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CHAPTER 1

The real number system

Main objects to study in analysis: Sequences, series, and functions. We are going to discuss their
convergence, continuity, differentiation, and integration. All of these are based on accurate definition for
numbers.

Outline for lecture 1, 2: We introduce number systems ℤ → ℚ → ℝ(→ ℂ).

1. Rational numbers ℚ

As we are familiar with, integers include numbers ⋯ ,−3,−2,−1, 0, 1, 2, 3,⋯. We use ℤ to denote
the set of integers. Over ℤ, we can do +,−, ⋅. However, ℤ is not closed under division, which means
when you take two integers a, b ∈ ℤ to do division a∕b, the outcome in general is not an integer any
more. This motivates us to introduce rational numbers.

Rational numbers ℚ can be introduced following a general procedure called the construction of field
of fractions. Every rational number can be written as

m
n
, m, n ∈ ℤ, n ≠ 0.

Moreover, every nonzero rational number can be uniquely written as
p
q
, p ∈ ℤ+, q ∈ ℤ∗, gcd(p, q) = 1.

E.g., −1812 = 3
−2 .

1.1. ℚ is a field. We explain the meaning of a field using ℚ as an example.

PROPOSITION 1.1. (ℚ,+, ⋅) is a field, which means:

∙ (ℚ,+) is an abelian group with identity 0:
– ℚ is closed under addition + (+ is a binary operation over ℚ).
– Addition + is associative: (a + b) + c = a + (b + c).
– Addition + has identity element, which is zero: a + 0 = 0 + a = a.
– Any element has inverse element: a + (−a) = (−a) + a = 0.
– Addition + is commutative: a + b = b + a.

∙ (ℚ,+, ⋅) is a commutative, unital ring:
– ℚ is closed under multiplication ⋅ (⋅ is a binary operation over ℚ).
– Multiplication ⋅ is associative: (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).
– Multiplicaton ⋅ has unity element, which is 1: a ⋅ 1 = 1 ⋅ a = a.
– Multiplication ⋅ is commutative: a ⋅ b = b ⋅ a.
– Addition and multiplication satisfy distribution law: (a + b) ⋅ c = a ⋅ c + b ⋅ c.

∙ Any nonzero element has multiplication inverse: a ⋅ 1
a
= 1

a
⋅ a = 1, for any a ≠ 0.

EXAMPLE 1.2. (ℤ,+, ⋅) is a commutative, unital ring, but it is not a field.

PROOF. (1) Check (ℤ,+, ⋅) is a commutative, unital ring.
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6 1. THE REAL NUMBER SYSTEM

(2) The number 2 ∈ ℤ (in fact, every nonzero number except ±1) has no multiplication inverse in
ℤ.

�

1.2. ℚ is an ordered set.

DEFINITION 1.3. A set X is called an ordered set with an order ≺, if

(1) For any two elements a, b ∈ X, one and only one of the following three is true:
∙ a ≺ b;
∙ b ≺ a;
∙ a = b.

(2) If a ≺ b and b ≺ c, then a ≺ c.

EXAMPLE 1.4. Define for any a, b ∈ ℚ, a ≺ b if and only if a− b is a negative number. Then check
that (ℚ, ≺) is an ordered set.

PROOF. Since a rational number must be one and only one of the following types: positive, negative
or zero, Property (1) is satisfied. For (2), if a − b and b − c are both negative, then

a − c = (a − b) + (b − c)

is also negative. �

In fact, the order ≺ is just less than < here.

Similarly, we can define ≺ on ℚ as “greater than" >.

EXERCISE 1.5. Check that (ℚ, ≺), with ≺ defined as >, is an ordered set.

LEMMA 1.6. Any subset of an ordered set is also ordered.

EXAMPLE 1.7. (2ℤ, ⊂) is not an ordered set but only a partial ordered set.

The next definition is about the compatibility of the field structure and the order.

DEFINITION 1.8. An field (X,+, ⋅) is an ordered field, if over X is ordered by ≺ and the followings
two conditions hold:

(1) If x ≺ y, z ∈ X, then x + z ≺ y + z;
(2) If 0 ≺ x and 0 ≺ y, then 0 ≺ x ⋅ y.

We use (X,+, ⋅;≺) to denote the ordered field.

Check that (ℚ,+, ⋅;<) is an ordered field, but (ℚ,+, ⋅;>) is not. From now on, when we mention ℚ,
we always means the set of rational number with the prescribed order field structure (ℚ,+, ⋅;<).

For an ordered set, we can talk about upper (lower) bounds and least upper (greatest lower) bounds
for its subsets.

DEFINITION 1.9. Assume S is a subset of an order set (X,<).

(1) If an element x ∈ X satisfies that any a ∈ S, a ≤ x, then call x an upper bound of subset S.
(2) If an element x ∈ X satisfies that any a ∈ S, x ≤ a, then call x a lower bound of subset S.

EXAMPLE 1.10. (1) Find an upper bound and a lower bound of {x ∈ ℤ|x2 ≤ 2} ⊂ ℤ.
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(2) Find an upper bound and a lower bound of {x ∈ ℚ|x2 ≤ 2} ⊂ ℚ.
Are there a smallest upper bound or a biggest lower bound? For (1), the answers are yes, but for (2)

are no.

DEFINITION 1.11. (1) Assume S is a subset of an order set (X,<). If x0 ∈ X is an upper
bound of S and any x < x0 is not an upper bound of S, then we call x0 the least upper bound
of S. The least upper bound is also called the supremum of S and written as supX S.

(2) Assume S is a subset of an order set (X,<). If x0 ∈ X is a lower bound of S and any x > x0
is not a lower bound of S, then we call x0 the greatest lower bound of S. The greatest lower
bound is also called the infimum of S and written as infX S.

LEMMA 1.12. The least upper bound or the greatest lower bound is unique if exists.

PROOF. Assume both x1 and x2 are supremums of S ⊂ X. Then x1 is an upper bound of S and
hence must have x2 ≤ x1 since x2 is the least upper bound (This is because if x1 < x2, since x2 is the
least upper bound, x1 can not be an upper bound which contradicts with the fact that x1 is in fact an
upper bound.). Similarly, x1 ≤ x2, and this shows x1 = x2. �

The above example shows that not every subset of an ordered set has supremum or infimum, e.g.,
supℚ{x ∈ ℚ|x2 ≤ 2} does not exist. We now give a rigorous proof of it.

PROOF. Assume supℚ{x ∈ ℚ|x2 ≤ 2} exists and we denote it by x0. Since 1 ∈ {x ∈ ℚ|x2 ≤ 2},
we know x0 > 0.

First, we notice that x20 ≠ 2. This is because if x20 = 2, we can write

x0 =
p
q
, p, q ∈ ℤ∗, gcd(p, q) = 1.

Then it follows
p2 = 2q2

and then p must be a multiple of 2. Write p = 2k, k ∈ ℤ∗, then we have

2k2 = q2,

and then q is also a multiple of q. This shows that the greatest common divisor of p and q is a multiple
of 2, which contradicts with the assumption that gcd(p, q) = 1.

Next we consider the number x designed as

x ∶= x0 −
x20 − 2
x0 + 2

=
2x0 + 2
x0 + 2

∈ ℚ+.

We see from a short calculation that

x2 − 2 =
2(x20 − 2)

(x0 + 2)2
.

Now if x20 < 2, then x0 < x, and x2 < 2, this contradicts with the assumption that x0 is an upper
bound since x lives in the set {x ∈ ℚ|x2 ≤ 2}.

If x20 > 2, then x < x0 and x2 > 2. It follows that x is also an upper bound of {x ∈ ℚ|x2 ≤ 2}, since
otherwise if there is some a > x > 0, then a2 > x2 > 2 will contradict with a is from {x ∈ ℚ|x2 ≤ 2}.
Then this contradicts with the assumption that x0 is the least upper bound.

Above all, such x0 doesn’t exist. In another word, supℚ{x ∈ ℚ|x2 ≤ 2} doesn’t exist. �

EXERCISE 1.13. Show that see that {x ∈ ℚ|x2 ≤ 2} = {x ∈ ℚ|x2 < 2}.
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DEFINITION 1.14. We say an ordered set (X,≺) satisfies the least-upper-bound (l.u.b.) property if
any nonempty subset of X with an upper bound has a least upper bound.

We just saw that (ℚ, <) doesn’t satisfy the l.u.b. property.

QUESTION 1.15. If you feel unfair that why we don’t use the greatest-lower-bound (g.l.b.) property
instead of the least-upper-bound property, then try to show the following statement which says that in
fact these two properties are equivalent to each other.

To be more specific, we define similarly: Say an ordered set (X,≺) satisfies the greatest-lower-bound
(g.l.b.) property if any nonempty subset of X with a lower bound has the greatest lower bound. Then
please show that (X,≺) satisfies the l.u.b. property if and only if (X,≺) satisfies the g.l.b. property.

The defect that (ℚ, <) doesn’t satisfy the l.u.b. property is the main motivation that we want to extend
ℚ to a larger number system. So we introduce real numbers next.

2. Real numbers ℝ

2.1. Dedekind cuts. The way of introducing real numbers via cuts was given by Dedekind in 1872.
In the same year, Cantor used another way by Cauchy sequences to define real numbers. We now explain
Dedekind’s construction without detailed proofs (For the proof, you may refer Chapter 1 -Appendix in
Rudin’s book).

The goal is to find some bigger set R containing ℚ, which preserves all nice properties of ℚ (as an
ordered field), and enjoys the least-upper-bound property.

We now construct R from ℚ as a subset of 2ℚ (the power set of ℚ).

(1) We can regard ℚ as certain subsets of ℚ of the forms

{x ∈ ℚ|x < q}

for q ∈ ℚ. Given a q ∈ ℚ, we can write a set as this way. Conversely, q = supℚ{x ∈ ℚ|x < q}.
More precisely, that is to say, we consider the map

F ∶ ℚ → 2ℚ, q ↦ {x ∈ ℚ|x < q}.

It is an injective map, so we can identify its image F (ℚ) ⊂ ℚ with ℚ. There is an inverse map,
the sup, which maps F (ℚ) back to ℚ. This map F induces all structures on ℚ to F (ℚ). For
example, we define addition on F (ℚ) as

F (a) + F (b) ∶= F (a + b).

We have seen that ℚ contains subsets which have no supremum, so this map is not surjective.

EXERCISE 2.1. Show that {x ∈ ℚ|x < 0 or x2 ≤ 2} is a cut, but is not coming from ℚ.

(2) Call a subset C of ℚ a cut, if
(a) C ≠ ∅, X ≠ ℚ;
(b) If c ∈ C , then any x < c also in C;
(c) If c ∈ C , then there exists some x > c that lives in C .

Clearly, the subset {x ∈ ℚ|x < q}, with q ∈ ℚ, i.e., any element in F (ℚ), is a cut. However, a
cut may not be element in F (ℚ). For example, the set

S = {a ∈ ℚ|a < 0 or a2 ≤ 2}

is a cut, but it is not in F (ℚ) from Exercise 2.1.
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We define R as the set of cuts in ℚ. Then one can check:

(1) R is ordered by ⊂.
(2) R has addition defined as

C1 + C2 ∶= {x1 + x2|x1 ∈ C1, x2 ∈ C2}.

(3) R has multiplication is kind of bothersome but can be defined.
(4) (R,+, ⋅) is a field.
(5) (R,+, ⋅;⊂) is an ordered field.
(6) R satisfies l.u.b. property.

We use ℝ to denote the ordered field R constructed above and this is the field of real numbers.

EXERCISE 2.2. Consider the set S = {a ∈ ℚ|a2 ≤ 2}. What is supℝ S? (Recall that we have seen
supℚ S doesn’t exist.)

From now on, when we consider the supremum or infimum in ℝ for a subset S ⊂ ℝ, we omit the
subindex ℝ from supℝ and just write as supS. For a subset S ⊂ ℝ, if supS exists (This is equivalent
to say S has an upper bound.) and is in S, then we say this supremum is the maximum of S, which we
denote as maxS. Similarly, if inf S exists (This is equivalent to say S has a lower bound.) and is in S,
then we say this infimum is the minimum of S, which we denote as minS. For example,

sup(1, 2] = max(1, 2],

but since inf(1, 2] = 1 ∉ (1, 2], min(1, 2] does not exist.
Denote by

ℝ+ ∶= {x ∈ ℝ|x > 0}, ℝ∗ ∶= {x ∈ ℝ|x ≠ 0}.

In the next sections, we show two important properties of ℝ. Both are essentially based on the fact
that ℝ has the l.u.b. property.

2.2. ℝ is archimedean.

THEOREM 2.3. For any x ∈ ℝ+ and y ∈ ℝ, there exists some n ∈ ℤ+ so that

n ⋅ x > y.

In particular, if we take x = 1 from this theorem, we immediately get the following statement.

PROPOSITION 2.4. For any y ∈ ℝ, there exists some positive integer n so that n > y.

We now give a proof of Proposition 2.4 directly without using Theorem 2.3, and then we prove
Theorem 2.3 from Proposition 2.4. This shows that these two statements are in fact equivalent, though
Proposition 2.4 looks much simpler.

PROOF. Assume such n ∈ ℤ+ doesn’t exist. That is to say that the set of positive integers ℤ+ has
an upper bound y. Then using the l.u.b. property of ℝ, the least upper bound supℤ+ exists and we use
x0 ∈ ℝ to denote it.

Now we look at x0 − 1. This is not an upper bound since we assume x0 is the least upper bound,
which means there exists some N ∈ ℤ+ so that

x0 − 1 < N.
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Then it follows x0 < N + 1. Notice that N + 1 ∈ ℤ+, this contradicts with the assumption that x0 is an
upper bound.

Hence, our original assumption can not be true and there exists n ∈ ℤ+ with n > y. �

PROOF OF THEOREM 2.3. For any x ∈ ℝ+ and y ∈ ℝ, consider y ⋅x−1 ∈ ℝ. From Proposition 2.4,
there exits some n ∈ ℤ+ so that

n > y ⋅ x−1.

Then this is equivalent to n − yx−1 > 0. Since x > 0, and ℝ is an ordered field, we have

(n − y ⋅ x−1) ⋅ x > 0.

This is equivalent to n ⋅ x > y.
�

REMARK 2.5. The archimedean property guarantees that we can use decimals to represent real
numbers. (See Rudin’s 1.22 for a discussion. )

2.3. ℚ is dense in ℝ.

THEOREM 2.6. For any a, b ∈ ℝ with a < b, there exists some x ∈ ℚ so that a < x < b.

PROOF. This is equal to say that one can find some m ∈ ℤ and n ∈ ℤ+ so that

a < m
n
< b.

which is further equivalent to find m ∈ ℤ and n ∈ ℤ+ so that

an < m < bn.

Notice that b − a > 0, so by the archimedean property, there exits n ∈ ℤ+ so that

bn − an = (b − a)n > 1.

Let’s argue that there exists some integer between two real numbers, whenever their difference is bigger
than 1.

LEMMA 2.7. For any �, � ∈ ℝ with � − � > 1, there exists some integer m so that � < m < �.

PROOF OF LEMMA 2.7. We prove this lemma by finding such m. First, using archimedean property
of ℝ, we can find some integer N > 0 so that

−N < � < � < N.

Then consider the integers which are smaller than N and greater than �, i.e., the set

A ∶= {k ∈ ℤ|� < k ≤ N}.

It is not empty since N ∈ A. Since this is a subset of {−N + 1,−N + 2,⋯ , N − 2, N − 1, N} which is
finite set, it contains only finite elements. We can pick the smallest one from it and denote it by m, i.e.,
m ∶= minA. We claim this m is just the one we are looking for.

First since m ∈ A, m > �. Then we only need to check m < �. If this is not true, i.e., m ≥ �, then we
consider m − 1. It follows

m − 1 ≥ � − 1 ≥ �.

This contradicts with the fact that m is the smallest integer which is greater than �.
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Above all, we are done with the lemma.
�

At last, apply the lemma to � = an and � = bn, we are done.
�

2.4. ℝ is closed under taking roots. Using the Dedkind’s cuts construction, it is easy to see the
following result, but here we outline a proof (try to fill details or refer Rudin 1.21 Theorem for details)
which is based on the l.u.b. property of ℝ.

THEOREM 2.8. For every y ∈ ℝ+ and every n ∈ ℤ+, there exists a unique x ∈ ℝ+ so that xn = y.

PROOF. We first claim that such x ∈ ℝ+, if exists, must be unique. Otherwise, assume that both
x1, x2 ∈ ℝ+ are solutions of the equation

xn = y, y ∈ ℝ+, n ∈ ℤ+.

Assume now x1 < x2, then from that fact that ℝ is an ordered field, we have xn1 < x
n
2 (why?) and that is

a contradiction. Similarly, x1 > x2 also leads to contradiction, and so x1 = x2.
Now we look for a solution for the equation. Consider a subset of ℝ as

S ∶= {a ∈ ℝ+|an < y}.

Try to check that

(1) S ≠ ∅;
(2) S has upper bound.

Then using the fact that ℝ has the l.u.b. property, supS exists. Define it as x, clearly, x ∈ ℝ+. We show
that x solves the equation. (The idea of the proof is similar to the proof of supℚ{x ∈ ℚ|x2 ≤ 2} does not
exist.)

First, we show that if xn < y, then we can construct some x0 ∈ S which is greater than x, which
says x is not an upper bound of S. So xn ≥ y.

Second, we show that if xn > y, then we can find an upper bound of S which is smaller than x,
which says x is not the least upper bound. So xn ≤ y.

Above all, we must have xn = y. �

From now on, we use y
1
n to denote the unique solution for the equation

xn = y, y ∈ ℝ+, n ∈ ℤ+,

and call it the n-th real root of y. The property

(ab)
1
n = a

1
n b

1
n

immediately follows from the uniqueness of n-th real root.

2.5. The extended real number system. We can add ±∞ to ℝ, and call the union ℝ ∪ {±∞}
the extended real number system. The advantage for the extended real number system is that now any
nonempty set in ℝ has the least upper bound and the greatest lower bound, since we can simply define

supS = +∞, if S has no upper bound in ℝ;

and

inf S = −∞, if S has no lower bound in ℝ.
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Formally, we can define operations of finite numbers with ±∞, but ℝ ∪ {±∞} is not a field (Why?).

3. The Euclidean plane ℝ2

We consider the Cartesian product of ℝ with ℝ, i.e.,

ℝ2 ∶= ℝ ×ℝ ∶= {(x1, x2)|x1, x2 ∈ ℝ}.

Over ℝ2, we can define operations

(1) Addition +: (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2);
(2) Scaler multiplication ℝ ×ℝ2 → ℝ2 ∶ c ⋅ (x1, x2) = (c ⋅ x1, c ⋅ x2).

This two operations make ℝ2 a 2-dimensional vector space (linear space) over the real field ℝ. We also
say ℝ2 is a ℝ-linear space of real dimension 2. For example, {(1, 0), (0, 1)} forms a basis of ℝ2.

Moreover, over the linear space ℝ2, one can define an inner product as

⟨(x1, x2), (y1, y2)⟩ = x1y1 + x2y2 = Σj=1,2xjyj .

The inner product induces a norm

|(x1, x2)| =
√

⟨(x1, x2), (x1, x2)⟩ =
√

x21 + x
2
2.

From now on, we use x⃗ to denote (x1, x2).

PROPOSITION 3.1. (1) |x⃗| ≥ 0 and it is 0 if and only if x⃗ = 0⃗.
(2) |c ⋅ x⃗| = |c||x⃗|.
(3) |x⃗ + y⃗| ≤ |x⃗| + |y⃗|.
(4) |⟨x⃗, y⃗⟩| ≤ |x⃗||y⃗|.

