡
w = 0, d(w⇤� � j) = 0. (3.2)

Definition 3.3. We call a solution of the system (3.2) a contact instanton

Contact instantons are the main objects of our study in the present paper.

To illustrate the e↵ect of the closedness condition on the behavior of contact

instantons, we look at them on closed Riemann surface and prove the following

classification result. The following proposition is stated by Abbas as a part of [1,

Proposition 1.4]. For readers’ convenience, we separate this part for closed contact

instantons (which are called homologically perturbed pseudo-holomorphic curves in

[1]) and give a somewhat di↵erent proof.

Proposition 3.4. Assume w : ⌃ ! M is a smooth contact instanton from a closed
Riemann surface. Then

(1) If g(⌃) = 0, w is a constant map;
(2) If g(⌃) � 1, w is either a constant or the locus of its image is a closed Reeb

orbit.
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Proof. For contact Cauchy–Riemann maps, Lemma 3.2 implies that |d⇡w|2 dA =

d(2w⇤�). By Stokes’ formula, we get d⇡w = 0 if the domain is a closed Riemann

surface, and further, dw = w⇤� ⌦ X�, i.e., w must have its image contained in a

single leaf of the (smooth) Reeb foliation.

Another consequence of the vanishing d⇡w = 0 is that dw⇤� = 0. Now this

combined with the equation d(w⇤� � j) = 0, which is equivalent to �w⇤� = 0,

implies that w⇤� (so is ⇤w⇤�) is a harmonic 1-form on the Riemann surface ⌃.

If the genus of ⌃ is zero, w⇤� = 0 by the Hodge’s theorem. This proves statement

(1).

Now assume g(⌃) � 1. Suppose w is not a constant map. Since ⌃ is compact and

connected, w(⌃) is compact and connected. Furthermore recall w(⌃) is contained in

a single leaf of the Reeb foliation which we denote by L. We take a parametrization

� : R ! L ⇢ M such that �̇ = X�(�(t)). By the classification of compact one

dimensional manifolds, the image w(⌃) is homeomorphic either to the unit closed

interval or to the circle. For the latter case, we are done.

For the former case, we let I denote !(⌃) which is contained in the leaf L. We

slightly extend the interval I to I 0 ⇢ L so that I 0 still becomes an embedded interval

contained in L. The preimage ��1
(I 0) is a disjoint union of a sequence of intervals

[⌧k, ⌧k+1] with · · · < ⌧�1 < ⌧0 < ⌧1 < · · · for k 2 Z. Fix any single interval, say,

[⌧0, ⌧1] ⇢ R.
We denote by ��1

: I 0 ! [⌧0, ⌧1] ⇢ R the inverse of the parametrisation �
restricted to [⌧0, ⌧1]. Then by construction ��1

(I) \ [⌧0, ⌧1] ⇢ (⌧0, ⌧1).
Now we denote by t the standard coordinate function of R and consider the

composition f := ��1 � w : ⌃ ! R. It follows that f defines a smooth function on

⌃ satisfying

� � f = w

on ⌃ by construction. Then recalling �̇ = X�(�), we obtain

w⇤� = f⇤
(�⇤�) = f⇤

(dt) = df.

Therefore �f = �df = �w⇤� = 0, i.e., f is a harmonic function on the closed

surface ⌃ and so must be a constant function. This in turn implies w⇤� = 0. Then

dw = d⇡w+w⇤�X�(w) = 0+0 = 0 i.e., w is a constant map which contradicts the

standing hypothesis. Therefore the map w must be constant unless the image of w
wraps up a closed Reeb orbit.

⇤

4. Calculation of the Laplacian of ⇡-harmonic energy density

In this section, we use the contact triad connection to derive some identities re-

lated to the ⇡-harmonic energy for contact Cauchy–Riemann maps. Our derivation

is based on coordinate-free tensorial calculations. The contact triad connection fits

well for this purpose which will be seen clearly in this section.

We start with looking at the (Hodge) Laplacian of the ⇡-harmonic energy density

of an arbitrary smooth map w :

˙

⌃ ! M , which is not necessarily contact Cauchy–

Riemann, i.e., in the o↵-shell level in physics terminology. As the first step, we

apply the standard Weitzenböck formula to the connection r⇡
on T ⇤

˙

⌃⌦w⇤⇠ that

is induced by the the pull-back connection on bundle w⇤⇠ and the Levi-Civita
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connection on T ˙

⌃, and obtain the following formula

�1

2

�e⇡(w) = |r⇡
(d⇡w)|2 � h�r⇡

d⇡w, d⇡wi+K · |d⇡w|2 + hRicr
⇡

(d⇡w), d⇡wi.

(4.1)

Here e⇡ := e⇡(w), K is the Gaussian curvature of

˙

⌃, and Ric

r⇡

is the Ricci tensor

of the connection r⇡
on the vector bundle w⇤⇠. (For readers’ convenience, we give

the proof of (4.1) in Appendix A. For the basic di↵erential notations, such as dr,

�r etc., we also refer readers to that section if necessary.)

Next we derive an important expression for dr
⇡

d⇡w in the o↵-shell level, which

is the analog to a similar formula [11, Lemma 7.3.2] in the symplectic context.

Lemma 4.1. Let w :

˙

⌃ ! M be any smooth map. Denote by T⇡ the torsion tensor
of r⇡. Then as a two form with values in w⇤⇠, dr

⇡

(d⇡w) has the expression

dr
⇡

(d⇡w) = T⇡
(⇧dw,⇧dw) + w⇤� ^

✓
1

2

(LX�J) Jd
⇡w

◆
. (4.2)

Proof. For given ⇠1, ⇠2 2 �(T⌃), evaluate dr
⇡

(d⇡w)(⇠1, ⇠2) as

dr
⇡

(d⇡w)(⇠1, ⇠2)

= (r⇡
⇠1(⇡dw))(⇠2)� (r⇡

⇠2(⇡dw))(⇠1)

=

�
r⇡

⇠1(⇡dw(⇠2))� ⇡dw(r⇠1⇠2)
�
�
�
r⇡

⇠2(⇡dw(⇠1))� ⇡dw (r⇠2⇠1)
�

= ⇡
⇣
(r⇠1(dw(⇠2))�r⇠1(�(dw(⇠2))X�))� (r⇠2(dw(⇠1))�r⇠2(�(dw(⇠1))X�))

�dw (r⇠1⇠2 �r⇠1⇠2)
⌘

= ⇡ (r⇠1(dw(⇠2))�r⇠2(dw(⇠1))� [dw(⇠1), dw(⇠2)])

�r⇠1(�(dw(⇠2))X�) +r⇠2(�(dw(⇠1))X�)

⌘
= ⇡(T (dw(⇠1), dw(⇠2))� �(dw(⇠2))r⇠1X� � ⇠1[�(dw(⇠2))]X�

+�(dw(⇠1))r⇠2X� + ⇠2[�(dw(⇠1))]X�

⌘
= ⇡(T (dw(⇠1), dw(⇠2)))� �(dw(⇠2))r⇠1X� + �(dw(⇠1))r⇠2X�

= T⇡
(⇧dw(⇠1),⇧dw(⇠2))

+

1

2

�(dw(⇠2))J(LX�J)⇡dw(⇠1)�
1

2

�(dw(⇠1))J(LX�J)⇡dw(⇠2)

= T⇡
(⇧dw(⇠1),⇧dw(⇠2))

�1

2

�(dw(⇠2))(LX�J)J⇡dw(⇠1) +
1

2

�(dw(⇠1))(LX�J)J⇡dw(⇠2).