All constructions here can be easily generalized to any ℝn with n ∈ ℤ+.

4. The complex numbers ℂ

Over ℝ2, we can define a multiplication ⋅ as

(a, b) ⋅ (c, d) = (ac − bd, ad + bc).

If we identity ℝ2 with
ℂ ∶= {x + yi|x, y ∈ ℝ}

via (x, y)↦ x+ yi, then all structures defined above are induced to ℂ. In particular, the multiplication is
induced to ℂ via requiring i2 = −1. A nontrivial fact is that (ℂ,+, ⋅) is a field. A element in ℂ is called a
complex number. Usually, people prefer to use z = x + yi, x, y ∈ ℝ, to denote a complex number. Here
x is called the real part of z and y is called the imaginary part of z. We use |z| to denote its norm.



CHAPTER 2

Some basic topology

We are going to understand the system of real numbers ℝ from the viewpoint of topology.

1. Countable sets and uncountable sets

So far, we have met several subsets of ℂ, which are

{1, 2,⋯ , N} ⊂ ℤ+ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ,

where N is some positive integer. Our first goal for this section is to put them into three different classes
of sets, which are:

(1) Finite sets: {1, 2,⋯ , N}, for some N ∈ ℤ+;
(2) Countable sets: ℤ+, ℤ, ℚ;
(3) Uncountable sets: ℝ, ℂ.

Two sets X, Y are called 1-1 correspondent, if there exists a bijective map from X to Y . We use
X ∼ Y to denote.

DEFINITION 1.1. A relation ∼ for a collection of objects  is called an equivalence relation, if

(1) for any x ∈ , x ∼ x;
(2) for any x, y ∈ , if x ∼ y, then y ∼ x;
(3) for any x, y, z ∈ , if x ∼ y, y ∼ z, then x ∼ z.

PROPOSITION 1.2. 1-1 correspondence is an equivalence relation for sets.

PROOF. (1) For any set X, the identity map idX ∶ X → X is bijective. So X ∼ X.
(2) For any two sets X, Y , if X ∼ Y , then there is a bijective map

f ∶ X → Y .

The inverse map f−1 ∶ Y → X is defined and bijective, and hence Y ∼ X.
(3) For any three sets X, Y ,Z, if X ∼ Y and Y ∼ Z, then there are two bijective maps

f ∶ X → Y , g ∶ Y → Z.

Consider their composition g◦f ∶ X → Z. It is then bijective and hence X ∼ Z.
�

A set X is called finite, if X contains finitely many elements. Equivalently, there exists a positive
integer N so that {1, 2,⋯ , N} ∼ X. If X is a finite set of N elements, we write |X| ∶= N . Obviously
from definition, if X ∼ Y and with one of them finite, then the other is also finite with |X| = |Y |. The
bijective map between {1, 2,⋯ , N} and X is in fact the counting map which counts the elements of X.

A set X is called infinite, if it is not a finite set. We use the following notations for finite or infinite
sets: If X is finite, we write |X| <∞; If X is infinite, we write |X| = ∞.

DEFINITION 1.3. (1) An infinite set X is called countable, if ℤ+ ∼ X.

13



14 2. SOME BASIC TOPOLOGY

(2) An infinite set X is called uncountable, if X is not countable.

A set is called at most countable, if it is either finite or countable.
We check the definition for the following examples.

EXAMPLE 1.4. ℤ is countable.

PROOF. Let’s show ℤ+ ∼ ℤ. Construct a map

f ∶ ℤ → ℤ+

as

f (k) = 2k, if k ∈ ℤ+;

f (k) = 2(−k) + 1, if k ∈ ℤ−;

f (0) = 1.

Then check that f is both injective and surjective. �

EXAMPLE 1.5. ℚ is countable.

PROOF. Since any rational number x ∈ ℚ can be written as a fraction m
n

, with some m, n ∈ ℤ, this
defines a map from ℚ to ℤ × ℤ. (Though there are many different ways to represent the same rational
number, we just pick one for each rational number to define this map. In fact, we can pick-up one is
guaranteed by the Choice Axiom.) This map is injective, but not surjective. Then ℚ is countable follows
from the following two general propositions: Proposition 1.6 and Proposition 1.7. Their statements and
proofs are as follows. �

PROPOSITION 1.6. If both X, Y are countable, then the cartesian product X × Y is also countable.

PROOF. From the assumption X and Y are both countable, it follows X × Y ∼ ℤ+ × ℤ+. Hence, it
is enough to show ℤ+ × ℤ+ is countable.

Elements in ℤ+ × ℤ+ are of the form (m, n), m, n ∈ ℤ+. We can assign a counting by regrouping
them into disjoint union of diagonals. Define

Si ∶= {(m, n) ∈ ℤ+ × ℤ+|m + n = i + 1}, i = 1, 2,⋯ .

Equally, Si contains i elements as

Si = {(1, i), (2, i − 1), (3, i − 2),⋯ , (i, 1)}.

It is not hard to check that Si ∩ Sj = ∅ whenever i ≠ j, and

ℤ+ × ℤ+ = ∪i∈ℤ+Si.

Over each Si, define a map

fi ∶ Si → ℤ+, (m, i + 1 − m)↦ (1 + 2 +⋯ + (i − 1)) + m.

Obviously this map is injective and onto the interval

Ii ∶= {k ∈ ℤ|(1 + 2 +⋯ + (i − 1)) + 1 ≤ k ≤ (1 + 2 +⋯ + (i − 1)) + i}.

With noticing that these Ii has no intersectons, and the union of them is ℤ+, this constructs the bijective
map f defined as

f ∶ ℤ+ × ℤ+ → ℤ+, f (m, n) = fi(m, n) if (m, n) ∈ Si.
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We are done with the proof. �

(This construction of f above seems tricky, but is only a direct translation from the picture we saw
from lecture that f is counting points on each diagonal from left to right. )

PROPOSITION 1.7. Any subset of a countable set is at most countable.

PROOF. We only need to show any infinite subset of ℤ+ is countable.
We first give a lemma whose proof is left to you as an exercise.

LEMMA 1.8. For any nonempty subset E ⊂ ℤ+, minE exists.

HINT: Take an arbitary element n ∈ E and consider the subset

{a ∈ E|a ≤ n}.

It is a nonempty finite subset of E. Since the minimal element of any finite set exists, we denote by n0
the minimal element of this set. Then prove that n0 = minE. �

Assume S ⊂ ℤ+ is infinite. Define S1 = S, Sn+1 = Sn ⧵ {minSn}, for n = 1, 2,⋯, and a map

f ∶ ℤ+ → S, n↦ minSn.

Then we check this map is bijective.

∙ It is injective: Assume f (n) = f (n′), then minSn = minSn′ . If n ≠ n′, and WLOG, assume
n > n′, then from the construction we can see

Sn ⊂ Sn′ ⧵ {minSn′},

and Sn ≠ ∅ since S is not finite. In particular, minSn ∈ Sn but minSn′ ∉ Sn, this shows

minSn ≠ minSn′ ,

and we get contradiction.
∙ It is surjective: Take any k ∈ S, we show that there must be some n ∈ ℤ+ so that f (n) = k.

Consider the set

{m ∈ S|m ≤ k}.

It is a finite set, and assume it contains n elements. Then f (n) = k by the construction of f .

We are done with the proof of Proposition 1.7. �

An immediate corollary is

COROLLARY 1.9. Any set that contains an uncountable set is uncountable.

Next, we discuss the (un)countability of ℝ.
First, notice Proposition 1.6 can be easily generalized to any finite product, whose proof is an imme-

diate corollary of Proposition 1.6.

COROLLARY 1.10. The set X1 ×X2 ×X3⋯ ×XN is countable, if each Xi is countable.

However, when we move further to countable cartesian product of (at most) countable sets, the
countability is no longer there in general.
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PROPOSITION 1.11. Consider a sequence of sets X1, X2,⋯ , with each Xi contains at least two
elements, then their cartesian product

X1 ×X2 ×⋯ ∶= {(x1, x2,⋯ , )|xi ∈ Xi}

is uncountable.

PROOF. (1) Using Corollary 1.9, it is enough to prove the proposition for the case that eachXi

contains exactly 2 elements.
(2) Now we prove the case of each set containing exactly two elements. Assume

Xi = {x0i , x
1
i }, i = 1, 2,⋯ .

Assume X1 ×X2 ×⋯ is a countable set and then its elements can be denoted by

S1, S2,⋯ ,

with each Sk, k = 1, 2,⋯ a sequence

Sk = (sk1, sk2, sk3,⋯), ski ∈ Xi = {x0i , x
1
i }.

We place these sequence S1, S2,⋯ row by row to follow an array, and now use its diagonal to
construct a new sequence: Define

S∗ ∶= (s∗1, s
∗
2,⋯), s∗i ∶= sii

where sii is the other element in Xi but not sii.
Notice that S∗ is different from any of Sk, k = 1, 2,⋯. That is because for any Sk, the k-th

element is skk, but by construction, the k-th element of S∗ is skk, which is different from skk.
Then this leads to contradiction with the assumption that X1 ×X2 ×⋯ is a countable set.

�

Then recall the decimal representation of ℝ, it follows ℝ is uncountable. Since ℝ ⊂ ℂ, ℂ is also
uncountable.

2. Metric space

2.1. Metric space. Roughly, a metric space is a space (set) together with a metric (a distance func-
tion) satisfying several properties.

EXAMPLE 2.1. (1) (ℝ, d) is a metric space with d(x, y) ∶= |x − y|.
(2) (ℝ2, d) is a metric space with d(x⃗, y⃗) ∶=

√

|x|2 + |y|2.

In general,

DEFINITION 2.2. A metric space is a set X together with a real value function (called distance
function or metric)

d ∶ X ×X → ℝ,

which satisfies the following properties:

(1) For any x, y ∈ X, d(x, y) ≥ 0. Moreover, d(x, y) = 0 if and only if x = y.
(2) For any x, y ∈ X, d(x, y) = d(y, x).
(3) For any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

We call (X, d) a metric space.
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In our class, when we consider ℝ and ℝ2 (ℝk) as metric spaces, we always consider the metric
induced from norms. However, they do have other metrics. (See homework problem Rudin Chapter 2 –
10 and 11.)

A metric space (X, d) naturally induces a metric on any of its subsets.

2.2. Open sets and closed sets.

DEFINITION 2.3. For any x ∈ X, r > 0,

(1) the subset Br(x) ∶= {y ∈ X|d(y, x) < r} is called the open ball centered at x with radius r;
(2) the subset Br(x) ∶= {y ∈ X|d(y, x) ≤ r} is called the closed ball centered at x with radius r.

An open ball centered at x is also called a neighborhood of x.

EXAMPLE 2.4. An open (closed) ball in ℝ is equivalent to a finite open (closed) interval, i.e., (a, b)
([a, b]), a, b ∈ ℝ.

DEFINITION 2.5. Assume (X, d) is a metric space. A subset S ⊂ X is called open, if S = ∅ or if
every x ∈ S, there exists some open ball Br(x) ⊂ S for some r > 0.

EXAMPLE 2.6. Any open ball is open.

PROOF. Assume Br(x) is an open ball in a metric space (X, d). Then for any point y ∈ Br(x), there
is

d(y, x) < r.

Define r′ ∶= r − d(y, x), which is positive.
Consider the ball Br′(y). Let’s show it lives in Br(x). For this, take any point z ∈ Br′(y). Using the

triangle inequality of a metric, we have

d(z, x) ≤ d(z, y) + d(y, x) < r′ + d(y, x) = r.

Hence z ∈ Br(x), and Br′(y) ⊂ Br(x). �

PROPOSITION 2.7. Assume (X, d) is a metric space.

(1) Both ∅ and X are open.
(2) If S1, S2 are open, then S1 ∩ S2 is open.
(3) For any set Λ so that any � ∈ Λ, S� is an open subset of X, the union ∪�∈ΛS� is open.

PROOF. (1) Obvious by definition.
(2) Take a point x ∈ S1 ∩ S2, we need to find an open ball with radius r > 0 so that x ∈ Br(x) ⊂

S1 ∩ S2.
To find such r > 0, notice that since both S1, S2 are open, there are open balls

x ∈ Bri(x) ⊂ Si, i = 1, 2.

Take r ∶= min{r1, r2}. Then Br(x) ⊂ Bri(x) ⊂ Si, i = 1, 2, and hence Br(x) ⊂ S1 ∩ S2.
(3) Take a point x ∈ ∪�∈ΛS�, then we can assume x lives in some S�0 , �0 ∈ Λ. Since S�0 is open,

take an open ball

Br(x) ⊂ S�0 .

It follows

Br(x) ⊂ S�0 ⊂ ∪�∈ΛS�.
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This shows ∪�∈ΛS� is open.
�

EXAMPLE 2.8. We know In ∶= (−
1
n
, 1
n
) ⊂ ℝ is open for any n ∈ ℤ+. However ∩n∈ℤ+In = {0} is

not open.

DEFINITION 2.9. A subset S ⊂ X is called closed, if its complement is open.

We use Sc to denote its complement in X.

EXAMPLE 2.10. (1) The closed interval [a, b], a ≤ b is closed in ℝ.
(2) A closed ball Br(x), r > 0, x ∈ X, is closed. (See Assignment 3 for proof.)

Using the definition of closed sets and Proposition 2.7, we immediately get the following analogue
for closed sets.

PROPOSITION 2.11. Assume (X, d) is a metric space.

(1) Both ∅ and X are closed.
(2) If S1, S2 are closed, then S1 ∪ S2 is closed.
(3) For any set Λ so that any � ∈ Λ, S� is a closed subset of X, the intersection ∩�∈ΛS� is closed.

PROOF. (1) It follows immediately from ∅ = Xc and X = ∅c .
(2) If follows from Proposition 2.7 (2) that

(S1 ∪ S2)c = Sc1 ∩ S
c
2

is open, and hence S1 ∪ S2 is closed.
(3) If follows from Proposition 2.7 (3) that

(∩�∈ΛS�)c = ∪�∈ΛSc�

is open, and hence ∩�∈ΛS� is closed.
�

EXAMPLE 2.12. Consider a sequence of closed sets [−1 + 1
n
, 1 − 1

n
], n ∈ ℤ+, of ℝ. Take their union

∪n∈ℤ+[−1 +
1
n
, 1 − 1

n
] = (−1, 1),

which is open, not closed.

2.3. Limit points in a metric space.

DEFINITION 2.13. Assume S is a subset of X. A point x ∈ X is called a limit point of S, if any
neighborhood Br(x) intersects with S contains some point which is not x. (Notice x always lives in
Br(x). )

We use S′ to denote the set of limit points of S in X, and use

S ∶= S ∪ S′

to denote the union of S with its limit point set and call it the closure of S in X.
Points in S ⧵ S′ are called isolated points of S.

EXAMPLE 2.14. (1) Consider the metric space ℝ. a and b are limit points of (a, b]. The limit
point set of (a, b] is [a, b], which is also the closure of (a, b].
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(2) Consider the metric space ℝ2. The limit point set of any open ball Br(x) is the closed ball
Br(x), which is also the closure of Br(x).

(3) Consider ℚ ⊂ ℝ. ℚ′ = ℚ = ℝ. (See Homework.)

DEFINITION 2.15. A subset S of X is called dense, if S = X.

The above example (3) says that ℚ is dense in ℝ. (Why does this definition of “dense” match the
one we used before?)

PROPOSITION 2.16. For any subset S ⊂ X, its closure S is closed.

PROOF. If S = X, this is automatically true. We now assume S ≠ X.
Then for any x ∈ (S)c , we show that there must be some open ball Br(x) ⊂ (S)c .
Assume this is not true, then this says every open ball Br(x) ∩ S is not empty. Take a point

y ∈ Br(x) ∩ S.

Notice y ≠ x since x ∉ S.
If y is not in S, then y must be in S′. For this case, further take a smaller ball so that

x ∉ Br′(y) ⊂ Br(x).

Since y ∈ S′, there must be some point y′ ≠ y and in S. Notice y′ ≠ x again since we can exclude x
from Br′(y).

This show, for every open ball Br(x) ∩S is not empty, we can find some y or y′ in S ∩Br(x) and not
x. This shows that x ∈ S′, which contradicts with the assumption x ∉ S. �

The proof of the following statements are left to you as homework.

PROPOSITION 2.17. A subset S of X is closed, if and only if S = S.

PROPOSITION 2.18. The closure of a subset S of X is the smallest closed subset of X that contains
S.

DEFINITION 2.19. A point x ∈ X is a called a limit of a sequence {xn|n ∈ ℤ+}, if the limit

lim
n→∞

d(xn, x) = 0.

This means, for any � > 0, there exists some N ∈ ℤ+ so that whenever n > N ,

d(xn, x) < �.

EXAMPLE 2.20. Show that x = 0 is a limit of the sequence {xn =
1
n
|n ∈ ℤ+} in the metric space ℝ

with the standard distance.

PROOF. Since d(xn, x) = |

1
n
− 0| = 1

n
. We only need to check for any � > 0, there exists some

N ∈ ℤ+ so that whenever n > N , 1
n
< �.

For it we notice that, given any � > 0, by the Archimedean property for ℝ, there exist some N ∈ ℤ+

so that N > 1
�
. Then for any n < N , there is

1
n
< 1
N

< �.

This shows x = 0 is a limit of the sequence {xn =
1
n
|n ∈ ℤ+}. �
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LEMMA 2.21. In a metric space, if a sequence {xn|n ∈ ℤ+} has a limit, then the limit must be
unique.

PROOF. Assume both x and x′ are limits of the sequence {xn|n ∈ ℤ+}. Then for any � > 0, there
exists some N,N ′ > 0 so that

d(xn, x) <
�
2
, whenever n > N,

and

d(xn, x′) <
�
2
, whenever n > N ′.

Define N0 = max{N,N ′}. Then whenever n > N0, both hold.
We estimate by the triangle inequality that

0 ≤ d(x, x′) ≤ d(x, xn) + d(xn, x′) = d(xn, x) + d(xn, x′) <
�
2
+ �
2
= �,

for any � > 0. This implies d(x, x′) = 0 and then x = x′. �

Because of the uniqueness, we can denote by limn→∞ xn = x, if x is a (and so the by this lemma)
limit of sequence {xn|n ∈ ℤ+}.

We prove the following statement, which explain the meaning of limit points.

PROPOSITION 2.22. Assume (X, d) is a metric space and S is a subset. A point x ∈ X is a limit
point of S, if and only if there exists some sequence {xn ∈ S ⧵ {x}|n ∈ ℤ+} so that limn→∞ xn = x.

PROOF. (1) Assume x is a limit point of S, then we can consider a sequence of open balls
B 1

n
(x), n ∈ ℤ+. Each one intersects with S at some point which is not x. We pick a such point

xn from each B 1
n
(x) ∩ S for each n ∈ ℤ+.

Notice that

d(xn, x) <
1
n
,

then for each � > 0, there exists some N > 0 so that 1
N
< �. (This is due to the archimedean

property.) Then for each n > N ,

d(xn, x) <
1
n
< 1
N

< �,

which shows that limn→∞ xn = x.
(2) Conversely, assume there exists a sequence {xn ∈ S ⧵ {x}|n ∈ ℤ+} so that limn→∞ xn = x.

Then for each open ball B�(x), we can find some N ∈ ℤ+ so that

xn ∈ B�(x), whenever n > N.

Since xn ∈ S ⧵ {x}, this shows that x is a limit point of S.
�

3. Compactness

3.1. Equivalence of compactness and sequential compactness in metric spaces.

DEFINITION 3.1. Assume (X, d) is a metric space. A collection of open sets {U�|� ∈ Λ} is called
an open cover of a subset S of X, if

S ⊂ ∪�∈ΛU�.
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For Λ′ ⊂ Λ, if the subcollection {U�|� ∈ Λ′} is also an open cover of S, i.e.,

S ⊂ ∪�∈Λ′U�,

then {U�|� ∈ Λ′} is called a subcover. If moreover, Λ′ is finite, then it is called a finite subcover.

DEFINITION 3.2. Assume (X, d) is a metric space. A subset S ofX is called bounded, if there exists
some C > 0 and x0 ∈ X so that

d(x, x0) < C, for any x ∈ S.

EXAMPLE 3.3. (1) Take {Un = (n, n + 1.5)|n ∈ ℤ}. It is an open cover of ℝ. Notice that, any
finite subset Λ of ℤ, the subcollection {Un|n ∈ Λ} can not cover the whole ℝ. This shows ℝ is
not compact.

(2) Still take {Un = (n, n+1.5)|n ∈ ℤ}, it is also an open cover of any bounded subset A. One can
find a finite subcover from it so that it covers A.

(3) Consider (0, 1) = ∪∞n=1(
2n−1−1
2n , 2

n−1
2n ). However, any finite subcover from it can not cover (0, 1).

(Why?)
(4) Consider [0.01, 0.99] ⊂ ∪∞n=1(

2n−1−1
2n , 2

n−1
2n ). It has finite subcover.

DEFINITION 3.4. Assume (X, d) is a metric space. A subset K ⊂ X is called a compact subset, if
every open cover of K has a finite subcover of K .

EXAMPLE 3.5. Assume (X, d) is a metric space. Any finite set F ⊂ X is compact.

DEFINITION 3.6. A subset of a sequence {xn|n ∈ ℤ+} that indexed as

{xnk|k ∈ ℤ+, n1 < n2 <⋯}

is called a subsequence of {xn|n ∈ ℤ+}.

DEFINITION 3.7. Assume (X, d) is a metric space. A subsetK ⊂ X is called a sequentially compact
subset, if every sequence of points in K has a convergent subsequence converging to a point in K .

THEOREM 3.8. For any metric space (X, d). A subset K is compact if and only if it is sequentially
compact.

PROOF. (1) Assume K ⊂ X is compact. Take any sequence {yn} from K . Assume any point
x ∈ K is not a limit of any subsequence of {yn}. Then there exits some open ball Brx(x) that at
most contains one point in {yn} which is x.

Consider {Brx(x)|x ∈ K}. This is an open cover of K . By the compactness of K , there
exists a finite subcover of K . We assume this subcover is

{Brx1 (x1),⋯ , BrxN (xN )}.

In particular, these open balls cover {yn} and hence there must be some xi, with i ∈ {1,⋯ , N}
so that there are infinitely many yj = xi. Such {yj = xi} then is a subsequence of {yn} that
converges to xi ∈ K . This contradicts with the assumption.

(2) Assume {U�|�Λ} is an open cover ofK . Assume any finite union can not coverK , then Λmust
be an infinite set.

If Λ is countable, WLOG, assume Λ = ℤ+. Since any finite

U1 ∪ U2 ∪⋯ ∪ Un
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can not cover K , we can take some xn ∈ K ⧵ (U1 ∪ U2 ∪⋯ ∪ Un), for every n ∈ ℤ+. Then we
obtain a sequence {xn} inK and so must have a convergence subsequence {xnk} that converges
to some point x0 ∈ K . It follows there must be some UN so that x0 ∈ UN . Since UN is open,
there exists some small ball

Br(x0) ⊂ UN .

On the other hand, since xnk → x0 as k→∞, there must be some N ′ large, so that

xnk ∈ Br(x0), whenever nk > N
′.

However, by our way of choosing xn, whenever nk > max{N ′, N}, xnk ∉ UN . This leads to
contradiction.

In general, one can prove for any infinite Λ, there exits a countable subcover ofK , and then
the proof is reduced to the case of countable Λ. (Refer Rudin’s Chapter 2 Ex 24, 26.)

�

PROPOSITION 3.9. Assume (X, d) is a metric space. Then any (sequentially) compact subset is
bounded and closed.

PROOF. Assume K is compact subset of X.

(1) We first show K must be closed. For this, we only need to show Kc is open. Assume Kc is not
open, then there exists some x ∈ Kc , so that for each n ∈ ℤ+, the open ball B 1

n
(x) contains

some point fromK . By this way, we obtain a sequence {xn} inK . Then sinceK is sequentially
compact, there exits a subsequence {xnk} that converges to some x0 ∈ K . On the other hand,
by construction, each with

d(xnk , x) <
1
nk
.

This shows that xnk → x. By the uniqueness of limit from Lemma 2.21, we have x = x0 and
so lives in K , which contradicts with assumption at the beginning.

Hence Kc is open and so K is closed.
(Another way of proving K is closed is to show K = K , i.e., to show any limit point of K

must live in K .)
(2) We show that for any x0 ∈ X, there must be some C > 0 so that d(x, x0) ≤ C for any x ∈ K .

Assume this is not true. Then for some x0 ∈ X, we can take a sequence {xn} in K so that

d(xn, x0) > n.

By the sequential compactness of K , there exists a subsequence {xnk} that converges to some
x∞ ∈ K . It follows there exists some N large so that

d(xnk , x∞) <
1
4
, for any nk > N.

We pick a such xnk0 ,

d(x∞, x0) ≤ d(x∞, xnk0 ) + d(xnk0 , x0) ≤
1
4
+ d(xnk0 , x0).

Denote by C0 ∶= d(xnk0 , x0). Take a big integer N ′ so that N ′ > C0 + 1, then for any
nk > max{N,N ′}, have

C0 + 1 < N ′ < nk < d(xnk , x0) ≤ d(xnk , x∞) + d(x∞, x0) ≤
1
4
+ (1
4
+ C0) =

1
2
+ C0,
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which is not possible.
By this way, we prove that such C exists.

�

COROLLARY 3.10. Assume (X, d) is a metric space. Any convergent sequence {xn} is bounded.

PROOF. Consider the set {xn}∪{limn→∞ xn}. It is sequentially compact and so closed and bounded.
In particular, this shows {xn} is bounded. �

(You can also prove it directly using definition, which is left to you as an exercise. )

PROPOSITION 3.11. Assume (X, d) is a metric space. K is compact subset and S is a closed subset.
Then K ∩ S is compact.

PROOF. For any open cover of {U�|� ∈ Λ} of K ∩ S, the collection of open sets

{Sc , U�|� ∈ Λ}

is an open cover of K . Since K is compact, there must be a finite subcover of K .
Moreover, in this finite subcover, the ones that belong to {U�|� ∈ Λ} form a finite cover of K ∩ S.

This shows that K ∩ S is compact. �

COROLLARY 3.12. Assume (X, d) is a metric space. K is compact subset and S is a closed subset.
If S ⊂ K , then S is compact.

THEOREM 3.13. Assume (X, d) is a metric space and {K�|� ∈ Λ} is a collection of compact subsets
in X. Then the intersection of any finite subcollection of {K�|� ∈ Λ} is nonempty if and only if ∩�∈ΛK�
is nonempty.

PROOF. (1) If ∩�∈ΛK� is nonempty, obviously, the intersection of any finite subcollection is
not empty.

(2) Assume the intersection of any finite subcollection is not empty, but ∩�∈ΛK� = ∅. Take some
K�0 from the collection. Since each K� is compact, it is closed. Consider the collection

{Kc
�|� ≠ �0}.

Since ∩�∈ΛK� = ∅, this must be an open cover of K�0 . Because K�0 is compact, it must have a
finite subcover, say K1,⋯ , Kn. Then

K�0 ∩K1 ∩⋯ ∩Kn = ∅,

which contradicts with our assumption.
�

COROLLARY 3.14. Assume (X, d) is a metric space and {Kn|n ∈ ℤ+} is a sequence of nonempty
compact subsets in X that satisfies

Kn+1 ⊂ Kn, n = 1, 2,⋯ ,

then ∩n∈ℤ+Kn is not empty.

EXAMPLE 3.15. (1) Sequences of open intervals In = (0,
1
n
), n ∈ ℤ+. Have

I1 ⊃ I2 ⊃ I3 ⊃⋯ .

Then ∩n∈ℤ+In = ∅.
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(2) Sequences of closed intervals Īn = [0,
1
n
], n ∈ ℤ+. Have

Ī1 ⊃ Ī2 ⊃ Ī3 ⊃⋯ .

Then ∩n∈ℤ+ Īn = {0} ≠ ∅.

3.2. The Heine-Borel theorem. We now understand the metric space ℝ (and also ℝn) in more
details.

We have seen that, in ℝ, for any two real numbers a ≤ b, the closed interval [a, b] is bounded and
closed. Similarly, it is not hard to prove that in ℝ2, for any two pairs of real numbers a1 ≤ b1, a2 ≤ b2,
the 2-cell [a1, b1] × [a2, b2] is bounded and closed. In this section, we focus on ℝ, but all results work for
any ℝ2 and in fact, for any ℝn.

LEMMA 3.16. For any sequence of nonempty closed intervals in ℝ with

Ī1 ⊃ Ī2 ⊃ Ī3⋯ ⊃⋯ ,

their intersection ∩∞n=1Īn is a nonempty closed interval.

PROOF. Denote by Īn = [an, bn], n ∈ ℤ+. Consider the subset

L ∶= {an|n ∈ ℤ+} ⊂ ℝ.

It has upper bound b1 so must has the least upper bound which we denote by a∞. Similarly, the subset

R ∶= {bn|n ∈ ℤ+} ⊂ ℝ

has greatest lower bound which we denote by b∞.
We now show that a∞ ≤ b∞. If b∞ < a∞, then because a∞ is the least upper bound, there exists

some an > b∞. Then because b∞ is the greatest lower bound, there exists some bn′ so that bn′ < an.
Further notice {bn} is nondecreasing, we can assume n′ > n, and then we get contradiction from

an′ ≤ bn′ < an.

Then the closed interval [a∞, b∞] is nonempty and lives in the intersection. Further, any point x that
lives in the intersection should satisfy

an ≤ x ≤ bn.

Then it follows a∞ ≤ x ≤ b∞. This shows that

[a∞, b∞] = ∩∞n=1[an, bn].

�

PROPOSITION 3.17. For any two real numbers a < b, the closed interval [a, b] ⊂ ℝ is compact.

PROOF. Denote by Ī0 = [a, b]. Assume Ī0 is not compact. Then there exists some open cover

{U�|� ∈ Λ}

which doesn’t have any finite subcover of Ī0. Notice that Ī0 is the union of two closed intervals

[a, a + b
2

] ∪ [a + b
2

, b],

this says at least one of these two closed intervals has no finite subcover. Choose one with no finite
subcover and denote it by Ī2.
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Then we repeat this construction and obtain a sequence of nonempty closed intervals

Ī1 ⊃ Ī2 ⊃ Ī3⋯ ⊃⋯ .

By Lemma 3.16, their intersection is a nonempty closed interval, which we denote by [a∞, b∞].
On the other hand, notice that

0 ≤ b∞ − a∞ ≤ bn − a∞ ≤ bn − an =
b − a
2n

,

and limn→∞
b−a
2n = 0. This shows that a∞ = b∞ and the intersection is a point x0 ∈ [a, b].

Assume x0 ∈ U�0 with some �0 ∈ Λ. Since U�0 is open, there exits some r > 0 so that

(x0 − r, x0 + r) ⊂ U�.

Then since for any point x ∈ Īn,
|x − x0| ≤ bn − an =

b − a
2n

,

we can take n large enough so that b−a
2n

< r, and then it follows

Īn ⊂ (x0 − r, x0 + r) ⊂ U�.

This contradicts with the construction of Īn that we assume it has no finite subcover from {U�|� ∈ Λ}.
�

THEOREM 3.18. [The Heine-Borel theorem] A subset K ⊂ ℝ is (sequentially) compact if and only
if it is bounded and closed.

PROOF. From Proposition 3.9, we only need to show any bounded closed subsets of ℝ is compact.
First, since K is bounded, there exists some closed interval [a, b] ⊃ K with a, b ∈ ℝ, a ≤ b. Then

use Proposition 3.17 and Corollary 3.12, it follows K is compact. �

COROLLARY 3.19. [The Weierstrass theorem] Each bounded sequence in ℝ has a convergent sub-
sequence.

PROOF. Assume {xn} is bounded sequence and bounded by a closed interval [a, b] with a, b ∈ ℝ,
a ≤ b. Then from the Heine-Borel theorem, [a, b] is compact, and hence sequentially compact. It follows
{xn} must have a convergent subsequence. �

EXAMPLE 3.20. (1) For any sequence {xn} in ℝ with

x1 ≤ x2 ≤ x3 ≤⋯ ,

the limit exists if and only if {xn} has an upper bound, and when it has upper bound, the limit
is sup{xn}.

(2) For any sequence {xn} in ℝ with

x1 ≥ x2 ≥ x3 ≥⋯ ,

the limit exists if and only if {xn} has a lower bound, and when it has lower bound, the limit is
inf{xn}.

Before we end this chapter, we mention that the Heine-Borel theorem together with Proposition 3.9
and the first part of the proof of Theorem 3.8 give the complete proof of Theorem 3.8 for ℝ (actually for
ℝn), though the proof for the case of general metric space was left to you as homework.





CHAPTER 3

Numerical Sequences and Series

1. Sequences in ℝ

1.1. Convergent sequences in ℝ. We first review some definitions and basic properties of se-
quences. For our current purpose, we state for ℝ only, but they work for any metric space with cor-
responding modifications.

DEFINITION 1.1. (1) A sequence, which we denote by {xn}, in ℝ is a map from ℤ+ to ℝ,
which maps n ∈ ℤ+ to xn ∈ ℝ. The range of the map is called the range of the sequence.

(2) A subsequence of {xn} is defined via an injective map s from ℤ+ to a subset of ℤ+ satisfying

s(k1) < s(k2), whenever k1, k2 ∈ ℤ+, k1 < k2,

and denoted as {xnk} with xnk = xs(k).
(3) A sequence {xn} in ℝ is called convergent, if there exists some x0 ∈ ℝ such that the following

holds: For any � > 0, there exists some N ∈ ℤ+ so that whenever n > N , |xn − x0| < �.
We denote it as limn→∞ xn = x0 or xn → x0, and call x0 ∈ ℝ a limit of the sequence {xn}.

(4) A sequence {xn} in ℝ is called divergent, if it has no limit in ℝ.

PROPOSITION 1.2. (1) The limit of a convergent sequence in ℝ is unique.
(2) The sequence {xn} converges to x0 ∈ ℝ if and only if every open disk centered at x0 contains

all but finitely many of terms in the sequence.
(3) The sequence {xn} converges to x0 ∈ ℝ if and only if every subsequence of it converges to

x0 ∈ ℝ.
(4) If a sequence {xn} in ℝ is convergent, then it must be bounded.
(5) The set of all subsequential limits of a sequence {xn} in ℝ is closed.

EXAMPLE 1.3. (1) {xn = c}.
(2) {xn =

1
n
}.

(3) {xn = n2}.
(4) {xn = 1 +

(−1)n

n
}.

(5) {xn = (−1)n}. Subsequences {xnk = x2k−1} and {xnk = x2k}.

Next, let’s see some properties for sequences in ℝ (also in ℂ). From now on, in the section, when
we mention a sequence we automatically assume it is a sequence in ℝ unless stated specifically.

PROPOSITION 1.4. [Weierstrass’ theorem 3.19] Every bounded sequence in ℝ must have a conver-
gent subsequence.

PROOF. Assume {xn} is a bounded sequence in ℝ, then there exists some C > 0 so that the range
of the sequence lives in the closed interval [−C,C]. Since [−C,C] is sequentially compact, there exists
a convergent subsequence of {xn}. �

27
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PROPOSITION 1.5. [The squeeze theorem] Assume sequences {xn}, {yn}, {zn} in ℝ satisfy xn ≤
yn ≤ zn after some N ∈ ℤ+, and both {xn} and {zn} converge to the same a ∈ ℝ. Then {yn} also
converges to a.

PROOF. Since xn ≤ yn ≤ zn for any n ∈ ℤ+, it follows

xn − a ≤ yn − a ≤ zn − a,

and further

|yn − a| ≤ max{|xn − a|, |zn − a|}.

Now for any � > 0, since both {xn} and {zn} converge to some a ∈ ℝ, there exists N1, N2 ∈ ℤ+ so that

|xn − a| ≤ �, whenever n > N1,

|zn − a| ≤ �, whenever n > N2.

Take N = max{N1, N2}. Then for any n > N ,

|yn − a| ≤ max{|xn − a|, |zn − a|} ≤ �.

This shows yn → a. �

PROPOSITION 1.6. Consider convergent sequences {xn} and yn with xn → x and yn → y. Then

(1) {xn ± yn} is convergent to x ± y;
(2) {xnyn} is convergent to xy;
(3) {xn

yn
} is convergent to x

y
, if yn ≠ 0, n ∈ ℤ+ and y ≠ 0;

PROOF. (1) Since xn → x and yn → y, for any � > 0, there exists some N1, N2 so that
whenever n > N1, |xn−x| <

�
2
, and whenever n > N2, |yn−y| <

�
2
. Take N = max{N1, N2}.

When n > N , have

|(xn ± yn) − (x ± y)| = |(xn − x) ± (yn − y)| ≤ |xn − x| + |yn − y| <
�
2
+ �
2
= �.

(2) Since xn → x, there exits some C > 0 so that for every n, |xn| ≤ C , and |y| ≤ C . Then use
xn → x and yn → y, we have for any � > 0, there exists someN1, N2 so that whenever n > N1,
|xn − x| <

�
2C , and whenever n > N2, |yn − y| <

�
2C . Take N = max{N1, N2}. When n > N ,

have

|xnyn − xy| = |(xnyn − xny) + (xny − xy)|

≤ |xn||yn − y| + |xn − x||y|

≤ C �
2C

+ �
2C

C = �.

(3) Since y ≠ 0 and yn → y, there exists some N1 so that

|yn − y| ≤
|y|
2
.

It follows |yn| ≥
|y|
2 > 0, and then there exist some C > 0 so that 1

|yny|
≤ C .

Now for any � > 0, there exists some N > N1, so that every n > N , have

|

1
yn
− 1
y
| =

|yn − y|
|yny|

≤ �
C
C = �.

This shows that 1
yn

→ 1
y
.

Then apply (2), we are done with (3).
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�

We have mentioned that the real number system ℝ can be formally extended to ℝ = ℝ ∪ {±∞}. We
introduce the following terminology.

DEFINITION 1.7. (1) A sequence {xn} in ℝ diverges to +∞, if for any m > 0, there exists
some N ∈ ℤ+, so that whenever n > N , xn > m. We denote it by limn→∞ xn = +∞ or
xn → +∞.

(2) A sequence {xn} in ℝ diverges to −∞, if for any m > 0, there exists some N ∈ ℤ+, so that
whenever n > N , xn < −m. We denote it by limn→∞ xn = −∞ or xn → −∞.

Notice that, a sequence that diverges to +∞ or −∞ is divergent in ℝ. In another word, it is not a
convergent sequence in ℝ – Though we write its limit as +∞ or −∞, the limit doesn’t not live in ℝ.

PROPOSITION 1.8. For sequences {xn} and {yn} with xn ≤ yn. If xn → +∞, then yn → +∞.