Here we used (2.2) and Axiom (3) for the last second equality. Rewrite the above

result as

dr
⇡

(d⇡w) = T⇡
(⇧dw,⇧dw) + w⇤� ^

✓
1

2

(LX�J) Jd
⇡w

◆
for any w, and we have finished the proof. ⇤

We warn that readers should not get confused with the wedge product we have

used here, which is the wedge product for forms in the usual sense, i.e., (↵1 ⌦ ⇣) ^
↵2 = (↵1 ^ ↵2)⌦ ⇣ for ↵1,↵2 2 ⌦

⇤
(P ) and ⇣ a section of E. This is not the wedge

product defined in Appendix B.
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We now restrict the above lemma to the case of contact Cauchy–Riemmann

maps, i.e., maps satisfying @
⇡
w = 0. In [11, Theorem 7.3.4] the author proves that

for any standard J-holomorphic map u in an almost Kähler manifold, the u⇤TM -

valued one-form du is harmonic with respect to the canonical connection. Now the

following Theorem 4.2 is its contact analogue, which describes how much d⇡w(=
@⇡w) deviates from being a w⇤⇠-valued harmonic one-form. The formula explicitly

calculates the di↵erence, which is caused by Reeb projection and corresponds to

the second term of (4.2).

As an immediate corollary of the previous lemma applied to the contact Cauchy–

Riemann maps, we derive the following formula, calling it the fundamental equation.

Theorem 4.2 (Fundamental Equation). Let w be a contact Cauchy–Riemann map,

i.e., a solution of @
⇡
w = 0. Then

dr
⇡

(d⇡w) = dr
⇡

(@⇡w) = �w⇤� � j ^
✓
1

2

(LX�J) @
⇡w

◆
. (4.3)

Proof. The first equality follows since d⇡w = @⇡w for the solution w. Also notice

that being a contact Cauchy–Riemann map implies that

T⇡
(⇧dw,⇧dw) = T⇡

(@⇡w, @⇡w) = 0,

which is due to the torsion T⇡|⇠ being of (0, 2)-type (in particular, having vanishing

(1, 1)-component). Furthermore we write (4.2) as

dr
⇡

(d⇡w) = w⇤� ^
✓
1

2

(LX�J) J@
⇡w

◆
= w⇤� ^

✓
1

2

(LX�J) @
⇡w

◆
� j

= �w⇤� � j ^
✓
1

2

(LX�J) @
⇡w

◆
,

using the identity J@⇡w = @⇡w � j. ⇤

Corollary 4.3 (Fundamental Equation in Isothermal Coordinates). Let (⌧, t) be
an isothermal coordinates. Write ⇣ := ⇡ @w

@⌧ as a section of w⇤⇠ ! M . Then

r⇡
⌧ ⇣ + Jr⇡

t ⇣ �
1

2

�(
@w

@t
)(LX�J)⇣ +

1

2

�(
@w

@⌧
)(LX�J)J⇣ = 0. (4.4)

Proof. We denote ⇡ @w
@t by ⌘. By the isothermality of the coordinate (⌧, t), we have

J @
@⌧ =

@
@t . Using the (j, J)-linearity of d⇡w, we derive

⌘ = dw⇡
(

@

@t
) = dw⇡

(j
@

@⌧
) = Jdw⇡

(

@

@⌧
) = J⇣.

Now we evaluate each side of (4.3) against (

@
@⌧ ,

@
@t ). For the left hand side, we

get

r⇡
⌧ ⌘ �r⇡

t ⇣ = r⇡
⌧ J⇣ �r⇡

t ⇣ = Jr⇡
⌧ ⇣ �r⇡

t ⇣.

For the right hand side, we get

1

2

�(
@w

@⌧
)(LX�J)J⌘ � 1

2

�(
@w

@t
)(LX�J)J⇣

= �1

2

�(
@w

@⌧
)(LX�J)⇣ �

1

2

�(
@w

@t
)(LX�J)J⇣
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where we use the equation ⌘ = J⇣ for the equality. By setting them equal and

applying J to the resulting equation using the fact that LX�J anti-commutes with

J , we obtain the equation. ⇤
The fundamental equation in cylindrical coordinates (⌧, t) 2 [0,1) ⇥ S1

plays

an important role in the derivation of the exponential decay of the derivatives at

cylindrical ends. (See Part II of [14].)

Remark 4.4. The fundamental equation in cylindrical coordinates is nothing but

the linearization of the contact Cauchy–Riemann equation in the direction

@
@⌧ .

The following lemmas will be needed in the calculation of h�r⇡

d⇡w, d⇡wi for

contact Cauchy–Riemann maps d⇡w = @⇡w.

Lemma 4.5. For any smooth map w, we have

hdr
⇡

�r
⇡

@⇡w, @⇡wi = h�r
⇡

dr
⇡

@⇡w, @⇡wi.
As a consequence,

h�r⇡

@⇡w, @⇡wi = 2h�r
⇡

dr
⇡

@⇡w, @⇡wi. (4.5)

Proof.

h�r
⇡

dr
⇡

@⇡w, @⇡wi = �h⇤dr
⇡

⇤ dr
⇡

@⇡w, @⇡wi
= �hdr

⇡

⇤ dr
⇡

@⇡w, ⇤@⇡wi
= �hdr

⇡

⇤ dr
⇡

@⇡w,�@⇡w � ji (4.6)

= hdr
⇡

⇤ dr
⇡

@⇡w, J@⇡wi
= �hJdr

⇡

⇤ dr
⇡

@⇡w, @⇡wi
= �hdr

⇡

⇤ dr
⇡

J@⇡w, @⇡wi (4.7)

= �hdr
⇡

⇤ dr
⇡

@⇡w � j, @⇡wi
= hdr

⇡

⇤ dr
⇡

⇤ @⇡w, @⇡wi (4.8)

= hdr
⇡

�r
⇡

@⇡w, @⇡wi.
Here for (4.6) and (4.8), we use ⇤↵ = �↵ � j for any 1-form ↵. For (4.7), we use

the fact that the connection is J-linear. ⇤
The following formula expresses h�r⇡

d⇡w, d⇡wi, which involves the third deriv-

ative of w, in terms of terms involving derivatives of order at most two.

Lemma 4.6. For any contact Cauchy–Riemann map w,

�h�r⇡

d⇡w, d⇡wi = h�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], d⇡wi. (4.9)

Furthermore we can write

�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w]

= � ⇤ h(r⇡
(LX�J))@

⇡w,w⇤�i
� ⇤ h(LX�J)r⇡@⇡w,w⇤�i � ⇤h(LX�J)@

⇡w,rw⇤�i. (4.10)

Proof. The first equality (4.9) immediately follows from the fundamental equation,

Theorem 4.2, and (4.5) of Lemma 4.5 for contact Cauchy–Riemann maps.

For the second equality (4.10), using the identities �r
⇡

= �⇤dr⇡⇤ for two-forms

and ⇤↵ = �↵ � j for general one-form ↵, we rewrite

�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w] = � ⇤ dr

⇡

⇤ [(LX�J)@
⇡w ^ (⇤w⇤�)],
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and then apply the definition of the Hodge ⇤ (see Appendix B) to the expression

⇤[(LX�J)@
⇡w ^ (⇤w⇤�)], and get

�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w]

= � ⇤ dr
⇡

h(LX�J)@
⇡w,w⇤�i

= � ⇤ h(r⇡
(LX�J))@

⇡w,w⇤�i � ⇤h(LX�J)r⇡@⇡w,w⇤�i � ⇤h(LX�J)@
⇡w,rw⇤�i.

This finishes the proof. ⇤

Here in the above lemma h·, ·i denotes the inner product induced from h, i.e.,
h↵1 ⌦ ⇣,↵2i := h(↵1,↵2)⇣, for any ↵1,↵2 2 ⌦

k
(P ) and ⇣ a section of E. This inner

product should not be confused with the inner product of the vector bundles.

By applying �r
⇡

to (4.3) and the resulting expression of�

r⇡

(d⇡w) = �

r⇡

(@⇡w)
thereinto and (4.9), we can convert the Weitzenböck formula (4.1) into

�1

2

�e⇡(w) = |r⇡
(@⇡w)|2 +K|@⇡w|2 + hRicr

⇡

(@⇡w), @⇡wi

+h�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi (4.11)

for any contact Cauchy–Riemann map, i.e., any map w satisfying @
⇡
w = 0.

5. A priori estimates for contact instantons

In this section, we derive some basic estimates for the (full) energy density |dw|2
of contact instantons w. These estimates are important for the derivation of local

regularity and ✏-regularity needed for the compactification of certain moduli space.