PROOF. Exercise for you. �

EXAMPLE 1.9. (1) n2 → +∞.
(2) Any polynomial with positive degree diverges to +∞ or −∞.

DEFINITION 1.10. (1) A sequence xn → a+, if for any � > 0, there exists some N ∈ ℤ+ so
that whenever n > N , 0 ≤ xn − a < �.

(2) A sequence xn → a−, if for any � > 0, there exists some N ∈ ℤ+ so that whenever n > N ,
0 ≤ a − xn < �.

From definition, if xn → a+ or xn → a−, then xn → a.

PROPOSITION 1.11. A sequence {xn} in ℝ diverges to ±∞ if and only if 1
xn

→ 0±.

PROOF. Exercise for you. �

1.2. Some useful examples.

EXAMPLE 1.12. (1) For any p > 0, 1
np

→ 0.

PROOF. (a) p ∈ ℤ+. Use 0 ≤ 1
np

≤ 1
n
.

(b) p ∈ ℚ+. We can write p = k
l

, k,l ∈ ℤ+. Then np = (nk)
1
l .

From above, nk → +∞, and this shows further (nk)
1
l → +∞, which is equivalent to

1
np

→ 0.

(c) For any p ∈ ℝ+, np ∶= sup{nq|q ∈ ℚ, q < p}. Then 0 ≤ 1
np

≤ 1
nq

, for some q ∈ ℚ+.

Apply the above case, this shows 1
np

→ 0.
�

(2) For any |�| < 1, �n → 0.

PROOF. Consider | 1
�n
| = ( 1

|�|
)n. Denote by a = 1

|�|
, it is greater than 1, so can be written as

1 + c with c > 0. Calculate

an = (1 + c)n ≥ nc.

So an → +∞. This shows 1
an

→ 0 and hence �n → 0. �
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(3) n
1
n → 1.

PROOF. Denote by xn = n
1
n − 1. Notice it is positive whenever n ≥ 2. We show xn → 0.

Consider the following inequality

n = (1 + xn)n ≥
n(n − 1)

2
xn.

It follows

0 ≤ xn ≤
2

n − 1
,

which shows xn → 0 by the squeeze theorem. �

(4) For any � > 0, �
1
n → 1.

PROOF. If � ≥ 1, for large enough n > �, we have

1 ≤ �
1
n ≤ n

1
n .

Then by the squeeze theorem, �
1
n → 1.

If 0 < � < 1, then 1
�
> 1 and �

1
n = 1

( 1� )
1
n
→ 1

1 = 1. �

(5) For any p > 0 and � ∈ ℝ, n�

(1+p)n → 0.

PROOF. If � < 0, we have seen that n� → 0, and 1
(1+p)n

→ 0. Hence it follows n�

(1+p)n
→ 0.

If � = 0, n�

(1+p)n =
1

(1+p)n → 0.
The real work is for the case � > 0. For this case, we want to see (1 + p)n diverges to +∞

faster than n�.
Write

(1 + p)n = Σnk=0C
k
n p

k > Ckn p
k >

nkpk

2kk!
.

where Ckn =
n!

k!(n−k)! . In particular, consider k > �, we have

(1 + p)n >
nkpk

2kk!
=
nk−�pk

2kk!
n�,

and
n�

(1 + p)n
< 2kk!
pknk−�

→ 0.

�

1.3. Cauchy sequences.

DEFINITION 1.13. A sequence {xn} in a metric space (X, d) is called a Cauchy sequence, if for any
� > 0, there exists some N ∈ ℤ+ so that whenever m, n > N , have

d(xm, xn) < �.

This is equivalent to say, for any � > 0, there exists some N ∈ ℤ+ so that whenever n > N , for any
p > 0 have

d(xn+p, xn) < �.

LEMMA 1.14. Any convergent sequence is a Cauchy sequence.
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PROOF. Assume {xn} is a convergent sequence that converges to x0 ∈ X. Then for any � > 0, there
exists some N ∈ ℤ+ so that any n > N ,

d(xn, x0) <
�
2
.

Then for any m,m′ > N , have

d(xm, xm′) ≤ d(xm, x0) + d(xm′ , x0) <
�
2
+ �
2
= �.

This shows {xn} is a Cauchy sequence. �

LEMMA 1.15. The range of a Cauchy sequence is bounded.

PROOF. Assume {xn} is a Cauchy sequence. Take � = 1. There exists some N ∈ ℤ+ so that any
n > N ,

d(xn, xN+1) < 1.

Take C ∶= maxi=1,⋯,N{d(xi, xN+1), 1}. C is a finite number and for each n ∈ ℤ+, there is

d(xn, xN+1) ≤ C,

which says the range of {xn} is bounded. �

PROPOSITION 1.16. For a Cauchy sequence {xn}, if it has a convergent subsequence, then {xn}
converges to the same limit.

PROOF. Assume {xn} has a subsequence {xnk} with xnk → x0 ∈ X.
Then for any � > 0, there exists some N1 ∈ ℤ+ so that any nk > N1 has

d(xnk , x0) <
�
2
.

At the same time, since {xn} is a Cauchy sequence, there exists some N2 ∈ ℤ+ so that any m,m′ > N ,

d(xm, xm′) <
�
2
.

Take N = max{N1, N2}. Then for any n > N , automatically nn > N . We then have

d(xn, x0) ≤ d(xn, xnn) + d(xnn , x0) ≤
�
2
+ �
2
= �,

it says xn → x0. �

COROLLARY 1.17. A Cauchy sequence in a compact subset of a metric space (X, d) is convergent.

PROOF. Assume K ⊂ X is compact. Then by Theorem 3.8, K is sequentially compact. Then any
sequence {xn} in K has a convergent subsequence. By Proposition 1.16, {xn} is convergent. �

In general, not every Cauchy sequence in a metric space is convergent. For example, sequence

{xn =
1
n
}

is not convergent in ℝ ⧵ {0}.
As another example, consider {xn} as a sequence of increasing rational numbers with x2n < 2. It is a

Cauchy sequence, but is not convergent in ℚ.

THEOREM 1.18. In ℝ, a sequence is convergent, if and only if it is a Cauchy sequence.
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PROOF. We have shown from Lemma 1.14 that every convergent sequence is a Cauchy sequence (in
any metric space).

Now assume {xn} is a Cauchy sequence in ℝ, in particular from Lemma 1.15, it is bounded and so
we can assume it is a Cauchy sequence in some closed interval [a, b] with some a, b ∈ ℝ, a ≤ b.

By the Heine-Borel theorem, [a, b] is compact, and then apply Corollary 1.17, we have shown {xn}
is convergent. �

In general, a metric space (X, d) in which every Cauchy sequence is convergent is said to be com-
plete. This theorem states that ℝ is complete. Our previous examples say that ℝ⧵{0}, ℚ are not complete
with respect to the metric induced from ℝ. (A general construction, called completion, which construct
a complete space from an incomplete space is given in Rudin’s book Chapter 3 Ex. 24. )

1.4. Upper and lower limits. We can summarize the methods we met so far to show a sequence in
ℝ is convergent:

(1) A Cauchy sequence in ℝ must be convergent.
(2) A bounded monotonic sequence in ℝ is convergent.

In general, we can not expect an arbitrary sequence {xn} in ℝ is convergent, i.e., we can not expect
limn→∞ xn always exists. But we can introduce upper and lower limits for a sequence as a generalization
of limit, so that for any sequence, they make sense, and the limit exists if and only if the upper and lower
limits coincide.

Recall in Proposition 1.2 (5), we have shown that the set of all subsequential limits of a sequence
{xn} in ℝ is closed. Now we also include ±∞ if there is some subsequence diverges to ±∞, and denote
by

L ∶= {a ∈ ℝ|xnk → a for subsequence {xnk} of {xn}}.

L is never empty now.

DEFINITION 1.19. (1) The upper limit of {xn} is defined as the least upper bound of L, i.e.,
supL. If L has no upper bound, define supL = +∞. Denote as lim supn→∞ xn = supL.

(2) The lower limit of {xn} is defined as the greatest lower bound of L, i.e., inf L. If L has no
lower bound, define inf L = −∞. Denote as lim infn→∞ xn = inf L.

PROPOSITION 1.20. A sequence xn → a for some a ∈ ℝ, if and only if

lim sup
n→∞

xn = lim infn→∞
xn = a.

PROOF. Assume a ∈ ℝ. By definition,

lim sup
n→∞

xn = lim infn→∞
xn = a

if and only if L = {a} (Need some work here and is left to you.), which is equivalent to say xn → a.
The cases a = ±∞ are left to you as exercise.

�

LEMMA 1.21. (1) L = L, i.e., L is closed. In particular, supL, inf L ∈ L;
(2) If x > supL, then there exists some N so that each n > N , xn < x. Similarly, if x < inf L,

then there exists some N so that each n > N , xn > x.
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PROOF. (1) Take any sequence {ak} from L with ak → a. We show that a ∈ L. For this, we
construct a sequence {xnk} as follows: For k = 1, we take n1 large enough so that |xn1−a1| < 1,
since a1 is limit of some subsequence of {xn}. Assume now for any k, we have found some xnk
so that

n1 < n2 <⋯ < nk,

and

|xnk − ak| <
1
k
.

We can further take nk+1 > nk and |xnk+1 − ak+1| <
1
k+1 .

We now prove limk→∞ xnk = a. To see this, notice

|xnk − a| ≤ |xnk − ak| + |ak − a| ≤
1
k
+ |ak − a|, k = 1, 2,⋯ .

Then the convergence of RHS to zero implies xnk → a as k→∞. Hence a ∈ L.
(2) We prove the supL case and the inf L case is similar.

Assume this is not true, then there must exists a subsequence {xnk} so that each xnk ≥ x.
If this sequence has no upper bound, then supL = +∞, which contradicts with supL < x. If
it has an upper bound, then we can further take a subsequence from it so that this subsequence
converges. Then the limit point must be greater than or equal to x, so greater than supL, which
is a contradiction again.

�

The next two propositions are left to you as homework problems.

PROPOSITION 1.22. Assume two sequences {xn}, {yn} satisfy that after some N , xn ≤ yn. Then

lim sup xn ≤ lim sup yn
lim inf xn ≤ lim inf yn.

PROPOSITION 1.23.

lim sup
n→∞

xn = lim
n→∞

(sup{xk|k ≥ n})

lim inf
n→∞

xn = lim
n→∞

(inf{xk|k ≥ n}).

2. Series in ℝ (ℂ)

2.1. Definition and basic properties. The results in the section works for ℂ, though we restrict
ourselves to ℝ.

Consider a sequence {xn} in ℝ. The summation notation means

Σn+pk=nxk ∶= xn + xn+1 +⋯ + xn+p.

In particular, the summation

sn ∶= Σnk=1xk = x1 + x2 +⋯ + xn
is called a partial sum to n.

An (infinite) series is a sequence of partial sums {sn} (for some sequence). When we want to explic-
itly write down elements that make this series, we can write Σ∞n=1xn to denote this series. We write it as
Σxn to simplify notations sometimes.
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Given a series {sn}, we can recover the sequence {xn} by assigning

x1 = s1, xn = sn − sn−1, n ≥ 2.

Hence the series Σxn carries equal information as the sequence {xn}.
If the limit of the partial sums {sn} exists and is s, we say the series Σxn converges to s, and write it

as

Σxn = s.

If the limit of the partial sums {sn} doesn’t exist, we say the series Σxn diverges. If particular, if Σxn
diverges to ±∞, we write Σxn = ±∞.

EXAMPLE 2.1. (1) Σ∞n=1(−1)
n diverges.

Think: Why is the following “calculation" not correct?

Σ(−1)n = (−1) + 1 + (−1) + 1 + (−1) + 1 + (−1) +⋯

= ((−1) + 1) + ((−1) + 1) + ((−1) + 1) + ((−1) + 1)⋯

= 0 + 0 + 0 +⋯ = 0.

(2)

Σ∞n=1
1
2n

= lim
n→∞

Sn

= lim
n→∞

1
2
⋅
1 − ( 12 )

n

1 − 1
2

= 1.

(3) Similarly, Σ∞n=0x
n = 1

1−x for any |x| < 1. Such series is called a geometric series.

(4) Σ∞n=1
1
np

is convergent if and only if p > 1. Moreover, if p ≤ 1, Σ∞n=1
1
np
= +∞. (Will prove later.

)
The value of Σ∞n=1

1
np

for p > 1 is hard to calculate in general. E.g.,

Σ∞n=1
1
n2

= �2

6
= 1.6449⋯

Σ∞n=1
1
n4

= �4

90
= 1.0823⋯ .

Similar formula can be derived for even p’s. For odd p’s, no general formula (e.g., Σ∞n=1
1
n3

).

Now we derive some tools for testing if a series is convergent.

PROPOSITION 2.2. [Cauchy’s Criterion] A series Σxn is convergent if and only if for any � > 0,
there exists some N so that for any n > N and p ≥ 0,

|Σn+pk=nxk| < �.

This implies limn→∞ |Σn+pk=nxk| = 0 for any p ≥ 0.

In particular, by taking p = 0, we obtain the following corollary.

COROLLARY 2.3. For any convergent series Σxn, the limit of {xn} is zero.
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PROOF OF PROPOSITION 2.2. The series Σxn is convergent if and only if it is a Cauchy sequence.
In particular here, this is

|Sn+p − Sn−1| = |Σn+pk=nxk| → 0 as n→∞

for any p ≥ 0.
�

We can see an application of Cauchy’s theorem, which in particular shows that the alternating series
Σ (−1)

n

n
is convergent.

PROPOSITION 2.4. Assume xn ≥ 0 and

(1) x1 ≥ x2 ≥⋯;
(2) xn → 0 as n→∞.

Then the series Σ(−1)nxn is convergent.

PROOF. Consider

|Σn+pk=n(−1)
kxk| = |xn − xn+1 +⋯ + ±xn+p|

It is less than xn by the first condition. Then the second condition xn → 0 shows that |Σn+pk=n(−1)
kxk| → 0

as n→∞ for any p ≥ 0. Apply the Cauchy’s criterion, this shows Σ(−1)nxn is convergent. �

PROPOSITION 2.5. For a series with nonnegative terms, it is convergent if and only if the partial
sums form a bounded sequences.

PROOF. Notice that for a series with nonnegative terms, the sequence of partial sums {sn} is nonde-
creasing, and then its limit exists if and only if it is bounded. �

For a series Σxn, if Σ|xn| converges, we say Σxn converges absolutely.

PROPOSITION 2.6. If Σxn converges absolutely, then Σxn converges.

PROOF. This follows from the estimate

|Σn+pk=nxk| ≤ Σ
n+p
k=n|xk|

and Cauchy’s criterion. �

However, not every convergent series is absolutely convergent. For example Σ (−1)
n

n
is not absolutely

convergent.

2.2. Comparison test.

PROPOSITION 2.7. [Comparison test]

(1) If |xn| ≤ yn for all n and Σyn converges, then Σxn converges absolutely (and so converges).
(2) If xn ≤ yn for all n and Σxn = +∞ , then Σyn = +∞.

PROOF. (1) It follows from the estimates

|Σn+pk=nxk| ≤ Σ
n+p
k=n|xk| ≤ Σ

n+p
k=nyk = |Σn+pk=nyk|

and Cauchy’s criterion.
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(2) This holds by looking at the partial sums

Σnk=1xn ≤ Σ
n
k=1yn.

Then Σnk=1xn → +∞ implies that Σnk=1yn → +∞.
�

EXAMPLE 2.8. (1) Σ 1
n2+5 is convergent by the comparison test:

0 ≤ 1
n2 + 5

≤ 1
n2

and the fact that Σ 1
n2

is convergent (will prove).
(2) Σ n

2n
is convergent by the comparison test:

0 ≤ n
2n

≤ 1.5n
2n

= 0.75n

and the fact that Σ0.75n is convergent.

Now we prove the important result for series Σ 1
np

using the comparison test.

PROPOSITION 2.9. The series Σ 1
np

is convergent if p > 1 and diverges to +∞ if p ≤ 1.

To show this result, Rudin’s book gives a useful statement.

LEMMA 2.10. A series Σxn with

x1 ≥ x2 ≥⋯ ≥ 0,

is convergent, if and only if the series

Σ∞k=02
kx2k = x1 + 2x2 + 4x4 + 8x8 +⋯

is convergent.

PROOF OF THE LEMMA. (1) Take any N , there exists unique K so that 2K−1 < N ≤ 2K .
Then we have

ΣNn=1xn ≤ Σ
K
k=12

kx2k .

So Σ∞k=02
kx2k is convergent implies Σxn is convergent.

(2) Take any K , and then choose N > 2K . We have

1
2
ΣKk=12

kx2k ≤ ΣNn=1xn.

So Σxn is convergent implies Σ∞k=02
kx2k is convergent.

�

PROOF OF THE PROPOSITION. If p ≤ 0, Σ 1
np

is divergent since 1
np

is not convergent to zero.

Now assume p > 0. Then the series Σ 1
np

satisfies the assumption of the lemma. So we can look at
the series Σ∞k=02

kx2k instead. We have

Σ∞k=02
kx2k = Σ∞k=0

2k

2kp
= Σ∞k=0(

1
2p−1

)k,

which is convergent if and only if p > 1. �
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2.3. Root and ratio tests.

THEOREM 2.11. [Root test] For a seires Σxn, define

� ∶= lim sup n
√

|xn|.

Then we have

(1) if � < 1, Σxn is (absolutely) convergent;
(2) if � > 1, Σxn is divergent.
(3) When � = 1, root test is failed to detect for convergence or divergence.

PROOF. (1) If � < 1, then there exists some � so that � < � < 1, and then there exists some
N ∈ ℤ+ so that for any n > N ,

n
√

|xn| < �.

Then it follows |xn| < �n. Notice that Σ�n is convergent, and then by the comparison test, Σxn
is (absolutely) convergent.

(2) If � > 1, then there exists subsequence { n
√

|xnk|} with each n
√

|xnk| ≥ 1. It follows |xnk| ≥ 1,
which indicates Σxn is divergent.

(3) Consider the series Σ 1
np

. Calculate that

lim sup n
√

|xn| = lim sup
n

√

1
np
= ( 1

lim n
√

n
)p = 1p = 1,

but we know the convergence of Σ 1
np

depends on values of p.
�

EXAMPLE 2.12. (1) Σ 1
an

. Compute

� = lim sup n
√

|xn| =
1
|a|
.

By root test,
(a) if |a| > 1, Σxn is (absolutely) convergent;
(b) if |a| < 1, Σxn is divergent.
(c) if |a| = 1, it is divergent.

(2) Σx
n

n
. Compute

� = lim sup n
√

|xn| = |x|.

By root test,
(a) if |x| < 1, Σxn is (absolutely) convergent;
(b) if |x| > 1, Σxn is divergent.
(c) if x = 1, it is divergent.
(d) if x = −1, it is convergent.

(3) Σx
n

n2
. Compute

� = lim sup n
√

|xn| = |x|.

By root test,
(a) if |x| < 1, Σxn is (absolutely) convergent;
(b) if |x| > 1, Σxn is divergent.
(c) if |x| = 1, it is convergent.
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THEOREM 2.13. [Ratio test] For a seires Σxn, define

� ∶= lim sup
|xn+1|
|xn|

.

Then we have

(1) if � < 1, Σxn is (absolutely) convergent;
(2) if for large enough n, |xn+1|

|xn|
≥ 1, Σxn is divergent. In particular, if

lim inf
|xn+1|
|xn|

> 1,

Σxn is divergent.