(See [12] for further study along this lines.)

5.1. W 2,2-estimates. Recall from the last section that we have derived the follow-

ing identity

�1

2

�e⇡(w) = |r⇡
(@⇡w)|2 +K|@⇡w|2 + hRicr

⇡

(@⇡w), @⇡wi

+h�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi. (5.1)

By (4.10), the first entry in h�r⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi can be written

as

�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w]

= � ⇤ h(r⇡
(LX�J))@

⇡w,w⇤�i � ⇤h(LX�J)r⇡@⇡w,w⇤�i � ⇤h(LX�J)@
⇡w,rw⇤�i.

(5.2)

Hence we get a bound for the last term h�r⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi by

|h�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi|

 kr⇡
(LX�J)kC0(M)|dw|4

+|h(LX�J)r⇡
(@⇡w), w⇤�i||dw|+ |h(LX�J)@

⇡w,rw⇤�i||dw|.
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We further bound the last two terms of (5.2) via

|h(LX�J)r⇡
(@⇡w), w⇤�i||dw|  kLX�JkC0(M)|r⇡

(@⇡w)||dw|2

 1

2c
|r⇡

(@⇡w)|2 + c

2

kLX�Jk2C0(M)|dw|4

and

|h(LX�J)@
⇡w,rw⇤�i||dw|  1

2c
|rw⇤�|2 + c

2

kLX�Jk2C0(M)|dw|4

similarly. Here c is any positive constant.

Finally, we get the upper bound for

|h�r
⇡

[(w⇤� � j) ^ (LX�J)@
⇡w], @⇡wi|

 1

2c

�
|r⇡

(@⇡w)|2 + |rw⇤�|2
�
+

⇣
ckLX�Jk2C0(M) + kr⇡

(LX�J)kC0(M)

⌘
|dw|4

(5.3)

for any contact Cauchy–Riemann map w.
Now we consider contact instantons which are Cauchy–Riemann maps satisfy-

ing �w⇤� = 0 in addition. Using the Bochner–Weitzenböck formula (applied to

di↵erential forms on a Riemann surface), we get the following identity

�1

2

�|w⇤�|2 = |rw⇤�|2 +K|w⇤�|2 � h�(w⇤�), w⇤�i. (5.4)

Write

�(w⇤�) = d�(w⇤�) + �d(w⇤�),

in which the first term vanishes since �w⇤� = �d(w⇤� � j) = 0. Then

h�(w⇤�), w⇤�i = h�d(w⇤�), w⇤�i

= �1

2

h⇤d|@⇡w|2, w⇤�i

= �h⇤hr⇡@⇡w, @⇡wi, w⇤�i.
Similarly as in the previous estimates for the Laplacian term of @⇡w, we can bound

|� h�(w⇤�), w⇤�i| = |h⇤hr⇡@⇡w, @⇡wi, w⇤�i|
 |r⇡@⇡w||dw|2

 1

2c
|r⇡@⇡w|2 + c

2

|dw|4. (5.5)

At last, we calculate the total energy density which is defined as

e(w) := |dw|2 = e⇡(w) + |w⇤�|2.
Summing up (5.1) and (5.4), and applying the estimates (5.3) and (5.5) respectively,

we obtain the following inequality for any contact instanton w

�1

2

�e(w)

�
✓
1� 1

c

◆
|r⇡

(@⇡w)|2 +
✓
1� 1

2c

◆
|rw⇤�|2

�
⇣
ckLX�Jk2C0(M) + kr⇡

(LX�J)kC0(M) +
c

2

+ kRickC0(M)

⌘
e(w)2 +Ke(w)

(5.6)

� �
⇣
ckLX�Jk2C0(M) + kr⇡

(LX�J)kC0(M) +
c

2

+ kRickC0(M)

⌘
e(w)2 +Ke(w),
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for any c > 1. We fix c = 2 and get the following

Theorem 5.1. For a contact instanton w, we have the following di↵erential in-
equality

�e(w)  Ce(w)2 + kKkL1(⌃̇)e(w),

where

C = 2kLX�Jk2C0(M) + kr⇡
(LX�J)kC0(M) + kRickC0(M) + 1

which is a positive constant independent of w.

Once we have this di↵erential inequality, we obtain the following interior density

estimates by the standard argument from [17]. (Also see the proof of [11, Theorem

8.1.3] given in the context of pseudoholomorphic curves.)

Corollary 5.2 (✏-regularity and interior density estimate). There exist constants

C, "0 and r0 > 0, depending only on J and the Hermitian metric h on ˙

⌃, such that
for any C1 contact instanton w :

˙

⌃ ! M with

E(r0) :=
1

2

Z
D(r0)

|dw|2  "0,

and discs D(2r) ⇢ Int⌃ with 0 < 2r  r0, w satisfies

max

�2(0,r]

 
�2

sup

D(r��)
e(w)

!
 CE(r) (5.7)

for all 0 < r  r0. In particular, letting � = r/2, we obtain

sup

D(r/2)
|dw|2  4CE(r)

r2
(5.8)

for all r  r0.

Now we rewrite (5.6) into✓
1� 1

c

◆
|r⇡

(@⇡w)|2 +
✓
1� 1

2c

◆
|rw⇤�|2

 �1

2

�e(w)�Ke(w)

+

⇣
ckLX�Jk2C0(M) + kr⇡

(LX�J)kC0(M) +
c

2

+ kRickC0(M)

⌘
e2 (5.9)

We want to get a coercive L2
bound for rdw, which consists of the two parts

given below according to the decomposition dw = d⇡w + w⇤�⌦X�.

|rdw|2 = |r(d⇡w) +r(w⇤�⌦X�)|2  2|r(d⇡w)|2 + 2|r(w⇤�⌦X�)|2. (5.10)

For the first term on the right hand side of (5.10), we write

|r(d⇡w)|2 = |r⇡
(d⇡w)|2 + |hr(d⇡w), X�i|2

= |r⇡
(d⇡w)|2 + 1

4

|hd⇡w, (LX�J)Jd
⇡wi|2 (5.11)

 |r⇡
(d⇡w)|2 + 1

4

|LX�J |2|d⇡w|4

 |r⇡
(d⇡w)|2 + 1

4

kLX�Jk2C0(M)|d⇡w|4,
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where (5.11) comes from the metric property of the contact triad connection to-

gether with (2.2).

For the second term on the right hand side of (5.10), we again apply (2.2) and

derive

|r(w⇤�⌦X�)|2 = |(rw⇤�)⌦X� + (w⇤�)⌦rX�|2

= |rw⇤�|2 + |w⇤�|2|1
2

(LX�J)Jd
⇡w|2

 |rw⇤�|2 + 1

4

kLX�Jk2C0(M)|w⇤�|2|d⇡w|2.

Summing up the two terms and going back to (5.10), we get

|r(dw)|2  2|r⇡
(d⇡w)|2 + 2|rw⇤�|2

+

1

2

kLX�Jk2C0(M)|d⇡w|4 +
1

2

kLX�Jk2C0(M)|w⇤�|2|d⇡w|2.(5.12)

Hence from this, we have

|r(dw)|2  2

1� 1
c

✓
1� 1

c

◆
|r⇡

(@⇡w)|2 +
✓
1� 1

2c

◆
|rw⇤�|2

�
+kLX�Jk2C0(M)|dw|4

and combine it with (5.9), we get

|r(dw)|2



(

2c2

c� 1

+ 1)kLX�Jk2C0(M) +
2c

c� 1

⇣
kr⇡

(LX�J)kC0(M) +
c

2

+ kRickC0(M)

⌘�
|dw|4

�2c ·K
c� 1

|dw|2 + c

1� c
�e(w)

for any constant c > 1. We still take c = 2 and get the following coercive estimate

for contact instantons

|r(dw)|2  C1|dw|4 � 4K|dw|2 � 2�e(w) (5.13)

where

C1 := 9kLX�Jk2C0(M) + 4kr⇡
(LX�J)kC0(M) + 4kRickC0(M) + 4

denotes a constant.

The following local a priori estimate can be easily derived from (5.13) by the

standard usage of cut-o↵ function. We give its proof in Appendix C.

Proposition 5.3. For any pair of domains D1 and D2 in ˙

⌃ such that D1 ⇢ D2,

kr(dw)k2L2(D1)
 C1(D1, D2)kdwk2L2(D2)

+ C2(D1, D2)kdwk4L4(D2)

for any contact instanton w, where C1(D1, D2), C2(D1, D2) are some constants
which depend on D1, D2 and (M,�, J), but are independent of w.

We remark that this proposition is nothing but a re-statement of Theorem 1.6

in the introduction.
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5.2. Local W 2+k,2 estimates for k � 1. Starting from the above W 2,2
-estimate,

we proceed to higher W 2+k,2
-estimates inductively. For this purpose, we consider

the decomposition

dw = d⇡w + w⇤�⌦X�

and estimate |rk+1dw| inductively staring from k = 0 which is done in the previous

subsection.

The rest of this subsection will be occupied by the proof of the following theorem.

Theorem 5.4. Let w be a contact instanton. Then for any pair of domains D1 ⇢
D2 ⇢ ˙

⌃ such that D1 ⇢ D2, we haveZ
D1

|(r)

k+1
(dw)|2 

Z
D2

Jk(d
⇡w,w⇤�).

Here Jk is a polynomial function of degree up to 2k+4 with nonnegative coe�cients
of the norms of the covariant derivatives of d⇡w, w⇤� up to 0, . . . , k with degree at
most 2k + 4 whose coe�cients depending on J , � and D1, D2 but independent of
w.

We start with the following lemma

Lemma 5.5. For any k � 0,

rk+1dw = (r⇡
)

k+1d⇡w +rk+1w⇤�⌦X� +Ok(d
⇡w,w⇤�),

where Ok(d⇡w,w⇤�) denotes some tensor living in T k+1⌦⌦

1
(w⇤TM) ⇢ T k+1

1 (w⇤TM).
More specifically Ok(d⇡w,w⇤�) can be written into the form of a polynomial which
consists of monomials of one of the following forms

a · (
O

i=1,··· ,|m|

(r⇡
)

mid⇡w ⌦
O

j=1,··· ,|n|

rnjw⇤�)⌦ d⇡w,

b · (
O

i0=1,··· ,|m|0
(r⇡

)

m0
i0d⇡w ⌦

O
j0=1,··· ,|n|0

rn0
j0w⇤�)⌦X�(w)

with i, j, i0, j0, mi, nj ,m0
i0 , n

0
j0  k and

1  ⌃imi + ⌃jnj  k + 1, 2  ⌃i0m
0
i0 + ⌃j0n

0
j0  k + 1

and a, b are some C1 bounded functions on ˙

⌃.

Proof. For the case k = 0, we compute

rdw = rd⇡w +r(w⇤�⌦X�)

= r⇡d⇡w + hr(d⇡w), X�iX� +rw⇤�⌦X� + w⇤�⌦rX�

= r⇡d⇡w � hd⇡w,rX�iX� + (rw⇤�)⌦X� + w⇤�⌦rX�

= r⇡d⇡w + (rw⇤�)⌦X�(w)

+ w⇤�⌦ 1

2

(LX�J)Jd
⇡w �

⌧
d⇡w,

1

2

(LX�J)Jd
⇡w

�
⌦X�.

It is obviously of the form in our induction assumption with the help of the metric

tensor over M . (Here |m| = 0, |n| = 1, n1 = 1, and |m|0 = 2, m0
1 = m0

2 = 1,

|n|0 = 0.)
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Now assuming the expression for any 0  i  k with k � 0 holds, we show that it

holds for k+1 too. First by the induction hypothesis, rk+1dw can be decomposed

into

rk+1dw = r(rkdw)

= r((r⇡
)

kd⇡w) +r(rkw⇤�⌦X�) +rOk�1(d
⇡w,w⇤�).

We examine them one by one. For the term, we compute

r((r⇡
)

kd⇡w) = (r⇡
)

k+1d⇡w + hr((r⇡
)

kd⇡w), X�i ⌦X�

= (r⇡
)

k+1d⇡w � h(r⇡
)

kd⇡w,rX�i ⌦X�

= (r⇡
)

k+1d⇡w �
⌧
(r⇡

)

kd⇡w,
1

2

(LX�J)Jd
⇡w

�
⌦X�,

where the second term is absorbed into Ok(d⇡w,w⇤�).
For the second term, we obtain

r(rkw⇤�⌦X�) = rk+1w⇤�⌦X� +rkw⇤�⌦rX�

= rk+1w⇤�⌦X� +rkw⇤�⌦ 1

2

(LX�J)Jd
⇡w,

where the second term again goes into Ok(d⇡w,w⇤�).
For the third one, we observe that when we take one more derivative of each

term Ok�1(d⇡w,w⇤�), the result becomes one of the following six types,

(ra)⌦ (

O
i=1,··· ,|m|

(r⇡
)

mid⇡w ⌦
O

j=1,··· ,|n|

rnjw⇤�)⌦ d⇡w (5.14)

a ·r(

O
i=1,··· ,|m|

(r⇡
)

mid⇡w ⌦
O

j=1,··· ,|n|

rnjw⇤�)⌦ d⇡w (5.15)

a · (
O

i=1,··· ,|m|

(r⇡
)

mid⇡w ⌦
O

j=1,··· ,|n|

rnjw⇤�)⌦rd⇡w (5.16)

(rb)⌦ (

O
i0=1,··· ,|m|0

(r⇡
)

m0
i0d⇡w ⌦

O
j0=1,··· ,|n|0

rn0
j0w⇤�)⌦X� (5.17)

b ·r(

O
i0=1,··· ,|m|0

(r⇡
)

m0
i0d⇡w ⌦

O
j0=1,··· ,|n|0

rn0
j0w⇤�)⌦X� (5.18)

b · (
O

i0=1,··· ,|m|0
(r⇡

)

m0
i0d⇡w ⌦

O
j0=1,··· ,|n|0

rn0
j0w⇤�)⌦rX�. (5.19)

The (5.14) and (5.17) live in Ok because we assume ra (so it rb) can be written

as a bounded function tensor along dw = d⇡w + w⇤� ⌦X�. Other four terms live

in Ok because they all raise the order by 1 either via a direct di↵erentiation or via

a usage of the metric property to rewrite

r(r⇡
)

md⇡w = rm+1d⇡w � h(r⇡
)

md⇡w,rX�iX�

followed by the insertion rdwX� =

1
2 (LX�J)Jd

⇡w.
This completes the induction step and hence the proof of the lemma. ⇤

Then applying Proposition 5.3 and using the Cauchy–Schwarz inequality induc-

tively, we immediately get
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Corollary 5.6. For any pair of domains D1 and D2 in ˙

⌃ such that D1 ⇢ D2,

krk+1dwk2L2(D1)
 k(r⇡

)

k+1d⇡wk2L2(D1)
+ krk+1

(w⇤�)k2L2(D1)

+

Z
D2

Gk(d
⇡w,w⇤�)

for any contact instanton w, for another polynomial function of Gk of the type
described in Theorem 5.4

Remark 5.7. Starting from Proposition 5.3, and applying Cauchy–Schwarz in-

equaltiy and the induction, we can further obtain the inequality of the formZ
D2

Gk(d
⇡w,w⇤�)  Ck;D1,D2(kdwk2L2(D2)

, kdwk4L2(D2)
)

where Ck;D1,D2(r, s) is a polynomial function of r, s satisfying Ck;D1,D2(0, 0) = 0.

Now we estimate |(r⇡
)

k+1d⇡w|2 + |rk+1
(w⇤�)|2 inductively. We first denote

Sk = (r⇡
)

kd⇡w, Tk = rk
(w⇤�).