PROOF. (1) If � < 1, then there exists some � so that � < � < 1, and then there exists some
N ∈ ℤ+ so that for any n ≥ N ,

|xn+1|
|xn|

< �.

Then it follows |xn+k| < �k|xN |. Notice that Σ�k is convergent, and then by the comparison
test, Σxn is (absolutely) convergent.

(2) If � > 1 and |xn+1|
|xn|

≥ 1 for n > N for some N , then

|xn+1| ≥ |xn|, and xn ≠ 0.

This shows that xn can not converge to 0 and so Σxn is divergent.
In particular, if

lim inf
|xn+1|
|xn|

> 1,

then it follows |xn+1|
|xn|

≥ 1 for n > N for some N , and so Σxn is divergent.
�

EXAMPLE 2.14. Σx
n

n!
. Compute

� = lim sup
|xn+1|
|xn|

= 0

for any x. By ratio test, for any x ∈ ℝ, Σxn is convergent.

DEFINITION 2.15. Given x ∈ ℝ, a series of the type Σcnxn is called a power series. (In general,
people consider x, cn ∈ ℂ.)

Using the root test, we have the following result.

THEOREM 2.16. [Convergence radius for a power series] For a power series Σcnxn, define

� ∶= lim sup n
√

|cn|,

and R = 1
�

. Here if � = 0, define R = +∞, and if � = +∞, define R = 0. Then Σcnxn is convergent if
|x| < R; and Σcnxn is divergent if |x| > R. R is called the convergence radius of Σcnxn.

We have seen that the power series Σ∞n=0
xn

n! has convergence radius +∞, which says that it is conver-
gent for every x ∈ ℝ. In particular, take x = 1, and we have a convergent sum

1 + 1 + 1
2!
+ 1
3!
+⋯ .

Define this sum as e.
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We can estimate that e > 2.5 and e < 3 since

2.5 = 1 + 1 + 1
2!
< 1 + 1 + 1

2!
+ 1
3!
+⋯ ≤ 1 + 1 + Σ∞n=1

1
2n
= 3.

In fact, we can estimate

e − ΣNn=1
1
n!

= Σ∞n=N+1
1
n!

= 1
(N + 1)!

+ 1
(N + 2)!

+⋯

= 1
(N + 1)!

(1 + 1
N + 2

+ 1
(N + 2)(N + 3)

+⋯)

≤ 1
(N + 1)!

(1 + 1
N + 2

+ 1
(N + 2)2

+⋯)

≤ 1
N ⋅N!

.

When N = 10, 1
N ⋅N! < 10

−7, which says that error between

1 + 1 + 1
2!
+⋯ + 1

10!

and the precise value of e is smaller than 0.0000001. (e ≈ 2.7182818284590452353602874713527⋯.)
We now give another interpretation for e.

PROPOSITION 2.17. The sequence {(1 + 1
n
)n} converges to e.

PROOF. Denote by Sn = Σnk=0
1
k! .

(1) We estimate

(1 + 1
n
)n = 1 + 1 +

n(n − 1)
2!n2

+⋯
n(n − 1)⋯ (n − (k − 1))

k!nk
+⋯ + n!

n!nn

≤ 1 + 1 + 1
2!
+ 1
3!
+⋯ + 1

n!
= Sn.

Take n→∞, we have

lim sup
n→∞

(1 + 1
n
)n ≤ lim

n→∞
Sn = e.

(2) On the other hand, for any m ≤ n, we have

(1 + 1
n
)n = 1 + 1 +

n(n − 1)
2!n2

+⋯
n(n − 1)⋯ (n − (k − 1))

k!nk
+⋯ n!

n!nn

≥ 1 + 1 +
n(n − 1)
2!n2

+⋯
n(n − 1)⋯ (n − (m − 1))

m!nm
.

Fix m and let n→∞, we get

lim inf
n→∞

(1 + 1
n
)n ≥ lim

n→∞
(1 + 1 +

n(n − 1)
2!n2

+⋯
n(n − 1)⋯ (n − (m − 1))

m!nm
)

= 1 + 1 + 1
2!
+ 1
3!
+⋯ + 1

m!
= Sm.

Then take m→∞, we have

lim inf
n→∞

(1 + 1
n
)n ≥ lim

m→∞
Sm = e.
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Combine (1) and (2), we have

e ≤ lim inf
n→∞

(1 + 1
n
)n ≤ lim sup

n→∞
(1 + 1

n
)n ≤ e.

Hence limn→∞(1 +
1
n
)n exists and it is e. �

2.4. Addition and multiplication of series.

PROPOSITION 2.18. Assume series Σan = A, Σbn = B. Then

(1) Σ(an + bn) = A + B;
(2) For any c ∈ ℝ, Σ(c ⋅ an) = cA.

A question now is how to do multiplications of series.

EXAMPLE 2.19. Σan ⋅ Σbn ≠ A ⋅ B. This is obvious since even

(a1 + a2) ⋅ (b1 + b2) ≠ a1b1 + a2b2

in general.

Recall multiplication of polynomials

f (x) = a0 + a1x + a2x2 +⋯ , g(x) = b0 + b1x + b2x2 +⋯ ,

we have
f (x) ⋅ g(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 +⋯ .

If we take x = 1, then the LHS is Σan ⋅ Σbn, the RHS should be the same.
By this, we define the series

Σcn, cn ∶= Σnk=0akbn−k
as the multiplication of series. (Notice: the output is a series that may not be convergent even both Σan
and Σbn are convergent!)

REMARK 2.20. cn ≠ Σnk=0ak ⋅ Σ
n
k=0bk in general.

EXAMPLE 2.21. Consider the series

Σan = Σ∞n=1
(−1)n
√

n
which is convergent since it satisfies

(1) |an| ≥ |an+1|;
(2) an → 0.

However

Σan ⋅ Σan = Σcn

= −1
√

1

−1
√

1
+ ( −1

√

1

1
√

2
+ 1

√

2

−1
√

1
) + ( −1

√

1

−1
√

3
+ 1

√

2

1
√

2
+ 1

√

3

−1
√

1
)

+( −1
√

1

1
√

4
+ 1

√

2

−1
√

3
+ −1

√

3

1
√

2
+ 1

√

4

−1
√

1
) +⋯

Estimate a term in cn as follows: Assume n is even, then

|cn| = |Σnk=1
−1

√

k
√

n − k + 1
| = |Σnk=1

1
√

k
√

n − k + 1
| ≥ Σnk=1

√

2
n + 1

=

√

2n
n + 1
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which shows that cn doesn’t converge to 0 and hence Σcn diverges.

THEOREM 2.22. [By Mertens] Suppose

(1) Σan = A and Σbn = B;
(2) Σan converges absolutely.

Then Σcn = AB, where cn ∶= Σnk=0akbn−k.

PROOF. We calculate the partial sums for Σcn.

Σmn=0cn = Σmn=0Σ
n
k=0akbn−k

= Σmk=0Σ
m−k
n=0 akbn

= Σmk=0(akΣ
m−k
n=0 bn)

= Σmk=0akS
b
m−k.

Here Sb denotes the partial sum for Σbn. Now we look at

Σmn=0cn − AB = Σmk=0akS
b
m−k − AB

= Σmk=0ak(S
b
m−k − B) + Σ

m
k=0akB − AB

= Σmk=0ak(S
b
m−k − B) + (Σ

m
k=0ak − A)B.

So we can estimate

|Σmn=0cn − AB| ≤ |Σmk=0ak(S
b
m−k − B)| + |(Σmk=0ak − A)B|

≤ Σmk=0(|ak| ⋅ |S
b
m−k − B|) + |Σmk=0ak − A||B|

The second term converges to zero since Σak = A.
Let’s prove the first term Σmk=0(|ak| ⋅ |S

b
m−k − B|)→ 0 as m→∞.

Denote by �n ∶= Sbn − B, we have �n → 0 as n → ∞. Hence for any � > 0, there exists some N so
that whenever n > N , |�n| < �.

Σmk=0(|ak| ⋅ |S
b
m−k − B|)

= |a0||�m| + |a1||�m−1| +⋯ + |am||�0|

= (|a0||�m| + |a1||�m−1| +⋯ |am−N−1||�N+1|) + (|am−N ||�N | +⋯ + |am||�0|)

≤ �Σm−N−1k=0 |ak| + max{|�0|,⋯ , |�N |}Σmk=m−N |ak|

≤ �Σ∞k=0|ak| + max{|�0|,⋯ , |�N |}Σmk=m−N |ak|.

Notice that Σmk=m−N |ak| converges to zero as m→∞ by the Cauchy’s criterion. This shows that for large
m, this term is bounded by

� ⋅ (Σ∞k=0|ak| + max{|�0|,⋯ , |�N |})

and hence it has zero as limit as m→∞. �

Regarding multiplication of series, Abel has the following result and we will prove later using the
continuity of power series.

THEOREM 2.23. [By Abel] If Σan = A, Σbn = B and Σcn = C , with

cn ∶= Σnk=0akbn−k,

then C = AB.
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2.5. Rearragnement. Assume Σ∞n=1xn is a series. Given any bijective map r ∶ ℤ+ → ℤ+, then
Σ∞n=1xr(n) is called a rearrangement of Σ∞n=1xn.

EXAMPLE 2.24. Consider the alternating convergent series

Σ∞n=1
(−1)n

n
= −1 + 1

2
− 1
3
+ 1
4
− 1
5
+⋯ .

We know it is convergent but not absolutely convergent. Denote

� ∶= Σ∞n=1
(−1)n

n
.

Then define a rearrangement as

Σ∞n=1x
′
n ∶= −1 −

1
3
+ 1
2
− 1
5
− 1
7
+ 1
4
− 1
9
− 1
11
+ 1
6
−⋯ .

One can prove that this rearrangement is also convergent, but to a different number � ≠ �.

In fact, Riemann proved the following general statement.

THEOREM 2.25. [By Riemann] Assume Σxn is convergent but not absolutely convergent. Take any
a ≤ b with a, b possibly being ±∞. Then there exists a rearrangement Σnxr(n) so that the partial sums
S′n ∶= Σ

n
k=1xr(n) satisfies

lim inf S′n = a, lim supS′n = b.

In particular, this shows that given any a ∈ ℝ, there exists a rearrangement Σnxr(n) = a.

PROOF. See Rudin Theorem 3.54’s proof. �

THEOREM 2.26. Assume Σxn is absolutely convergent. Then every rearrangement converges abso-
lutely to the same limit.

PROOF. Since Σxn is absolutely convergent, for any given � > 0, there exists some N ∈ ℤ+ so that
any n > N , p ≥ 0,

Σn+pk=n|xk| < �.

Now consider an arbitrary rearrangement Σxr(n).
Take N ′ so that for any n > N ′, r(n) ≥ N + 1. This is possible since we can take N ′ as

N ′ = max{r(1), r(2),⋯ , r(N), N + 1}.

Then for any n > N ′, we have

Σn+pk=n|xr(n)| ≤ Σ
N+1+p′
k=N+1 |xk| < �,

where p′ is some nonnegative number so that

{xN+1, xN+2,⋯ , xN+1+p′}

include all numbers
{xr(n), xr(n+1),⋯ , xr(n+p)}.

This shows that Σxr(n) converges absolutely.
The details that they converge to the same limit are left to you.

�



CHAPTER 4

Continuity

1. Limits of functions

Assume (X, dX) is metric space and U ⊂ X is a subset of X. Then the metric dX induces a metric
on U . We now consider another metric space (Y , dY ). A map f ∶ U → Y is also called a function over
U with values in Y . In particular, if Y = ℝ, then f is called a real-valued function; and if Y = ℂ, f is
called a complex-valued function.

DEFINITION 1.1. Consider a limit point x0 ∈ U ′ and a point y0 ∈ Y . We say the limit of the
function f (x) at x0 is y0, denoted as

lim
x→x0

f (x) = y0 or f (x)→ y0 as x → x0,

if for any � > 0, there exists some � > 0 so that any x ∈ U with 0 < dX(x, x0) < �, there is

dY (f (x), y0) < �.

If there is no y0 ∈ Y so that limx→x0 f (x) = y0, then we say the limit of f (x) at x0 doesn’t exist.

We make following important remarks for the definition.

REMARK 1.2. (1) We require x0 ∈ U ′ because this guarantees that there are always some
points x ∈ U with 0 < dX(x, x0) < �.

(2) When we take both (X, dX) and (Y , dY ) as (ℝ, | ⋅ |), this is just the case we have learnt from
calculus, which says limx→x0 f (x) = y0, if for any � > 0, there is some � > 0 so that any
0 < |x − x0| < �, we have |f (x) − y0| < �.

(3) Limit is a local property in the sense that limx→x0 f (x) only needs the information of f on a
(small) neighborhood of x0. Also, the limit limx→x0 f (x) doesn’t provide information of f (x)
at the point x0. In fact, f (x0) may not be defined at all.

(4) We can use � − � language to describe limx→x0 f (x) ≠ y0 as follows: There exists some �0 > 0
so that any � > 0, there exists some x ∈ U with 0 < dX(x, x0) < �, but

dY (f (x), y0) ≥ �0.

This is equivalent to the following sequence interpretation: There exists some �0 > 0 and a
sequence {xn} in U ⧵ {x0} that converges to x0 so that

dY (f (xn), y0) ≥ �0, n = 1, 2,⋯ .

From the above remark (4), we obtain the following sequence interpretation for limits of functions.

PROPOSITION 1.3. (1) limx→x0 f (x) = y0 if and only if any sequence {xn} in U ⧵ {x0} that
converges to x0 has f (xn)→ y0.

(2) limx→x0 f (x) ≠ y0 if and only if there exists some sequence {xn} in U ⧵ {x0} that converges to
x0 so that f (xn) doesn’t converge to y0.

43
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So, use the properties for limits of sequences we can obtain some properties for limits of functions
easily.

PROPOSITION 1.4. If limx→x0 f (x) exists, then it is unique.

PROOF. (1) (Use definition directly.) Assume limx→x0 = yi, i = 1, 2. For any � > 0, there
exists some �i > 0 so that any x ∈ U with 0 < dX(x, x0) < �i, we have dY (f (x), yi) <

�
2
,

i = 1, 2. Then

dY (y1, y2) ≤ dY (y1, f (x)) + dY (f (x), y2) < �

for any � > 0. Hence dY (y1, y2) and so y1 = y2.
(2) (Use sequences.) Assume limx→x0 f (x) = yi, i = 1, 2. Then for any sequence {xn} in U ⧵ {x0}

that converges to x0, there is f (xn)→ yi. By the uniqueness of limits of sequences, y1 = y2.
�

PROPOSITION 1.5. If Y = ℝ and limx→x0 f (x) = A, limx→x0 g(x) = B, then

(1) limx→x0(f ± g)(x) = A ± B;
(2) limx→x0(f ⋅ g)(x) = A ⋅ B;

(3) limx→x0
f
g
(x) = A

B
, if B ≠ 0.

(4) For any c ∈ ℝ, limx→x0(cf )(x) = cA.

PROOF. We prove (1) here and others are left to you as exercises. Take any sequence {xn} inU⧵{x0}
that converges to x0, we have

f (xn)→ A, and g(xn)→ B.

Then by the addition/subtraction property for sequences,

(f ± g)(xn) = f (xn) ± g(xn)→ A ± B.

This shows that limx→x0(f ± g)(x) = A ± B. �

EXAMPLE 1.6. Consider the functions f ∶ ℝ → ℝ.

(1) limx→x0 x = x0. Use it, we have the limits for any rational functions based on Proposition 1.5
as following examples.

(2) Assume f ∶ ℝ → ℝ is a polynomial function, i.e.,

f (x) = a0 + a1x + a2x2 +⋯ anx
n, a0, a1,⋯ , an ∈ ℝ.

Then for any x0 ∈ ℝ,

lim
x→x0

f (x) = a0 + a1x0 + a2x20 +⋯ anx
n
0 = f (x0).

(3) Assume f, g ∶ ℝ → ℝ are two polynomial functions and D = {x ∈ ℝ|g(x) ≠ 0}. Then take
any x0 ∈ D,

lim
x→x0

f (x)
g(x)

=
f (x0)
g(x0)

.

This is due to the quotient property of limits of functions.

EXAMPLE 1.7. We know the series 1 + Σ∞n=1
xn

n! is convergent for all x ∈ ℝ. Define it as ex. Prove
that limx→x0 e

x = ex0 .
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PROOF. (This is assigned as a homework problem and here is some hint.)
For each n, the partial sum Sn(x) ∶= 1+Σnk=1

xk

k!
is a polynomial in x of order n, and then by previous

example, we know

lim
x→x0

Sn(x) = Sn(x0).

Notice: Though we have

ex0 = lim
n→∞

Sn(x0) = lim
n→∞

lim
x→x0

Sn(x),

in general, we can not directly switch the orders of two limits on RHS and obtain

lim
n→∞

lim
x→x0

Sn(x) = lim
x→x0

lim
n→∞

Sn(x)(= lim
x→x0

ex).

To prove we can switch orders of these two limits, we look at

|ex − ex0| = |(ex − Sn(x)) + (Sn(x) − Sn(x0)) + (Sn(x0) − ex0)|

≤ |ex − Sn(x)| + |Sn(x) − Sn(x0)| + |Sn(x0) − ex0|.

Here the thing you need take case is to show that |ex − Sn(x)| is small for all n > N for some large
N which is INDEPENDENT of x (whenever x is close to x0).

�

Similarly, define

sin x ∶= x − x3

3!
+ x5

5!
+ x7

7!
−⋯ ,

and

cos x ∶= 1 − x2

2!
+ x4

4!
− x6

6!
+⋯ .

We can easily prove that both series are convergent for any x ∈ ℝ, so they define functions over x.
Moreover, similarly as the above proof for ex, we can prove that

lim
x→x0

sin x = sin x0, lim
x→x0

cos x = cos x0.

for any x0 ∈ ℝ.

REMARK 1.8. Using series, we can see the Euler’s formula

eix = cos x + i sin x,

and all numerical properties of sine and cosine functions. You are invited to think how these work.

2. Continuous functions

Consider (X, dX), (Y , dY ) are two metric spaces. U is a subset of X.

DEFINITION 2.1. Call f ∶ U → Y is continuous at x0 ∈ U , if either

(1) x0 is an isolated point of U , i.e., x ∈ U ⧵ U ′; or
(2) x0 ∈ U ∩ U ′ and limx→x0 f (x) = f (x0).

If f is not continuous at x0, we say f is discontinous at x0.

EXAMPLE 2.2. (1) Polynomial functions on ℝ are continuous everywhere.
(2) Rational functions on ℝ are continuous on its natural domain.
(3) ex, sin x, cos x on ℝ are continuous everywhere.
(4) xa, a > 0 is continuous on [0,+∞) ⊂ ℝ.
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When we consider real-valued functions, we have the following properties immediately from Propo-
sition 1.5.

PROPOSITION 2.3. Assume f , g are two functions from U to Y , and both are continuous at x0 ∈ U .
Then

(1) f ± g
(2) f ⋅ g
(3) f

g
, assuming that g(x0) ≠ 0

(4) c ⋅ f , for any c ∈ ℝ

are all continuous at x0.

PROOF. We prove (1) as an example. Others are left to you. If x0 is an isolated point, f + g is
continuous at x0 from definition. If x0 is a limit point, then

lim
x→x0

(f + g)(x) = lim
x→x0

f (x) + lim
x→x0

g(x)

= f (x0) + g(x0)

= (f + g)(x0).

�

The continuity has the following equivalent definition.