The general Weitzenböck formula (see (C.7) Appendix [8] e.g.) applied to Sk and

Tk respectively, we obtain

|r⇡Sk|2 = �1

2

�|Sk|2 + h�⇡Sk, Ski � h eRSk, Ski (5.20)

|rTk|2 = �1

2

�|Tk|2 + h�Tk, Tki �K|Tk|2. (5.21)

where

eR is a zeroth order operator acting on the sections of w⇤⇠ ⌦ T ⇤
˙

⌃ which

depends only on the curvature of the pull-back connection w⇤r⇡
and the Levi-

Civita connection of (

˙

⌃, h). In particular,

eR is a bounded bilinear form.

Now it remains to prove

Proposition 5.8. For any pair of domains D1 and D2 in ˙

⌃ such that D1 ⇢ D2,

krk+1d⇡wk2L2(D1)
+ krk+1w⇤�k2L2(D1)


Z
D2

Mk(d
⇡w,w⇤�)

for any contact instanton w, where Mk is another polynomial function of the type
described as in Theorem 5.4.

Proof. The k = 0 case is proved by Proposition 5.3.

For k � 1, we first quote the following general lemma whose proof is a direct

calculation which we leave to the readers.

Lemma 5.9. For any ⇠-valued 1-form ↵ over the map w,

dr
⇡

(r⇡
(·)↵) = r⇡

(·)(d
r⇡

↵) + (R⇡
(dw, dw(·))↵)skew (5.22)

where (R⇡
(dw, dw(·))↵)skew is the skew-symmetrization of the bilinear map (⇠1, ⇠2) 7!

R⇡
(dw(⇠1), dw(·))↵(⇠2), with R⇡ the ⇠-projection of the curvature of the triad con-

nection r.

Now we choose and fix a domain D and a smooth non-negative cut-o↵ function

� : D2 ! R, such that D1 ⇢ D ⇢ D ⇢ D2, and � ⌘ 1 on D1, � ⌘ 0 on D2 �D.

Obviously we haveZ
D1

|(r⇡
)

k+1d⇡w)|2 =

Z
D1

|r⇡Sk|2 
Z
D
�2|r⇡Sk|2.



20 YONG-GEUN OH, RUI WANG

On the other hand, applying the Weitzenböck formula similarly as k = 0, we writeZ
D
�2|r⇡Sk|2 = �

Z
D

�2

2

�|Sk|2 +
Z
D
�2h�⇡Sk, Ski �

Z
D
�2h eRSk, Ski,

(5.23)

for k � 1, where D and � are chosen the same as in the proof of Proposition C.1.

Obviously the last term can be bounded by the norm kdwk2k,2;D2
, and so we will

focus on the first two terms henceforth.

Similarly as before we getZ
D
|h�⇡Sk, Ski| 

�
1 + kd�kC0(D)

� Z
D2

(|dr
⇡

Sk|2 + |�r
⇡

Sk|2) + 2

Z
D2

|Sk|2

= 2

�
1 + kd�kC0(D)

� Z
D2

|dr
⇡

Sk|2 + 2

Z
D2

|Sk|2,

(5.24)

where the last equality follows from the J-linearity of r⇡
similarly as for Lemma

4.5. Again the last term

R
D2

|Sk|2 can be bounded by the norm kdwk2k,2;D2
, and so

it remains to focus on

R
D2

|dr⇡

Sk|2.
We first observe the following

Lemma 5.10. For any k � 0, dr
⇡

Sk can be written as a sum of tensors of forms
aij ⌦ Si ⌦ Tj with 0  i, j  k, where aij’s are some C1-bounded sections in

⌦

1
(

˙

⌃)⌦ w⇤TM .

Proof. The proof of this lemma is again by an induction argument. For k = 0, we

have S0 = d⇡w and the fundamental equation (4.3)

dr
⇡

S0 = dr
⇡

d⇡w = �1

2

w⇤� � j ^ (LX�J)d
⇡w.

It can be easily checked

�1

2

w⇤� � j ^ (LX�J)d
⇡w =

1

2

w⇤� ^ (LX�J)Jd
⇡w.

Combining the two, the initial case k = 0 holds. Now suppose the lemma holds for

k � 1 with k � 1. Applying Lemma 5.9, we derive

dr
⇡

Sk = dr
⇡

r⇡Sk�1

= r⇡
(dr

⇡

Sk�1) + (R⇡
(dw, dw(·))Sk�1)

skew. (5.25)

The curvature term is certainly of form required in the lemma (even for k�1 instead

of k) by the induction hypothesis.

On the other hand, for the first term r⇡
(dr

⇡

Sk�1) in (5.25), the induction

hypothesis implies dr
⇡

Sk�1 is a summand of the terms each of which of the form

aij ⌦ Si ⌦ Tj with 0  i, j  k � 1. By di↵erentiating this and applying Lemma

5.5, we have proved the lemma for k. This finishes the proof. ⇤

Using this lemma, we have obtainedZ
D2

|dr
⇡

Sk|2 
Z
D2

Hk(d
⇡w,w⇤�),
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where Hk is some polynomial function of the type as in Theorem 5.4. Combining

the above two terms in (5.24), we have obtained the desired polynomial integral

bound Z
D
|h�⇡Sk, Ski|  Ik(d

⇡w,w⇤�)

again with the same kind of polynomial Ik, which in particular impliesZ
D
�2|h�⇡Sk, Ski|  Ik(d

⇡w,w⇤�). (5.26)

Next we go back to the first term in (5.23), which is �
R
D

�2

2 �|(r⇡
)

kd⇡w|2. For
this one, using similar computation as in Appendix C, one can obtain����Z

D
�2

�|Sk|2
����  1

✏

Z
D
�2|r⇡Sk|2 + ✏

Z
D2

|d�|2|Sk|2

 1

✏

Z
D
�2|r⇡Sk|2 + ✏kd�k2C0(D)

Z
D2

|Sk|2. (5.27)

The second term is bounded by a similar polynomial integral bound, which we

denote by I 0k. Then by substituting this inequality into (5.23), setting ✏ = 1,

using the two polynomial integral bounds from Ik and I 0k, and applying a back-

substitution, we obtainZ
D
�2|r⇡Sk|2  1

2

Z
D
�2|r⇡Sk|2 +

Z
D2

(Ik + I 0k)

which is equivalent to Z
D
�2|r⇡Sk|2  2

Z
D2

(Ik + I 0k).

Therefore we obtainZ
D1

|r⇡Sk|2 
Z
D
�2|r⇡Sk|2  2

Z
D2

(Ik + I 0k).

The treatment for

R
D1

|rTk|2 is similar but much simpler, so we omit details.

These together finish the proof of Proposition 5.8.

⇤

Combining Proposition 5.8 and Corollary 5.6, we have proved Theorem 5.4,

where the polynomial Jk can be taken as the sum of all the polynomials arising

from the proofs of Proposition 5.8 and Corollary 5.6. The order of Jk can be limited

to 2k + 4 with a careful look at the induction steps.

The following is an immediate consequence of Theorem 1.6, Theorem 5.4 and

Remark 5.7.

Corollary 5.11. Any weak solution of equation (3.2) in W 1,4
loc automatically lies

in W 3,2
loc and becomes a classical solution, hence smooth.
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6. Asymptotic behavior of contact instantons

In this section, we study the asymptotic behavior of contact instantons on the

Riemann surface (

˙

⌃, j) associated with a metric h with cylindrical ends. To be

precise, we assume there exists a compact set K⌃ ⇢ ˙

⌃, such that

˙

⌃ � Int(K⌃) is

a disjoint union of punctured disks each of which is isometric to the half cylinder

[0,1) ⇥ S1
or (�1, 0] ⇥ S1

, where the choice of positive or negative cylinders

depends on the choice of analytic coordinates at the punctures. We denote by

{p+i }i=1,··· ,l+ the positive punctures, and by {p�j }j=1,··· ,l� the negative punctures.

Here l = l+ + l�. Denote by �±
i such isometries from cylinders to disks. We first

state our assumptions for the study of the behavior of punctures.

Definition 6.1. Let ˙

⌃ be a punctured Riemann surface with punctures {p+i }i=1,··· ,l+[
{p�j }j=1,··· ,l� equipped with a metric h with cylindrical ends outside a compact

subset K⌃. Let w :

˙

⌃ ! M be any smooth map. We define the total ⇡-harmonic

energy E⇡
(w) by

E⇡
(w) = E⇡

(�,J;⌃̇,h)
(w) =

1

2

Z
⌃̇
|d⇡w|2 (6.1)

where the norm is taken in terms of the given metric h on

˙

⌃ and the triad metric

on M .

We put the following hypotheses in our asymptotic study of the finite energy

contact instanton maps w:

Hypothesis 6.2. Let h be the metric on

˙

⌃ given above. Assume w :

˙

⌃ ! M
satisfies the contact instanton equations (3.2), and

(1) E⇡
(�,J;⌃̇,h)

(w) < 1 (finite ⇡-energy);

(2) kdwkC0(⌃̇) < 1.

Throughout this section, we work locally near one puncture, i.e., on D�
(p)\{p}.

By taking the associated conformal coordinates �+
= (⌧, t) : D�

(p)\{p} ! [0,1)⇥
S1 ! such that h = d⌧2 + dt2, we need only look at a map w defined on the half

cylinder [0,1)⇥ S1 ! M without loss of generality.

The above finite ⇡-energy hypothesis impliesZ
[0,1)⇥S1

|d⇡w|2 d⌧ dt < 1, kdwkC0([0,1)⇥S1) < 1 (6.2)

in these coordinates.

Let w satisfy Hypothesis 6.2. We can associate two natural asymptotic invariants

at each puncture defined as

T :=

1

2

Z
[0,1)⇥S1

|d⇡w|2 +
Z
{0}⇥S1

(w|{0}⇥S1
)

⇤� (6.3)

Q :=

Z
{0}⇥S1

((w|{0}⇥S1
)

⇤� � j). (6.4)

(Here we only look at positive punctures. The case of negative punctures is similar.)

Remark 6.3. For any contact instanton w, since 1
2 |d

⇡w|2 dA = d(w⇤�), by Stokes’

formula,

T =

1

2

Z
[s,1)⇥S1

|d⇡w|2 +
Z
{s}⇥S1

(w|{s}⇥S1
)

⇤�, for any s � 0.
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Moreover, since d(w⇤� � j) = 0, the integralZ
{s}⇥S1

(w|{s}⇥S1
)

⇤� � j, for any s � 0

does not depend on s whose common value is nothing but Q.

We call T the asymptotic contact action and Q the asymptotic contact charge of

the contact instanton w at the given puncture.

For a given contact instanton w : [0,1) ⇥ S1 ! M , we consider the family of

maps ws : [�s,1) ⇥ S1 ! M defined by ws(⌧, t) = w(⌧ + s, t). For any compact

set K ⇢ R, there exists some s0 large enough such that K ⇢ [�s,1) for every

s � s0. For such s � s0, we can also get an [s0,1)-family of maps by defining

wK
s := ws|K⇥S1

: K ⇥ S1 ! M .

The asymptotic behavior of w at infinity can be understood by studying the

limiting behavior of the sequence of maps {wK
s : K ⇥ S1 ! M}s2[s0,1), for each

given compact set K ⇢ R.
First of all, it is easy to check that under Hypothesis 6.2, the family {wK

s :

K ⇥ S1 ! M}s2[s0,1) satisfies the following

(1) @
⇡
wK

s = 0, d((wK
s )

⇤� � j) = 0, for every s 2 [s0,1)

(2) lims!1 kd⇡wK
s kL2(K⇥S1) = 0

(3) kdwK
s kC0(K⇥S1)  kdwkC0([0,1)⇥S1) < 1.

From (1) and (3) together with the compactness of the target manifold M (which

provides a uniform L2
(K ⇥ S1

) bound) and Theorem 1.7, we obtain

kwK
s kW 3,2(K⇥S1)  CK;(3,2) < 1,

for some constant CK;(3,2) independent of s. Then by compactness of the embedding

ofW 3,2
(K⇥S1

) into C1,↵
(K⇥S1

) for some 0 < ↵ < 1, {wK
s : K⇥S1 ! M}s2[s0,1)

is sequentially pre-compact. Therefore, for any sequence sk ! 1, there exists a

subsequence, still denoted by sk, and some limit wK
1 2 C1

(K⇥S1,M) (which may

depend on the subsequence {sk}), such that

wK
sk ! wK

1, as k ! 1,

in the C1
(K ⇥ S1,M)-norm sense. Further, combining this with (2), we get

dwK
sk ! dwK

1 and dwK
1 = (wK

1)

⇤�⌦X�,

and both (wK
1)

⇤� are (wK
1)

⇤� � j are harmonic 1-forms by (1).

Notice that these limiting maps wK
1 have a common extension w1 : R⇥S1 ! M

by a diagonal sequence argument where, one takes a sequence of compact sets K
one including another and exhausting R. Then w1 is C1

, satisfies

kdw1kC0(R⇥S1)  kdw1kC0([0,1)⇥S1) < 1

and d⇡w1 = 0 and hence

dw1 = (w1)

⇤�⌦X�.

Then we derive from Theorem 1.7 that w1 is actually in C1
. Also notice that

both (w1)

⇤� and (w1)

⇤� � j are bounded harmonic 1-forms on R⇥ S1
, and hence

they must be written in the form

(w1)

⇤� = a d⌧ + b dt, (w1)

⇤� � j = b d⌧ � a dt,
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where a, b are some constants. We will show that such a and b are actually related

to T and Q as

a = �Q, b = T.

By taking an arbitrary point r 2 K, since w1|{r}⇥S1
is the limit of some sequence

wsk |{r}⇥S1
in the C1

sense, we derive

b =

Z
{r}⇥S1

(w1|{r}⇥S1
)

⇤� =

Z
{r}⇥S1

lim

k!1
(wsk |{r}⇥S1

)

⇤�

= lim

k!1

Z
{r}⇥S1

(wsk |{r}⇥S1
)

⇤� = lim

k!1

Z
{r+sk}⇥S1

(w|{r+sk}⇥S1
)

⇤�

= lim

k!1
(T � 1

2

Z
[r+sk,1)⇥S1

|d⇡w|2)

= T � lim

k!1

1

2

Z
[r+sk,1)⇥S1

|d⇡w|2 = T ;

�a =

Z
{r}⇥S1

(w1|{r}⇥S1
)

⇤� � j =
Z
{r}⇥S1

lim

k!1
(wsk |{r}⇥S1

)

⇤� � j

= lim

k!1

Z
{r}⇥S1

(wsk |{r}⇥S1
)

⇤� � j

= lim

k!1

Z
{r+sk}⇥S1

(w|{r+sk}⇥S1
)

⇤� � j = Q.

Here in the derivation, we use Remark 6.3.

As we have already seen in the proof of Proposition 3.4, the image of w1 is

contained in a single leaf of the Reeb foliation by the connectedness of [0,1)⇥S1
.

Let � : R ! M be a parametrisation of the leaf so that �̇ = X�(�). Then we can

write w1(⌧, t) = �(s(⌧, t)), where s : R ⇥ S1 ! R and s = �Q ⌧ + T t + c0 since

ds = �Qd⌧ + T dt, where c0 is some constant.

From this we derive that, if T 6= 0, � is a closed orbit of period T . If T = 0 but

Q 6= 0, we can only conclude that � is a Reeb trajectory parameterized by ⌧ 2 R.
Of course, if both T and Q vanish, w1 is a constant map.

In summary, we have given the proof of the following subsequential convergence

theorem. This includes the special case of [9, Theorem 31] given in the framework

of symplectization which corresponds to the case Q = 0, T 6= 0 and K = {0} here.

Besides looking at two constants T and Q, this also strengthens the convergence

statement of [9, Theorem 31] in that the s-coordinates do not enter into the con-

vergence statement or its proof. Moreover, uniform convergence on any compact

subset K ⇥ S1 ⇢ [0,1)⇥ S1
(which enhances the result for K = {0} shown in [9])

is an important ingredient which enables us to follow the three-interval method in

deriving the exponential decay result for the case of Morse–Bott type contact forms

in [15] (see also Part II of [14]).