PROPOSITION 2.4. f is continuous at x0 if and only if for any � > 0, there exists some � > 0 so that
any x ∈ U with dX(x, x0) < �, there is

dY (f (x), f (x0)) < �.

(This is equivalent to say f (B�(x0) ∩ U ) ⊂ Bf (x0)(�).)

PROOF. We prove the ‘only if ’ part, and the ‘if’ part is exactly the same.

(1) If x0 is an isolated point, then there exists some � > 0 so that

Bx0(�) ∩ U = {x0}.

Then for any � > 0, take � as the one picked. It follows

f (Bx0(�) ∩ U ) = f ({x0}) = {f (x0)} ⊂ Bf (x0)(�).

(2) If x0 is a limit point, then this is just the � − � statement for limx→x0 f (x) = f (x0).

�

Using this proposition, it is easy to prove the following result.

PROPOSITION 2.5. Consider f is a function from metric space (X, dX) to metric space (Y , dY ), and
g is a function from the metric space (Y , dY ) to a metric space (Z, dZ). For a point x0 ∈ X, if f is
continuous at x0 and g is continuous at f (x0) ∈ Y , then g◦f as a function from X to Z is continuous at
x0.

PROOF. For any � > 0, since g is continuous at f (x0), there exists some �1 > 0 so that

g(B�1(f (x0))) ⊂ Bg(f (x0))(�).
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Then use the assumption that f is continuous at x0, there exists some � > 0 so that

f (B�(x0)) ⊂ Bf (x0)(�1).

It follows
g(f (B�(x0))) ⊂ g(Bf (x0)(�1)) ⊂ Bg(f (x0))(�),

which is saying that g◦f is continuous at x0. �

COROLLARY 2.6. The addition, subtraction, multiplication, division, composition of polynomial
functions, exponential functions, sine, cosine functions, x� (with � > 0), are all continuous on their
natural domains.

For functions defined on intervals of ℝ, we can discuss different types of discontinuous points.

DEFINITION 2.7. Assume x0 is a discontinuous point for a function defined on an interval of ℝ.

(1) Call x0 is of the first kind of discontinuous point, if both limx→x0± f (x) exist. In particular, if
they are the same, x0 is called a removable discontinuous point.

(2) Call x0 is of the second kind of discontinuous point, if at least one of limx→x0± f (x) doesn’t
exist.

EXAMPLE 2.8. (1)

f (x) =

⎧

⎪

⎨

⎪

⎩

0 x ≤ 0

1 x > 0

is discontinuous at x = 0 and it is first kind discontinuous point.
(2)

f (x) =

⎧

⎪

⎨

⎪

⎩

0 x = 0

1 x ≠ 0

is discontinuous at x = 0 and it is removable.
(3)

f (x) =

⎧

⎪

⎨

⎪

⎩

0 x ∈ ℚ

1 x ∉ ℚ

is discontinuous everywhere and every point in ℝ is of second kind.
(4)

f (x) =

⎧

⎪

⎨

⎪

⎩

x x ∈ ℚ

0 x ∉ ℚ

is (of second kind) discontinuous everywhere except at 0. It is continuous at x = 0.
(5)

f (x) =

⎧

⎪

⎨

⎪

⎩

sin 1
x

x ≠ 0

0 x = 0

is (of second kind) discontinuous at x = 0.

PROPOSITION 2.9. Assume f is a function from metric space (X, dX) to metric space (Y , dY ).
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(1) f is continuous on X if and only if the preimage of every open subset V ⊂ Y is an open subset
of X.

(2) f is continuous on X if and only if the preimage of every closed subset V ⊂ Y is a closed
subset of X.

PROOF. We prove (1), and (2) is left to you as exercise.
Assume f is continuous. Take V ⊂ Y as an open subset. We prove f−1(V ) is open. For this, take

any point x ∈ f−1(V ), then f (x) ∈ V . Since V is open, there exists some � > 0 so that the open ball
B�(f (x)) ⊂ V .

Now use the assumption that f is continuous at x, we can find some � > 0 so that

f (B�(x)) ⊂ B�(f (x)),

which is saying that B�(x) ⊂ f−1(V ), and this shows that fV is open.
Conversely, assuming the preimage of every open subset V ⊂ Y is an open subset of X, then in

particular, for any � > 0, f−1(B�(f (x))) is an open subset of X. Since x ∈ f−1(B�(f (x))), there exists
some � > 0 so that

f (B�(x)) ⊂ B�(f (x)),

which is saying that f is continuous at x. �

We remark that, in general for a topological space which is not necessarily a metric space, the above
proposition is in fact the definition of a continuous map.

3. Continuity and compactness

The same as before, we assume (X, dX) and (Y , dY ) are two metric spaces.

THEOREM 3.1. Assume f ∶ X → Y is a continuous map. Then for any compact subset K ⊂ X, the
image set f (K) is a compact subset of Y .

PROOF. We prove it by definition. Assume {V�|� ∈ Λ} is an open cover of f (K). By the continuity
of f and Proposition 2.9, {f−1(V�)|� ∈ Λ} is an open cover of K . Because K is compact, it must have
a finite subcover, which we denote by

{f−1(V1), f−1(V2),⋯ , f−1(Vn)}.

Then if follows
{V1, V2,⋯ , Vn}

is a finite subcover of {V�|� ∈ Λ}, and this shows that f (K) is compact. �

Now we give an alternative proof, which shows that the image of any sequentially compact under a
continuous map is sequentially compact. For metric spaces, since compactness is equivalent to sequential
compactness, this is just an alternative proof. However, for general topological spaces, compactness and
sequential compactness are independent and this is an independent result then.

ALTERNATIVE PROOF. AssumeK is sequentially compact, we prove now f (K) is also sequentially
compact using definition.

Take an arbitrary sequence {f (xn)|xn ∈ K} in f (K), we just need to see it has a convergent subse-
quence in f (K). For this, notice that {xn} as a sequence in K has a convergent subsequence

xnk → x0 ∈ K
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since K is sequentially compact. Then by the continuity of f , it follows

f (xnk)→ f (x0) ∈ f (K),

and we are done.
�

The converse of the statement is not true in general.

DEFINITION 3.2. A function f ∶ X → Y is called proper if the preimage of any compact subset of
Y is compact in X.

EXAMPLE 3.3. Not every continuous function is proper. Consider f (x) = 1
x

from (0,+∞) to ℝ. The
preimage of [0, 1] is [1,+∞) which is not compact.

An immediate corollary from the above result and Proposition 3.9 is the following

COROLLARY 3.4. Assume f ∶ X → Y is a continuous map. Then for any compact subset K ⊂ X,
the image set f (K) is bounded and closed in Y .

In particular, when Y = ℝ, we have the following important result.

THEOREM 3.5. A real-valued continuous function defined on a compact subset of a metric space
can obtain its supremum and infimum, i.e., has maximum and minimum.

PROOF. Assume f ∶ K → ℝ is a continuous function and Y is a compact subset of X. From
Corollary 3.4, we know f (K) is a bounded and closed subset of ℝ.

Then by the completeness of ℝ, sup f (K), inf f (K) ∈ ℝ. Since sup f (K), inf f (K) are limit points
of f (K), further by the closeness of f (K), they live in f (K). This is saying that there are points x1, x2 ∈
K so that

f (x1) = supf (K), f (x2) = inf f (K).

�

EXAMPLE 3.6. The assumption of compactness is important. For example f (x) = 1
x

has neither
max nor min over (0,+∞) ⊂ ℝ, but it has both over any closed interval [a, b] ⊂ (0,+∞), for a ≤ b.

Next, we consider the continuity of the inverse function of a continuous function. We know that if f
is an injective function from X to Y , then we can define the inverse function

f−1 ∶ f (X)→ X,

which maps f (x) back to x. Here comes the question that if f is continuous, then is f−1 continuous on
f (X)? The answer is no in general.

EXAMPLE 3.7. Consider

f (x) =

⎧

⎪

⎨

⎪

⎩

1 − x 0 ≤ x < 1

2 − x 2 ≤ x ≤ 3.

The inverse function is

f (x) =

⎧

⎪

⎨

⎪

⎩

2 − x −1 ≤ x ≤ 0

1 − x 0 < x ≤ 1.

It is NOT continuous at x = 0.
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In fact, we can prove the following result.

THEOREM 3.8. Assume f is an bijective function from X to Y and f is continuous. Then if X is
compact, its inverse is also continuous.

PROOF. We give two proofs. The first one uses open sets interpretation and the second proof uses
sequence interpretation.

(1) This is enough to show f is an open map, i.e., f maps any open subset U of X to an open set
of Y .

To show f (U ) is open, it is enough to show f (U )c is closed. Notice that

f (U )c = f (U c).

Since U c is closed subset of X, which is compact, U c is compact, and hence f (U c) is also
compact by Theorem 3.1. Then f (U )c is closed and we are done.

(2) Taking an arbitrary sequence {f (xn)|xn ∈ X} in Y that converges to some f (x0), we prove
that the sequence {f−1(f (xn)) = xn} converges to x0.

Assume this is not the case, then there exists some �0 > 0 and a subsequence {xnk} so that

dX(xnk , x0) ≥ �0.

Assuming X is sequentially compact, we can further find a subsequence {xnkl } so that it con-
verges to some x′0 ∈ X, and

dX(x′0, x0) ≥ �0.

At the same time, by the continuity of f , {f (xnkl )} converges to f (x′0). By the uniqueness of
limit, there must be

f (x0) = f (x′0),

and thus x0 = x′0, which contradicts with dX(x′0, x0) ≥ �0.

�

REMARK 3.9. Two metric spaces X and Y are called homeomorphic, if there exists some bijective
map f ∶ X → Y with both f and f−1 continuous. The above result shows that assuming X is compact,
for a homeomorphism, it is enough to check f is continuous.

The last property we want to introduce for continuous functions defined on a compact space is about
continuity itself.

DEFINITION 3.10. A function f ∶ X → Y is called uniformly continuous, if for any given � > 0,
there exists some � > 0 so that any x1, x2 ∈ X with dX(x1, x2) < �, there is

dY (f (x1), f (x2)) < �.

If we fix x1, then the definition is stating that f is continuous at x1, so we immediately get the
following result.

PROPOSITION 3.11. If f ∶ X → Y is uniformly continuous, then it is continuous.
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The converse is not true in general. Consider the function

f (x) = 1
x
, x ∈ (0,+∞)

is continuous but not uniformly continuous. This can be seen from the equalities that

|

1
x1
− 1
x2

| =
|x1 − x2|
|x1x2|

,

from which we see that even one requires |x1 − x2| < �, | 1
x1
− 1

x2
| can be arbitrarily big since |x1x2| can

be arbitrarily small.
On the other hand, if we restrict the domain to a closed interval, e.g., [1, 2], the above situation that

|x1x2| can be arbitrarily small will not happen anymore. This indicates the following general statement.

THEOREM 3.12. For a function defined on a compact domain, it is continuous if and only if it is
uniformly continuous.

PROOF. We only need to prove that under the assumption of compactness, continuity implies uni-
form continuity. Again we provide two proofs, one is using compactness, the other uses sequential
compactness.

(1) Since f is continuous everywhere onX, for any given � > 0, for each x ∈ X, there exists some
�(x) > 0 (may DEPEND on x) so that

f (B�(x)(x)) ⊂ B�(f (x)).

Now notice that

{B 1
2 �(x)

(x)|x ∈ X}

form an open cover of X (here to shrink �(x) to 1
2
�(x) is technically important. ) and X is

compact, we can pick finite points x1,⋯ , xn from X so that the balls

B 1
2 �(x1)

(x1), B 1
2 �(x2)

(x2),⋯ , B 1
2 �(xn)

(xn)

cover X. Define

� ∶= min{1
2
�(x1),⋯ , 1

2
�(xn)}.

Now for any two points p1, p2 ∈ X with distance

dX(p1, p2) < �,

we estimate dY (f (p1), f (p2)).
First, p1 must live in a ball B 1

2 �(xi)
(xi) for some i = 1,⋯ , n. We claim that p2 ∈ B�(xi)(xi).

This is because

dX(xi, p2)

≤ dX(xi, p1) + dX(p1, p2)

≤ 1
2
�(xi) + �

≤ 1
2
�(xi) +

1
2
�(xi) = �(xi).
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Then

dY (f (p1), f (p2))

≤ dY (f (p1), f (xi)) + dY (f (xi), f (p2))

≤ � + � = 2�.

This proves f is uniformly continuous.
(2) We now give a proof using sequences.

Assume f is not uniformly continuous. Then there exists some � > 0 and a pair of se-
quences {xn}, {x′n} with

dX(xn, x′n) <
1
n

but

dY (f (xn), f (x′n)) ≥ �0.

Because X is compact, after passing to subsequences, we can assume xn → x0 and x′n → x′0
for some x0, x′0 ∈ X. (I abuse notations here that I still use {xn} to denote a subsequence of it,
but this way is very commonly used in literatures. ) By the continuity of the distance function
dX ∶ X ×X → ℝ (This is supposed to be proved in your homework.) implies

dX(x0, x′0) ≤ lim
n→∞

1
n
= 0, thus, x0 = x′0.

On the other hand, apply the continuity of f and the distance function dY ∶ Y × Y → ℝ, it
follows

dY (f (x0), f (x′0)) ≥ �0,

which then contradicts with x0 = x′0.
This proves f must be uniformly continuous.

�

4. Continuity and connectedness

DEFINITION 4.1. A metric space X is called connected, if any subset S of X if it is both open and
closed, then it is either X or the empty set.

PROPOSITION 4.2. X is connected, if and onlyX = U ∪V , U ∩V = ∅, with both U, V open implies
that either U or V is empty set.

PROOF. If X is connected, and X = U ∪ V with both U, V open, then U = V c is both open and
closed. If U ≠ ∅, then U = X, and then V = U c = ∅.

Conversely, take any S ⊂ X, we can write X = S ∪Sc . Assume S is open and closed, then we must
have S or Sc is empty, which implies S is either empty or X. �

EXAMPLE 4.3. One ball in ℝn is connected. Two disjoint balls in ℝn forms a disconnected metric
space. (We are going to see a proof later. )

THEOREM 4.4. If f ∶ X → Y is a continuous function and X is connected, then f (X) is connected
as a metric space with the metric from Y .
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PROOF. Assume f (Y ) = U∪V , with bothU, V are open andU∩V = ∅. Then since f is continuous,
f−1(U ) and f−1(V ) are both open and have no intersection. Moreover,

f−1(U ) ∪ f−1(V ) = X.

Then because X is connected, either f−1(U ) or f−1(V ) is empty. This proves that U or V is empty and
hence f (X) is connected.

�

EXAMPLE 4.5. The subset ℝ is connected, but ℝ ⧵ {0} is not connected. Intuitionally, a set with a
‘gap’ is not connected. However, the following example may obey your intuition. Consider the subset

S ∶= {(x, sin 1
x
)|x ≠ 0} ∪ ({0} × [0, 1]).

Exercise: Prove S is connected as a metric space with the metric from ℝ2. (This is named topologists’
sine function.)

To exclude such pathological cases, we introduce another definition to describe connectedness.

DEFINITION 4.6. A metric space X is called path-connected, if any two points x0, x1 ∈ X, there is
a continuous function f ∶ [0, 1] → X with f (0) = x0, f (1) = x1.

THEOREM 4.7. [0, 1] ⊂ ℝ is both connected and path-connected.

PROOF. It is clear from definition that [0, 1] is path-connected. We prove it is also connected.
Assume [0, 1] = A∪B with both A and B are open in [0, 1] and A,B are disjoint. Then we can pick

a ∈ A and b ∈ B, and WLOG, assume a < b. Consider the interval [a, b] ⊂ [0, 1].
Denote by x0 ∶= sup([a, b] ∩ A). Such x0 exists and lives in [0, 1], but x0 can not be in A because

A is open. (Why?) On the other hand, x0 can not be in B because B is open. So either A or B is empty
then, which shows [0, 1] is connected. �

Using this, we now prove

THEOREM 4.8. Any path-connected metric space must be connected.

PROOF. Assume X is a path-connected metric space, we prove it must be connected. For this,
assume

X = U ∪ V

with both U, V open and U, V are disjoint, then if neither is empty, we pick x0 ∈ U and x1 ∈ V .
Since X is path-connected, there exists a continuous function

f ∶ [0, 1] → X, f (0) = x0, f (1) = x1.

Define A ∶= f−1(U ) and B ∶= f−1(V ). Both A,B are open in [0, 1] since f is continuous, but neither
is empty since

0 ∈ A, 1 ∈ B.

Hence [0, 1] is not connected, which contradicts with the fact we just proved in Theorem 4.7. �

However, the verse vice is not true as we just see from the topologists’ sine function.
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EXAMPLE 4.9. Any open or closed ball B in ℝn is (path) connected. The proof is left to you. In
particular, for any closed interval [a, b], we can construct a continuous path

f ∶ [0, 1]→ [a, b], f (t) = (1 − t)a + tb.

In fact, such f is a bijection, and the inverse map is also continuous. In another word, any nonempty
finite closed interval is homeomorphic to [0, 1].

Though in general, the path-connectedness is stronger than connectedness, for subsets in ℝ, the
connectedness and path-connectedness are exactly the same thing.

THEOREM 4.10. In ℝ, a subset is connected if and only it is path-connected.

PROOF. We only need to prove any connected subset of ℝ is path-connected. Take S ⊂ ℝ which is
connected. For any two points x0, x1 ∈ S, we show that [x0, x1] ⊂ S.

If this is not the case, there exists some x ∈ [x0, x1] but not in S. Then define

A ∶= S ∩ (−∞, x), B ∶= S ∩ (x,+∞).

They are disjoint and both are open in S. Moreover, S = A ∪ B, but neither A nor B is empty. This
contradicts with the connectedness of S. �

Again, we have seen from topologists’ sine function that in R2, this is not the case.

THEOREM 4.11. [Intermediate value theorem]Assume [a, b] ⊂ ℝ is a closed interval, and f ∶
[a, b]→ ℝ is a continuous function. If f (a) < f (b), then for each

f (a) < y0 < f (b),

there exists some x0 ∈ (a, b) so that f (x0) = y0.

PROOF. Since [a, b] is connected, using Theorem 4.4, f ([a, b]) is connected. Moreover, f (a), f (b) ∈
f ([a, b]) ⊂ ℝ. From the proof of Theorem 4.10, the closed interval

[f (a), f (b)] ⊂ f ([a, b]).

Now for any f (a) < y0 < f (b), there is

y0 ∈ f ([a, b]).

It follows there must be some x0 ∈ (a, b) with f (x0) = y0.
�

REMARK 4.12. This condition that f is a continuous on the CLOSED interval [a, b] is essential. If
it is only continuous on (a, b), the conclusion no longer holds.

5. Monotonic functions over segments in ℝ

DEFINITION 5.1. A real valued function f ∶ (a, b)→ ℝ is called

(1) increasing, if any a < x1 ≤ x2 < b, there is f (x1) ≤ f (x2).
(2) decreasing, if any a < x1 ≤ x2 < b, there is f (x1) ≥ f (x2).
(3) monotonic, if it is increasing or decreasing.
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THEOREM 5.2. Assume f ∶ (a, b)→ ℝ is an increasing function. Then both

f (x0+) ∶= lim
x→x0+

f (x) and f (x0−) ∶= lim
x→x0−

f (x)

exist for any x0 ∈ (a, b). More precisely,

sup
a<t<x0

f (t) = f (x0−) ≤ f (x0) ≤ f (x0+) = inf
x0<t<b

f (t).

Further more, if a < x < y < b, then
f (x+) ≤ f (y−).