Theorem 6.4 (Subsequence Convergence). Let w : [0,1) ⇥ S1 ! M satisfy the
contact instanton equations (3.2) and Hypothesis (6.2).

Then for any sequence sk ! 1, there exists a subsequence, still denoted by sk,
and a massless instanton w1(⌧, t) (i.e., E⇡

(w1) = 0) on the cylinder R⇥S1 such
that

lim

k!1
w(sk + ⌧, t) = w1(⌧, t)
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in the Cl
(K ⇥ S1,M) sense for any l, where K ⇢ [0,1) is an arbitrary compact

set.
Furthermore, w1 has the formula w1(⌧, t) = �(�Q ⌧ + T t), where � is some

Reeb trajectory, and for the case of Q = 0 or T 6= 0, the trajectory � is a closed

Reeb orbit of X� with period T .

From the previous theorem, we immediately get the following corollary.

Corollary 6.5. Let w : [0,1) ⇥ S1 ! M satisfy the contact instanton equations
(3.2) and Hypothesis (6.2). Then

lim

s!1

����⇡@w@⌧ (s+ ⌧, t)

���� = 0, lim

s!1

����⇡@w@t (s+ ⌧, t)

���� = 0

lim

s!1
�(

@w

@⌧
)(s+ ⌧, t) = �Q, lim

s!1
�(

@w

@t
)(s+ ⌧, t) = T

and

lim

s!1
|rldw(s+ ⌧, t)| = 0 for any l � 1.

All the limits are uniform for (⌧, t) in K ⇥ S1 with compact K ⇢ R.

Proof. We first consider the first derivative estimate, i.e., the C1
-decay estimate.

If any of the above limits doesn’t hold uniformly (take |⇡ @w
@⌧ (s+ ⌧, t)| for example),

then there exists some ✏0 > 0 and a sequence k ! 1, (⌧j , tj) 2 K ⇥ S1
such that

|⇡ @w
@⌧ (sk + ⌧j , tj)| � ✏0. Then we can take a subsequence limit (⌧j , tj) ! (⌧0, t0)

such that |⇡ @w
@⌧ (sk + ⌧0, t0)| � 1

2✏0 for k large enough.

However, by Theorem 6.4, we can take a subsequence of sk such that w(sk+⌧, t)
converges to �(�Q ⌧ +T t) in a neighborhood of (⌧0, t0) 2 K⇥S1

, in the C1
sense.

Here � is some Reeb trajectory. Then we get lims!1 |⇡ @w
@⌧ (sk + ⌧0, t0)| = 0 and

get a contradiction.

Once we establish this uniform C1
-decay result, the higher order decay result

is an immediate consequence of the uniform local pointwise higher order a priori

estimates on the cylinder from Theorem 5.4. ⇤

Appendix A. The Weitzenböck formula for vector valued forms

In this appendix, we recall the standard Weitzenböck formulas applied to our

current circumstance. A good exposition on the general Weitzenböck formula is

provided in the appendix of [8].

Assume (P, h) is a Riemannian manifold of dimension n with metric h, and D is

the Levi-Civita connection. Let E ! P be any vector bundle with inner product

h·, ·i, and assume r is a connection on E which is compatible with h·, ·i.
For any E-valued form s, calculating the (Hodge) Laplacian of the energy density

of s, we get

�1

2

�|s|2 = |rs|2 + hTrr2s, si,

where for |rs| we mean the induced norm in the vector bundle T ⇤P ⌦ E, i.e.,

|rs|2 =

P
i |rEis|2 with {Ei} an orthonormal frame of TP . Trr2

denotes the

connection Laplacian, which is defined as Trr2
=

P
i r2

Ei,Ei
s, where r2

X,Y :=

rXrY �rrXY .
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Denote by ⌦

k
(E) the space of E-valued k-forms on P . The connection r induces

an exterior derivative by

dr : ⌦

k
(E) ! ⌦

k+1
(E)

dr(↵⌦ ⇣) = d↵⌦ ⇣ + (�1)

k↵ ^r⇣.

It is not hard to check that for any 1-forms, equivalently one can write

dr�(v1, v2) = (rv1�)(v2)� (rv2�)(v1),

where v1, v2 2 TP .

We extend the Hodge star operator to E-valued forms by

⇤ : ⌦

k
(E) ! ⌦

n�k
(E)

⇤� = ⇤(↵⌦ ⇣) = (⇤↵)⌦ ⇣

for � = ↵⌦ ⇣ 2 ⌦

k
(E).

Define the Hodge Laplacian of the connection r by

�

r
:= dr�r + �rdr,

where �r is defined by

�r := (�1)

nk+n+1 ⇤ dr ⇤ .
The following lemma is important for the derivation of the Weitzenböck formula.

Lemma A.1. Assume {ei} is an orthonormal frame of P , and {↵i} is the dual
frame. Then we have

dr =

X
i

↵i ^rei

�r = �
X
i

eicrei .

Proof. Assume � = ↵⌦ ⇣ 2 ⌦

k
(E). Then

dr(↵⌦ ⇣) = (d↵)⌦ ⇣ + (�1)

k↵ ^r⇣

=

X
i

↵i ^rei↵⌦ ⇣ + (�1)

k↵ ^r⇣.

On the other hand,X
i

↵i ^rei(↵⌦ ⇣) =

X
i

↵i ^rei↵⌦ ⇣ + ↵i ^ ↵⌦rei⇣

=

X
i

↵i ^rei↵⌦ ⇣ + (�1)

k↵ ^r⇣,

so we have proved the first statement.

For the second equality, we compute

�r(↵⌦ ⇣) = (�1)

nk+n+1 ⇤ dr ⇤ (↵⌦ ⇣)

= (�↵)⌦ ⇣ + (�1)

nk+n+1 ⇤ (�1)

n�k
(⇤↵) ^r⇣

= �
X
i

eicrei↵⌦ ⇣ +
X
i

(�1)

nk�k+1 ⇤ ((⇤↵) ^ ↵i
)⌦rei⇣

= �
X
i

eicrei↵⌦ ⇣ �
X
i

eic↵⌦rei⇣

= �
X
i

eicrei(↵⌦ ⇣).
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⇤

Theorem A.2 (Weitzenböck Formula). Assume {ei} is an orthonormal frame of
P , and {↵i} is the dual frame. Then when applied to E-valued forms

�

r
= �Trr2

+

X
i,j

↵j ^ (eicR(ei, ej)·)

where R is the curvature tensor of the bundle E with respect to the connection r.

Proof. Since the right hand side of the equality is independent of the choice of

orthonormal basis, and it is a pointwise formula, we can take the normal coordinates

{ei} at a point p 2 P (and {↵i} the dual basis), i.e., hij := h(ei, ej)(p) = �ij and

dhi,j(p) = 0, and prove that the given formula holds at p for such coordinates. For

the Levi-Civita connection, the condition dhi,j(p) = 0 of the normal coordinate is

equivalent to letting �

k
i,j(p) := ↵k

(Deiej)(p) be 0.

For � 2 ⌦

k
(E), using Lemma A.1 we calculate

�rdr� = �
X
i,j

eicrei(↵
j ^rej�)

= �
X
i,j

eic(Dei↵
j ^rej� + ↵j ^reirej�).

At the point p, the first term vanishes, and we get

�rdr�(p) = �
X
i,j

eic(↵j ^reirej�)(p)

= �
X
i

reirei�(p) +
X
i,j

↵j ^ (eicreirej�)(p)

= �
X
i

r2
ei,ei�(p) +

X
i,j

↵j ^ (eicreirej�)(p).

Also,

dr�r� = �
X
i,j

↵i ^rei(ejcrej�)

= �
X
i,j

↵i ^ (ejcreirej�)�
X
i,j

↵i ^ ((Deiej)crej�).

As before, at the point p, the second term vanishes.

Now we sum the two parts dr�r and �rdr and get

�

r�(p) = �
X
i

r2
ei,ei�(p) +

X
i,j

↵j ^ (eicR(ei, ej)�)(p).

⇤

In particular, when acting on zero forms, i.e., sections of E, the second term on

the right hand side vanishes, and there is

�

r
= �Trr2.