PROOF. (1) Take any x0 ∈ (a, b). Consider the set {f (t)|a < t < x0}. Since f is increasing, it
has upper bound f (x0). Hence it must has the l.u.b., which we denote by

A ∶= sup
a<t<x0

f (t).

Now given any � > 0, there exists some t0 ∈ (a, x0) so that

f (t0) > A − �.

Notice f is increasing, and so any t ∈ [t0, x0) has

A − � < f (t0) ≤ f (t) ≤ A,

which exactly states that f (x0−) = A.
For the f (x0+) part the proof is similar and is left to you as exercise.
Then the inequality

sup
a<t<x0

f (t) = f (x0−) ≤ f (x0) ≤ f (x0+) = inf
x0<t<b

f (t).

follows from the monotonicity of the the function f .
(2) Take some number z ∈ (x, y), from the above together with f is increasing, there is

f (x+) = inf
x<t<b

f (t) ≤ inf
x<t<z

f (t) ≤ f (z) ≤ sup
z<t<y

f (t) ≤ sup
a<t<y

f (t) = f (y−).

�

COROLLARY 5.3. Monotonic functions have no discontinuity of the second kind.

PROOF. This is because we have proved that for any point x ∈ (a, b), both f (x−), f (x+) exist. �

THEOREM 5.4. Assume f ∶ (a, b)→ ℝ is monotonic. Then the set of discontinuous points is at most
countable.

PROOF. WLOG, assuming f is increasing. For each discontinuous point x ∈ (a, b), there must be
f (x−) < f (x+). We choose some rational number rx ∈ ℚ so that

f (x−) < rx < f (x+).

By this way, we set up an injective (why?) map from discontinuous points in (a, b) to ℚ, and so the set
of discontinuous points must be at most countable.

�





CHAPTER 5

Differentiation

We focus on real valued functions defined on open or closed intervals.

1. The derivative of a real function

DEFINITION 1.1. A function f ∶ [a, b] → ℝ is called differentiable at x0 ∈ [a, b], if the limit of the
function

�x0(t) ∶=
f (t) − f (x0)

t − x0
, a < t < b, t ≠ x0

exists as t→ x0. For this case, we write

f ′(x0) = lim
t→x0

�x0(t) = lim
t→x0

f (t) − f (x0)
t − x0

.

The function f is called differentiable over [a, b] if it is differentiable for each x ∈ [a, b]. It induces
the function

df
dx

= f ′ ∶ [a, b]→ ℝ,

which is called the derivative of f .

PROPOSITION 1.2. If f ∶ [a, b] → ℝ is differentiable at x0 ∈ [a, b], then it must be continuous at
x0.

PROOF. We have

|f (x) − f (x0)| =
|f (x) − f (x0)|

|x − x0|
⋅ |x − x0|, a ≤ x ≤ b, x ≠ x0.

The limit exists and it is zero as x→ x0 when f ′(x0) exists. �

Usually, people useC1([a, b]) to denote the set of differentiable functions over [a, b]whose derivative
is continuous. More general, people use Ck([a, b]) to denote the set of functions whose kth ordered
derivative is continuous. In particular, C0([a, b]) is the set of continuous functions over [a, b].

THEOREM 1.3. Suppose f, g ∶ [a, b]→ ℝ are differentiable at x0 ∈ [a, b]. Then f ±g, fg and f∕g
(when g(x0) ≠ 0) are differentiable at x0. Moreover,

(1) (f ± g)′(x0) = f ′(x0) ± g′(x0);
(2) (fg)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0);
(3) (f∕g)′(x0) = (f ′(x0)g(x0) − f (x0)g′(x0))∕g(x0)2.

PROOF. We take (2) as an example.
We calculate

(f (x)g(x) − f (x0)g(x0)
x − x0

=
(f (x) − f (x0))g(x) + f (x0)(g(x) − g(x0))

x − x0

=
f (x) − f (x0)

x − x0
⋅ g(x) + f (x0) ⋅

g(x) − g(x0)
x − x0

→ f ′(x0)g(x0) + f (x0)g′(x0), as x→ x0,

57
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where we use f and g are differentiable at x0 and Proposition 1.2. �

THEOREM 1.4. [The chain rule] Let f ∶ [a, b] → ℝ be a real-valued function that is differentiable
at x0 ∈ [a, b]. Let g be a real-valued function defined on an interval that contains f ([a, b]), and g is
differentiable at f (x0). Then, the composition

ℎ(x) ∶= g◦f (x) ∶= g(f (x)) ∶ [a, b]→ ℝ

is differentiable at x0, and the derivative at x0 can be calculated as

ℎ′(x0) = g′(f (x0))f ′(x0).

PROOF. We introduce some useful method for proofs regarding limits.
In general, for a function say p(x), if

lim
x→x0

p(x) = 0,

we write p(x) = o(|x−x0|). Here you can think o(|x−x0|) denotes a function that defined in a sufficiently
small neighborhood of x0 excluding x0, which goes to 0 as |x − x0| goes to 0.

Using this notation, we can write

ℎ(x) − ℎ(x0) = g(f (x)) − g(f (x0))

= (g′(f (x0)) + o(|f (x) − f (x0)|))(f (x) − f (x0))

= (g′(f (x0)) + o(|f (x) − f (x0)|))(f ′(x0) + o(|x − x0|))(x − x0),

and so
ℎ(x) − ℎ(x0)
x − x0

= (g′(f (x0)) + o(|f (x) − f (x0)|))(f ′(x0) + o(|x − x0|)).

By Proposition 1.2, the differentiability of f (x) at x0 implies f (x) is continuous at x0, i.e.,

|f (x) − f (x0)| = o(|x − x0|).

We can then write
ℎ(x) − ℎ(x0)
x − x0

= (g′(f (x0)) + o(|x − x0|))(f ′(x0) + o(|x − x0|)).

Take limit x→ x0, it follows

lim
x→x0

ℎ(x) − ℎ(x0)
x − x0

= lim
x→x0

(g′(f (x0)) + o(|x − x0|))(f ′(x0) + o(|x − x0|))

= g′(f (x0))f ′(x0).

�

(For the chain rule, Rudin’s book (Thm 5.5) also requires f is continuous over the whole interval, but
in fact this is not necessary. We only need continuity at x0 which can be derived from the differentiability
of f at x0. )
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EXAMPLE 1.5. (1)

f (x) =

⎧

⎪

⎨

⎪

⎩

x2 x ≤ 0

0 x > 0

The function f (x) is differentiable over ℝ, but its derivative f ′(x) is not differentiable but only
continuous.

(2) The derivative of a differentiable function may not be continuous.

f (x) =

⎧

⎪

⎨

⎪

⎩

x2 sin 1
x

x ≠ 0

0 x = 0

(Later, we will prove that if f (x) is differentiable over [a, b], its derivative f ′(x) has no first
kind discontinuity. )

(3) A continuous function may not be differentiable.

f (x) =

⎧

⎪

⎨

⎪

⎩

x sin 1
x

x ≠ 0

0 x = 0

(Regarding continuous but not differentiable functions, a more pathological example is the Weier-
strass function, which is continuous everywhere over ℝ but differentiable nowhere. I didn’t men-
tion this example in class, but you can have a look at https://en.wikipedia.org/wiki/
Weierstrass_function to get some intuition on it. )

2. Mean value theorem

DEFINITION 2.1. Let f be a real valued function defined over a metric space X. We say f has a
local maximum at a point x0 ∈ X, if there is an open ball B�(x0) for some � > 0, so that

f (x0) ≥ f (x), for any x ∈ B�(x0).

We say f has a local minimum at a point x0 ∈ X, if there is an open ball B�(x0) for some � > 0, so that

f (x0) ≤ f (x), for any x ∈ B�(x0).

DEFINITION 2.2. For a function f ∶ (a, b) → ℝ, a point x0 ∈ [a, b] is called a critical point if f is
not differentiable at x0 or f ′(x0) = 0.

THEOREM 2.3. Assume f is defined over [a, b]. If f has a local maximum or local minimum at some
x0 ∈ (a, b), then x0 is a critical point of f .

PROOF. If f is not differentiable at x0, we are done. Assume now f is differentiable at x0 and x0 is
a local maximum.

Then there exists some � > 0 so that

f (x0) ≥ f (x), for any x ∈ B�(x0).

It follows

f (x) − f (x0)
x − x0

⎧

⎪

⎨

⎪

⎩

≥ 0 x0 − � < x < x0
≤ 0 x0 < x < x0 + �.
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Further because f ′(x0) exists, there is

f ′(x0−) ≥ 0, f ′(x0+) ≤ 0,

but f ′(x0−) = f ′(x0+) = f ′(x0). Hence, f ′(x0) = 0. �

We make the following remark for the above theorem: One can not make the conclusion for x0 = a
or b.

THEOREM 2.4 (Rolle’s theorem). Assume f (x) is continuous over [a, b], differentiable over (a, b),
and f (a) = f (b). Then there exists some x0 ∈ (a, b) so that

f ′(x0) = 0.

PROOF. If f (x) is constant over [a, b], then by definition f ′(x) = 0 for every x ∈ [a, b]. We are
done. Otherwise, there must be some t0 ∈ (a, b) so that f (t0) ≠ f (a) = f (b). WLOG, let’s assume
f (t0) > f (a) = f (b).

At the same time, because f (x) is continuous over [a, b]which is a compact subset of ℝ, by Theorem
3.5, there exists some x0 ∈ [a, b] so that

f (x0) = max[a,b]
f (x).

Notice that f (x0) ≥ f (t0) > f (a) = f (b), x0 must live in the interior (a, b).
Then apply Theorem 2.3, we obtain f ′(x0) = 0.

�

THEOREM 2.5 (The Mean Value Theorem). If f (x) is continuous over [a, b], differentiable over
(a, b), then there exists some x0 ∈ (a, b) so that

f (b) − f (a) = f ′(x0)(b − a).

PROOF. Consider the function

ℎ(x) = f (x) −
f (b) − f (a))

b − a
⋅ x.

It is continuous over [a, b], differentiable over (a, b) and

ℎ(a) = ℎ(b).

Then From the Rolle’s theorem, there exists some x0 ∈ (a, b) so that

ℎ′(x0) = f ′(x0) −
f (b) − f (a))

b − a
= 0,

which is equivalent to

f (b) − f (a) = f ′(x0)(b − a).

�

We can generalize the mean value theorem to the general mean value theorem.

THEOREM 2.6 (The Cauchy’s Mean Value Theorem). Assume f, g are two real-valued functions
that are continuous over [a, b] and differentiable over (a, b). Then there exists some x0 ∈ (a, b) so that

(f (b) − f (a))g′(x0) = (g(b) − g(a))f ′(x0).
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PROOF. (From the geometric meaning, f (x) here plays the role of coordinate x in the mean value
theorem. This gives the motivation of constructing the following function ℎ.) Consider

ℎ(x) ∶= (f (b) − f (a))g(x) − (g(b) − g(a))f (x).

Then ℎ ∈ C0([a, b]), differentiable over (a, b) and ℎ(a) = ℎ(b). Apply the Rolle’s theorem, there exists
some x0 ∈ (a, b) so that

ℎ′(x0) = (f (b) − f (a))g′(x0) − (g(b) − g(a))f ′(x0) = 0.

We are done. �

An immediately corollary from the mean value theorem is the following.

THEOREM 2.7. If f (x) is differentiable over (a, b), then

(1) f ′(x) ≥ 0 implies f (x) is increasing;
(2) f ′(x) ≤ 0 implies f (x) is decreasing;
(3) f ′(x) = 0 implies f (x) is constant.

PROOF. Take any a < x1 ≤ x2 < b, and apply the mean value theorem over [x1, x2]. There exists
some x1 < x0 < x2 so that

f (x2) − f (x1) = f ′(x0)(x2 − x1).

Then

(1) if f ′ ≥ 0, then f (x2) ≥ f (x1). This shows f is increasing.
(2) if f ′ ≤ 0, then f (x2) ≤ f (x1). This shows f is decreasing.
(3) if f ′ = 0, then f (x2) = f (x1). This shows f is constant.

�

Another application of the mean value theorem is the following about uniform continuity. The proof
is left to you.

PROPOSITION 2.8. Assume f ∶ (a, b) → ℝ is differentiable and f ′(x) is bounded (which means
there exists some M > 0 so that |f ′(x)| ≤ M for any x ∈ (a, b)). Then f is uniformly continuous over
(a, b).

We make a remark that a continuous function defined over a closed interval must be uniformly
continuous from Theorem 3.12. Since a differentiable function is continuous, we immediately know that
a differentiable function over a closed interval is uniformly continuous.

3. The intermediate value property of derivatives

Recall from Theorem 4.11 that a continuous function over a closed interval can achieve any value
between the values of its endpoints. Such property is referred as the intermediate value property.

On the other hand, we have seen from example before that not every derivative function is continuous.
However, every derivative function still has the intermediate value property.

THEOREM 3.1 (The Intermediate Value Property for Derivatives). Assume f (x) is differentiable
over [a, b] and f ′(a) < f ′(b). Then for each f ′(a) < � < f ′(b), there exists some x0 ∈ (a, b) so that
f ′(x0) = �.

Similarly result applies to the case f ′(a) > f ′(b).
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PROOF. We consider the function

g(x) = f (x) − �x.

Clearly, it is differentiable and so continuous over [a, b] and

g′(a) = f ′(a) − � < 0, g′(b) = f ′(b) − � > 0.

Notice that g′(a) < 0 implies that there exists some a < x1 < b so that g(x1) < g(a); and g′(b) > 0
implies that there exists some a < x2 < b so that g(x2) < g(b). This says a, b can not be the global
minimal of g over [a, b]. But such global minimum point exists, say x0, since g is continuous. It follows
x0 ∈ (a, b).

Then apply Theorem 2.3, we have

g′(x0) = 0,

which is equivalent to f ′(x0) = �.
�

COROLLARY 3.2. Assume f (x) is differentiable over [a, b]. Then f ′(x) can only have second kind
of discontinuous points on [a, b].

PROOF. Assume f ′(x) is discontinuous at x0 ∈ [a, b] with both f ′(x0−), f ′(x0+) exist but Either

(1) f ′(x0−) ≠ f ′(x0+); or
(2) f ′(x0−) = f ′(x0+) ≠ f ′(x0).

For the case (1), WLOG, let’s assume

f ′(x0−) < f ′(x0+), and write l ∶= f ′(x0+) − f ′(x0−).

Then there exists some � > 0 so that

∙ for any x0 − � < x < x0, there is

f ′(x) < f ′(x0−) +
1
3
l.

∙ for any x0 < x < x0 + �,

f ′(x) > f ′(x0+) −
1
3
l.

Then in the interval [x0 −
1
2�, x0 +

1
2�], there is at most one value in

(f ′(x0−) +
1
3
l, f ′(x0+) −

1
3
l)

can be taken by f ′(x). This contradicts with Theorem 3.1.
For the case (2), the proof is similar details are left to you.

�

We have proved that a monotonic function doesn’t have second kind discontinuous points. Hence, if
f ′(x) is not continuous, it can not be monotonic either.
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4. L’Hospital’s Rule

In calculus, we have learnt a very useful way of calculating limits of functions of the types ‘00 ’ or
‘ ⋅
∞

’, which is called the L’Hospital’s Rule.

EXAMPLE 4.1. (1) limx→0
sin x
x

. There are

lim
x→0

sin x = 0, lim
x→0

x = 0,

so we call it of type ‘0
0
’ . The L’Hospital’s Rule tells us, we can calculate the limit as

lim
x→0

sin x
x

= lim
x→0

(sin x)′

x′
= lim
x→0

cos x
1

= 1.

(2) limx→+∞
log x
x

. There are

lim
x→+∞

log x = ∞, lim
x→+∞

x = +∞,

so we call it of type ‘∞∞ ’ . The L’Hospital’s Rule tells us, we can calculate the limit as

lim
x→+∞

log x
x

= lim
x→+∞

(log x)′

x′
= lim
x→+∞

1
x

1
= 0.

Now we give a proof of the L’Hospital’s Rule. Since the limit at a point can be calculated using
one-side limits, we only need to understand the corresponding L’Hospital’s Rule for one-side limits.

THEOREM 4.2. Assume f, g are differentiable over (a, b) with g(x) ≠ 0. If either

(1) limx→a f (x) = 0 and limx→a g(x) = 0; or
(2) limx→a |g(x)| = +∞,

and

lim
x→a

f ′(x)
g′(x)

= A ∈ [−∞,+∞], assuming g′(x) ≠ 0 over (a, b),

then

lim
x→a

f (x)
g(x)

= A.

PROOF. I prove the case when a ∈ ℝ and A ∈ ℝ. Others are left to you as exercise. Since
limx→a

f ′(x)
g′(x) = A, then for any � > 0, there exists some � > 0 so that any

a < x < a + �,

there is

A − � <
f ′(x)
g′(x)

< A + �.

Now we take any x, y ∈ (a, a+�), by Cauchy’s mean value theorem, there exists some � ∈ (a, a+�),
which may depend on x, y, so that

(f (x) − f (y))g′(�) = (g(x) − g(y))f ′(�).

It follows

(4.1)
f ′(�)
g′(�)

=
f (x) − f (y)
g(x) − g(y)

∈ (A − �, A + �).
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(1) If limx→a f (x) = 0 and limx→a g(x) = 0, for each fixed y, we take x→ a, and it follows

f (y)
g(y)

= lim
x→a

f (x) − f (y)
g(x) − g(y)

∈ [A − �, A + �].

By definition of limit, this says

lim
y→a

f (y)
g(y)

= A.

(2) If limx→a |g(x)| = +∞, then for each fixed y, we can make x be close enough to a so that
a < x < y < b and

g(x) − g(y)
g(x)

> 0.

Multiplying it to (4.1), we obtain

(A − �) ⋅
g(x) − g(y)

g(x)
<
f (x) − f (y)

g(x)
< (A + �) ⋅

g(x) − g(y)
g(x)

.

Take x→ a, we obtain

A − � ≤ lim inf
x→a

f (x)
g(x)

≤ lim sup
x→a

f (x)
g(x)

≤ A + �.

At last, take � → 0, we are done.

�

Now let’s see more examples on L’Hospital’s Rule.

EXAMPLE 4.3. (1) limx→0
1−cos x
x2

= 1
2
.

(2) limx→+∞
x2

e3x
= 0.

(3) limx→0+ x log x = 0.
(4) limx→0+

log x
x
= −∞. L’Hospital Rule doesn’t work!

(5) limx→0+ xx = 1. Use xx = ex log x. (This also implies limn→∞ n
1
n = 1. )

(6) limx→∞(1 +
1
x
)x = e. Use (1 + 1

x
)x = ex log(1+

1
x ).

5. Taylor expansion

5.1. The statement of Taylor expansion. The Taylor expansion can be considered as a generaliza-
tion of the mean value theorem to higher order cases.

Consider a function f ∶ [a, b] → ℝ. We first look at the mean value theorem from the viewpoint of
approximations for f (x) near a point a. We can regard the constant function

f0(x) = f (a)

as the zero order approximation of f (x). Then we ask if we can understand the remainder

R1(x) ∶= f (x) − f (a), x ∈ [a, b].

for this approximation. For this, if we assume f ∈ C0([a, b]) and f ′ exists over (a, b), then the mean
value theorem tells us, there exists some a < �x < x (here �x emphasizes that � depends on x) so that we
can write R1 as

R1(x) = f ′(�x)(x − a).