When acting on full rank forms, the above also holds by easy checking.

When � 2 ⌦

1
(E), which is the case we use in this article, there is the following
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Corollary A.3. For � = ↵ ⌦ ⇣ 2 ⌦

1
(E), the Weizenböck formula can be written

as

�

r� = �
X
i

r2
ei,ei� +Ric

D⇤
(↵)⌦ ⇣ +Ric

r�,

where Ric

D⇤ denotes the adjoint of RicD, which acts on 1-forms.
In particular, when P is a surface, we have

�

r� = �
X
i

r2
ei,ei� +K · � +Ric

r
(�)

�1

2

�|�|2 = |r�|2 � h�r�,�i+K · |�|2 + hRicr(�),�i, (A.1)

where K is the Gaussian curvature of the surface P , and Ric

r
(�) := ↵⌦⌃i,jR(ei, ej)⇣.

Appendix B. Wedge products of vector-valued forms

In this section, we continue with the setting from Appendix A. To be specific, we

assume (P, h) is a Riemannian manifold of dimension n with metric h, and denote

by D the Levi-Civita connection. E ! P is a vector bundle with inner product

h·, ·i and r is a connection of E which is compatible with h·, ·i.
We remark that we include this section for the sake of completeness of our

treatment of vector valued forms, and the content of this appendix is not used in

any section of this article. Actually one can derive exponential decay using the

di↵erential inequality method from the formulas we provide here. We leave the

proof to interested reader.

The wedge product of forms can be extended to E-valued forms by defining

^ : ⌦

k1
(E)⇥ ⌦

k2
(E) ! ⌦

k1+k2
(P )

�1 ^ �2 = h⇣1, ⇣2i↵1 ^ ↵2,

where �1 = ↵1 ⌦ ⇣1 2 ⌦

k1
(E) and �2 = ↵2 ⌦ ⇣2 2 ⌦

k2
(E) are E-valued forms.

Lemma B.1. For �1,�2 2 ⌦

k
(E),

h�1,�2i = ⇤(�1 ^ ⇤�2).

Proof. Write �1 = ↵1 ⌦ ⇣1 and �2 = ↵2 ⌦ ⇣2. Then

⇤(�1 ^ ⇤�2) = ⇤
�
(↵1 ⌦ ⇣1) ^ ((⇤↵2)⌦ ⇣2)

�
= ⇤(h⇣1, ⇣2i↵1 ^ ⇤↵2)

= h⇣1, ⇣2i ⇤ (↵1 ^ ⇤↵2)

= h⇣1, ⇣2ih(↵1,↵2)

= h�1,�2i.

⇤

The following lemmas exploit the compatibility of r with the inner product h·, ·i.

Lemma B.2.

d(�1 ^ �2) = dr�1 ^ �2 + (�1)

k1�1 ^ dr�2,

where �1 2 ⌦

k1
(E) and �2 2 ⌦

k2
(E) are E-valued forms.
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Proof. We write �1 = ↵1 ⌦ ⇣1 and �2 = ↵2 ⌦ ⇣2 and calculate

d(�1 ^ �2) = d(h⇣1, ⇣2i↵1 ^ ↵2)

= dh⇣1, ⇣2i ^ ↵1 ^ ↵2 + h⇣1, ⇣2i d(↵1 ^ ↵2)

= hr⇣1, ⇣2i ^ ↵1 ^ ↵2 + h⇣1,r⇣2i ^ ↵1 ^ ↵2

+h⇣1, ⇣2i d↵1 ^ ↵2 + (�1)

k1h⇣1, ⇣2i↵1 ^ d↵2,

while

dr�1 ^ �2 = dr(↵1 ⌦ ⇣1) ^ (↵2 ⌦ ⇣2)

= (d↵1 ⌦ ⇣1 + (�1)

k1↵1 ^r⇣1) ^ (↵2 ⌦ ⇣2)

= h⇣1, ⇣2i d↵1 ^ ↵2 + hr⇣1, ⇣2i ^ ↵1 ^ ↵2.

A similar calculation shows that

(�1)

k1�1 ^ dr�2 = (�1)

k1h⇣1, ⇣2i↵1 ^ d↵2 + h⇣1,r⇣2i ^ ↵1 ^ ↵2.

Summing these up, we get the equality we want. ⇤

Lemma B.3. Assume �0 2 ⌦

k
(E) and �1 2 ⌦

k+1
(E), then we have

hdr�0,�1i � (�1)

n(k+1)h�0, �
r�1i = ⇤d(�0 ^ ⇤�1).

Proof. We calculate

⇤d(�0 ^ ⇤�1) = ⇤
�
dr�0 ^ ⇤�1 + (�1)

k�0 ^ (dr ⇤ �1)
�

= hdr�0,�1i+ (�1)

n ⇤
�
�0 ^ ⇤(⇤dr ⇤ �1

�
= hdr�0,�1i � (�1)

n(k+1)h�0, �
r�1i.

⇤

Appendix C. Local coercive estimates

In this appendix, we give the proof of Proposition 5.3 which we restate here.

Proposition C.1. For any open domains D1 and D2 in ˙

⌃ satisfying D1 ⇢ D2,

kr(dw)k2L2(D1)
 C1(D1, D2)kdwk2L2(D2)

+ C2(D1, D2)kdwk4L4(D2)

for any contact instanton w, where C1(D1, D2) and C2(D1, D2) are some constants,
which are independent of w.

Proof. For the pair of given domains D1 and D2, we choose another domain D such

that D1 ⇢ D ⇢ D ⇢ D2 and a smooth cut-o↵ function � : D2 ! R such that � � 0

and � ⌘ 1 on D1, � ⌘ 0 on D2 �D. Multiplying (5.13) by �2
and integrating over

D, we getZ
D1

|r(dw)|2 
Z
D
�2|r(dw)|2

 C1

Z
D
�2|dw|4 � 4

Z
D
K�2|dw|2 � 2

Z
D
�2

�e

 C1

Z
D2

|dw|4 + 4kKkL1(⌃̇)

Z
D2

|dw|2 � 2

Z
D
�2

�e

where C1 is the same constant as the one appearing in (5.13).
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We now deal with the last term

R
D2

�2
�e. Since

�2
�e dA = ⇤(�2

�e) = �2 ⇤�e = ��2d ⇤ de
= �d(�2 ⇤ de) + 2�d� ^ (⇤de),

we get Z
D
�2

�e dA =

Z
D
2�d� ^ (⇤de)

by integrating the identity over D and applying Stokes’ formula. Here we use the

fact that � vanishes on D2 �D, in particular on @D.

To deal with the right hand side, we have

|
Z
D
�d� ^ (⇤de)| = |

Z
D
�hd�, dei dA| 

Z
D
|�||hd�, dei dA| 

Z
D
|�||d�||de| dA.

Notice also

|de| = |dhdw, dwi| = 2|hr(dw), dwi|  2|r(dw)||dw|.
Hence

|
Z
D
�d� ^ (⇤de)| 

Z
D
2|�||d�||r(dw)||dw| dA

 1

✏

Z
D
�2|r(dw)|2 dA+ ✏

Z
D
|d�|2|dw|2 dA

 1

✏

Z
D
�2|r(dw)|2 dA+ ✏kd�k2C0(D)

Z
D
|dw|2 dA

Then we can sum all the estimates above and getZ
D
�2|r(dw)|2 

Z
D

2�2

✏
|r(dw)|2

+

⇣
4kKkL1(⌃̇) + 2kd�kC0(D)✏

⌘Z
D2

|dw|2

+C1

Z
D2

|dw|4.

We take ✏ = 4. ThenZ
D1

|r(dw)|2 
Z
D
�2|r(dw)|2


⇣
8kKkL1(⌃̇) + 16kd�k2C0(D)

⌘Z
D2

|dw|2 + 2C1

Z
D2

|dw|4.

By setting C1(D1, D2) = 8kKkL1(⌃̇) + 16kd�k2C0(D) and C2(D1, D2) = 2C1 with

C1 the constant given in (5.13), we have finished the proof. ⇤
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