This is saying that the derivative of f can control the remainder R1(x) as an order 1 monomial.
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Next we consider the first order approximation, i.e., the linear approximation at a. This is the linear
function

f1(x) = f (a) + f ′(a)(x − a), x ∈ [a, b].

The corresponding remainder is defined as

R2(x) ∶= f (x) − f1(x), x ∈ [a, b].

The approximation guarantees that

R2(a) = 0, R′2(a) = 0.

If we assume f ∈ C1([a, b]) and f ′′ exists over (a, b), then we are able to prove the following lemma,
which says that R2 can be controlled by the second derivative of f as a monomial order 2.

LEMMA 5.1. For each x ∈ (a, b], there exists some a < �x < x so that

R2(x) =
f ′′(�x)
2

(x − a)2.

PROOF. For each fixed x ∈ (a, b], consider the function

ℎ(t) ∶= f (t) − f (a) − f ′(a)(t − a) −M(x)(t − a)2,

defined for t ∈ [a, x], with

M(x) ∶=
R2(x)
(x − a)2

=
f (x) − f (a) − f ′(a)(x − a)

(x − a)2
.

Then ℎ ∈ C1([a, x]), ℎ′′ exists over (a, x), and

ℎ(a) = ℎ(x) = 0, ℎ′(a) = 0.

Apply Rolle’s theorem, there exists some �′x ∈ (a, x) so that ℎ′(�′x) = 0. Then apply Rolle’s theorem
again for ℎ′(t) over [a, �′x], there exists some �x ∈ (a, �′x) ⊂ (a, x) so that

ℎ′′(�x) = f ′′(�x) − 2M(x) = 0.

Hence M(x) ∶= R2(x)
(x−a)2

= f ′′(�x)
2

, and so

R2(x) =
f ′′(�x)
2

(x − a)2.

�

Now we generalize the above two examples to higher orders. Assume f ∶ [a, b] → ℝ has up to n-th
ordered derivatives at a, i.e., f ′(a),⋯ , f (n)(a) exist. Denote by

fn(x) ∶= f (a) + f ′(a)(x − a) +
f ′′(a)
2!

(x − a)2 +⋯ +
f (n)(a)
n!

(x − a)n

= Σnk=0
f (k)(a)
k!

(x − a)k, x ∈ [a, b],

the n-th order approximation, whose error is defined as

Rn+1(x) ∶= f (x) − fn(x).

Then there is the following Taylor’s theorem.
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THEOREM 5.2 (Taylor’s Theorem). Assume f ∈ Cn([a, b]) and f (n+1) exists over (a, b), where
n ∈ {0, 1, 2,⋯}. Then for each x ∈ (a, b], there exists some a < �x < x so that

Rn+1(x) =
f (n+1)(�x)
(n + 1)!

(x − a)n+1.

PROOF. The proof is a higher order analogue to Lemma 5.1 (which is for n = 1 case). For each fixed
x ∈ (a, b], consider the function

ℎ(t) ∶= f (t) − fn(t) −M(x)(t − a)n+1,

defined for t ∈ [a, x], with

M(x) ∶=
Rn+1(x)
(x − a)n+1

=
f (x) − fn(x)
(x − a)n+1

.

Then ℎ ∈ Cn([a, x]), ℎ(n+1) exists over (a, x), and

ℎ(a) = ℎ(x) = 0, ℎ′(a) = 0,⋯ , ℎn(a) = 0.

Apply Rolle’s theorem for ℎ over [a, x], there exists some �1,x ∈ (a, x) so that ℎ′(�1,x) = 0. Then apply
Rolle’s theorem for ℎ′(t) over [a, �1,x], there exists some �2,x ∈ (a, �1,x) ⊂ (a, x) so that ℎ′′(�2,x) = 0.
Keep repeating this procedure, that after applying Rolle’s theorem for ℎ(n)(t) over [a, �n,x], there exists
some �n+1,x ∈ (a, �n,x) ⊂ (a, x) so that

ℎ(n+1)(�n+1,x) = f (n+1)(�n+1,x) − (n + 1)!M(x) = 0.

Denote by �x ∶= �n+1,x. Hence M(x) ∶= Rn+1(x)
(x−a)n+1 =

f (n+1)(�x)
(n+1)! , and so

Rn+1(x) =
f (n+1)(�x)
(n + 1)!

(x − a)n+1.

�

DEFINITION 5.3. Assume f ∈ C∞((a, b)) and c ∈ (a, b). We call the series

Σ∞n=0
f (n)(x)
n!

(x − c)n

the Taylor series for f about c.

In general, f may be different from its Taylor series, and from definitions, we have that for any
x ∈ (a, b),

f (x) = Σ∞n=0
f (n)(x)
n!

(x − c)n

if and only if

lim
n→∞

Rn+1(x) = 0.

Taylor’s theorem gives us a way to estimate Rn+1(x) by which one is able to tell if f (x) is the same as its
Taylor’s series.
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5.2. The example of power series. More general, consider the power series

f (x) = Σ∞n=0cnx
n, cn ∈ ℝ.

The convergence radius R can be calculated as

R = 1
lim supn→∞ n

√

|cn|
∈ [0,∞].

Notice that if we take derivative for each term,

(cnxn)′ = ncnxn−1, n ≥ 1.

The new power series

Σ∞n=1ncnx
n−1

has the same convergence radius R.
In fact, we can prove (later after we introduce the concept of uniformly convergence, this follows

from some more general statement),

THEOREM 5.4. Assume R ∈ [0,+∞] is the convergence radius of the power series

f (x) = Σ∞n=0cnx
n, cn ∈ ℝ.

Then f is differentiable over (−R,R) and

f ′(x) = Σ∞n=1ncnx
n−1.

Further, f is C∞((−R,R)), i.e., any order derivative of f exists over (−R,R), with

(5.1) f (k)(x) = Σ∞n=kn(n − 1)⋯ (n − k + 1)cnxn−k = Σ∞n=k
n!

(n − k)!
cnx

n−k,

where k = 0, 1,⋯. In particular,

f (k)(0) = k!ck.

It follows from this theorem that a power series about 0 is the same as its Taylor series about 0.

EXAMPLE 5.5. Consider a polynomial f (x) = 2 + 2x+ 3x2 + x3. We can calculate its Taylor series
at a = 1 as follows.

f (x) = 2 + 2((x − 1) + 1) + 3((x − 1) + 1)2 + ((x − 1) + 1)3

= 8 + 11(x − 1) + 6(x − 1)2 + (x − 1)3.

From it, we have

f (1) = 8, f ′(1) = 11, f ′′(1) = 12, f ′′′(1) = 6.

This example can be generalized to arbitrary power series, whose proof is based on the possibility of
changing orders of summations (we leave its proof to later).

THEOREM 5.6 (Taylor’s Theorem for power series). Assume R ∈ [0,+∞] is the convergence radius
of the power series

f (x) = Σ∞n=0cnx
n, cn ∈ ℝ.

For any a ∈ (−R,R), define

Ra = R − |a|.
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Then we can write f as a power series over (a − Ra, a + Ra) as

f (x) = Σ∞n=0
f (n)(a)
n!

(x − a)n.

PROOF. We write

f (x) = Σ∞n=0cnx
n

= Σ∞n=0cn((x − a) + a)
n

= Σ∞n=0cnΣ
n
k=0

n!
k!(n − k)!

(x − a)kan−k

= Σ∞k=0(Σ
∞
n=k

n!
k!(n − k)!

cna
n−k)(x − a)k

= Σ∞k=0
f (k)(a)
k!

(x − a)k.

The fourth equality above is NOT trivial, but follows from the convergence of the double summation (we
leave it proof to later)

Σ∞n=0Σ
n
k=0|cn

n!
k!(n − k)!

(x − a)kan−k|.

This series is convergent because

Σnk=0|cn
n!

k!(n − k)!
(x − a)kan−k| = |cn|(|x − a| + |a|)n < |cn|R

n,

and
Σ∞n=0|cn|R

n

is convergent.
�



CHAPTER 6

The Riemann–Stieltjes Integral

1. Definition of Riemann–Stieltjes Integral

Assume [a, b] is a closed interval in ℝ. By a partition  , we mean a finite set of points

a = x0 ≤ x1 ≤⋯ ≤ xn−1 ≤ xn = b.

Assume f is a bounded real-valued function over [a, b] and � is an increasing function over [a, b].
Denote by

Mi = sup
[xi−1,xi]

f (x), mi = inf
[xi−1,xi]

f (x),

and by

Δ�i = �(xi) − �(xi−1).

Define the upper sum of f with respect to the partition and � as

U (f, �;) ∶= Σni=1MiΔ�i,

and the lower sum of f with respect to the partition and � as

L(f, �;) ∶= Σni=1miΔ�i.

Define the upper Riemann–Stieltjes integral as

⨛

b

a
f (x)d�(x) ∶= inf


U (f, �;)

and the lower Riemann–Stieltjes integral as

⨜

b

a
f (x)d�(x) ∶= sup


L(f, �;).

It is easy to see from definition that

⨜

b

a
f (x)d�(x) ≤

⨛

b

a
f (x)d�(x).

DEFINITION 1.1. Call a function f is Riemann–Stieltjes integrable with respect to � over [a, b], if

⨛

b

a
f (x)d�(x) = ⨜

b

a
f (x)d�(x).

We use ∫ b
a f (x)d�(x) to denote the common value and call it the Riemann–Stieltjes of f with respect to

� over [a, b].
We use the notation R(�)([a, b]) to denote the set of Riemann–Stieltjes integrable functions with

respect to � over [a, b].
In particular, when �(x) = x, we call the corresponding Riemann–Stieltjes integration the Riemann

integration and use R([a, b]) to denote the set of Riemann integrable functions.

The first problem we need to understand is what kind of functions are Riemann–Stieltjes integrable.

69
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THEOREM 1.2. f ∈ R(�)([a, b]) if and only if for each � > 0, there exists some partition  so that

U (f, �;) − L(f, �;) < �.

PROOF. (1) Assume f ∈ R(�)([a, b]), by definition

inf

U (f, �;) = ∫

b

a
f (x)d�(x) = sup


L(f, �;).

For any � > 0, there exists partitions 1,2 so that

U (f, �;1) < ∫

b

a
f (x)d�(x) + 1

2
�

and

L(f, �;2) > ∫

b

a
f (x)d�(x) − 1

2
�.

Consider the common refinement  by making union of points in 1 and 2. It follows

L(f, �;2) ≤ L(f, �;) ≤ U (f, �;) ≤ U (f, �;1),

and then

U (f, �;) − L(f, �;)

≤ U (f, �;1) − L(f, �;2)

≤ (∫

b

a
f (x)d�(x) + 1

2
�) − (∫

b

a
f (x)d�(x) − 1

2
�)

= �.

(2) Assume that for each � > 0, there exists some partition  so that

U (f, �;) − L(f, �;) < �,

then it follows

0 ≤
⨛

b

a
f (x)d�(x) −⨜

b

a
f (x)d�(x) ≤ �.

Take � → 0, we are done.
�

Now we use this criterion to prove the following several theorems.

THEOREM 1.3. C0([a, b]) ⊂ R(�)([a, b]).

PROOF. If � is constant, then by definition, ∫ b
a f (x)d�(x) = 0. In the following, we assume �(a) <

�(b).
For any f ∈ C0([a, b]), it is uniformly continuous over [a, b]. Hence for any � > 0, there exists some

� > 0 so that

|f (t1) − f (t2)| <
1

2(�(b) − �(a))
�

whenever |t1 − t2| < �.
Now we take a partition  so that Δi = xi − xi−1 < �. Then it follows

Mi − mi <
1

�(b) − �(a)
�.
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For this partition  ,

U (f, �;) − L(f, �;)

= Σi(Mi − mi)Δ�i

≤ Σi
1

�(b) − �(a)
�Δ�i

= �.

Apply Theorem 1.2, we proved f ∈ R(�)([a, b]).
�

THEOREM 1.4. Assume f is monotonic and � is continuous on [a, b], then f ∈ R(�)([a, b]).

PROOF. If f is constantC , then by definition, we can see ∫ b
a f (x)d�(x) = C(�(b)−�(a)). Otherwise,

WLOG, we can assume

f (b) − f (a) > 0.

Sine � ∈ C0([a, b]) implies � is uniformly continuous over [a, b]. Then for any � > 0, there exists
some � > 0 so that

|�(t1) − �(t2)| <
1

2(f (b) − f (a))
�

whenever |t1 − t2| < �.
Now we take a partition  so that Δi = xi − xi−1 < �. Then it follows

Δ�i <
1

f (b) − f (a)
�.

For this partition  , there is

U (f, �;) − L(f, �;)

= Σi(f (xi) − f (xi−1))Δ�i

≤ Σi(f (xi) − f (xi−1))
1

f (b) − f (a)
�

= �.

Apply Theorem 1.2, we have f ∈ R(�)([a, b]).
�

THEOREM 1.5. Assume f is bounded over [a, b] with only finitely many discontinuous points and �
is continuous on these points. Then f ∈ R(�)([a, b]).

PROOF. Assume f discontinuous at p1 < p2 < ⋯ < pm ∈ [a, b]. For each i = 1,⋯ , m, since � is
continuous at pi, for any � > 0 there exists �i > 0, so that any |x − pi| < �i,

|�(x) − �(pi)| < �.

Moreover, we can shrink �i’s so that these intervals [pi − �i, pi + �i] have no intersection.
On the other hand, f is continuous over the complement of the union of interiors of these intervals,

which we denote by K ⊂ [a, b]. In fact, K is the union of finite closed intervals as

K = [a, p1 − �1] ∪ [p1 + �1, p2 − �2] ∪⋯ ∪ [pm−1 + �m−1, pm − �m] ∪ [pm + �m, b].

We denote them by K0, K1,⋯ , Km−1, Km one by one from left to right.
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It follows from Theorem 1.3 and Theorem 1.2 that, for each Kj , j = 0, 1,⋯ , m, there exists a
partition j so that

U (f |Kj , �;j) − L(f |Kj , �;j) < �.

Now we consider a partition  for [a, b] whose points are the union of partitions 0,⋯ ,m. It
follows from our construction that

U (f, �;) − L(f, �;)

= Σmj=0(U (f |Kj , �;j) − L(f |Kj , �;j)) + Σ
m
i=1( sup

[pi−�i,pi+�i]
f − inf

[pi−�i,pi+�i]
f )(�(pi + �i) − �(pi − �i))

≤ (m + 1)� + 2Mm�

= (m + 1 + 2Mm)�.

Here M is a fixed number so that |f (x)| ≤M for any x ∈ [a, b].
Apply Theorem 1.2, we have f ∈ R(�)([a, b]).

�

THEOREM 1.6. Assume f ∈ R(�)([a, b]) with m ≤ f ≤ M and g ∈ C0([m,M]). Then g◦f ∈
R(�)([a, b]).

PROOF. First, g ∈ C0([m,M]) implies g is uniformly continuous over [m,M]. Hence for any � > 0,
there exists � > 0 so that any

|g(y1) − g(y2)| < � for any |y1 − y2| < �.

Next, use f ∈ R(�)([a, b]), there exists a partition  for [a, b] so that

U (f, �;) − L(f, �;) < �2.

Each [xi−1, xi] determined by the partition  belongs to either one of the following two cases:

(1) sup[xi−1,xi] f − inf [xi−1,xi] f < �. We denote by 1 the sub-partition that contains such intervals.
Over such intervals,

sup
[xi−1,xi]

g◦f − inf
[xi−1,xi]

g◦f < �.

(2) sup[xi−1,xi] f − inf [xi−1,xi] f ≥ �. We denote by 2 the sub-partition that contains such intervals.
Over 2, we have

�Σi∈2Δ�i ≤ U (f, �;2) − L(f, �;2) ≤ U (f, �;) − L(f, �;) < �2,

and hence

Σi∈2Δ�i < �.

We can further shrink � so that � < �.

Now we consider 1,2 together and obtain

U (g◦f, �;) − L(g◦f, �;)

= Σi∈1( sup[xi−1,xi]
g◦f − inf

[xi−1,xi]
g◦f )Δ�i + Σi∈2( sup[xi−1,xi]

g◦f − inf
[xi−1,xi]

g◦f )Δ�i

≤ �Σi∈1Δ�i + 2CΣi∈2Δ�i
≤ �(Σi∈1Δ�i + 2C)

≤ �(�(b) − �(a) + 2C).
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Here C is an upper bound of |g| over [m,M].
At last, apply Theorem 1.2, we obtain g◦f ∈ R(�)([a, b]).

�

EXAMPLE 1.7. If f ∈ R(�)([a, b]), then f 2 ∈ R(�)([a, b]).

2. Properties of the integral

THEOREM 2.1. (1) Linearity of f :
(a) If f1, f2 ∈ R(�)([a, b]), then f1 + f2 ∈ R(�)([a, b]) and

∫

b

a
(f1 + f2)d� = ∫

b

a
f1d� + ∫

b

a
f2d�.

(b) If f ∈ R(�)([a, b]) and c ∈ ℝ, then cf ∈ R(�)([a, b]) and

∫

b

a
(cf )d� = c ∫

b

a
fd�.

(2) Linearity of �:
(a) If f ∈ R(�1)([a, b]) ∩ R(�2)([a, b]), then f ∈ R(�1 + �2)([a, b]) and

∫

b

a
fd(�1 + �2) = ∫

b

a
fd�1 + ∫

b

a
fd�2.

(b) If f ∈ R(�)([a, b]) and c ≥ 0, then f ∈ R(c�)([a, b]) and

∫

b

a
fd(c�) = c ∫

b

a
fd�.

(3) If f1, f2 ∈ R(�)([a, b]) and f1 ≤ f2, then

∫

b

a
f1d� ≤ ∫

b

a
f2d�.

(4) If f ∈ R(�)([a, b]) and c ∈ [a, b], then f ∈ R(�)([a, c]) ∩ R(�)([c, b]) and

∫

b

a
fd� = ∫

c

a
fd� + ∫

b

c
fd�.

(5) If f ∈ R(�)([a, b]) and |f | ≤M , then

|∫

b

a
fd�| ≤M(�(b) − �(a)).

(6) If f, g ∈ R(�)([a, b]), then fg ∈ R(�)([a, b]).
(7) If f ∈ R(�)([a, b]), then |f | ∈ R(�)([a, b]) and

|∫

b

a
fd�| ≤ ∫

b

a
|f |d�.

PROOF. (1) (a) First we notice that for any partition  over [a, b], we have the following
inequality

L(f1, �;) + L(f2, �;) ≤ L(f1 + f2, �;)

≤ U (f1 + f2, �;) ≤ U (f1, �;) + U (f2, �;).

Hence

U (f1 + f2, �;) − L(f1 + f2, �;)

≤ (U (f1, �;) − L(f1, �;)) + (U (f2, �;) − L(f2, �;)).(2.1)
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Now since f1, f2 ∈ R(�)([a, b]), using Theorem 1.2, for any � > 0, there exists partitions
1,2 for [a, b] so that

U (f1, �;1) − L(f1, �;1) < �∕2

U (f2, �;2) − L(f2, �;2) < �∕2.

Take  as a common refinement of 1 and 2, it follows

U (f1, �;) − L(f1, �;) ≤ U (f1, �;1) − L(f1, �;1) < �∕2

U (f2, �;) − L(f2, �;) ≤ U (f2, �;2) − L(f2, �;2) < �∕2.

Connect it with (2.1), we get

U (f1 + f2, �;) − L(f1 + f2, �;) < �

and then Theorem 1.2 implies f1 + f2 ∈ R(�)([a, b]).

Now for any � > 0, take a partition i, i = 1, 2, so that

∫

b

a
fid� ≤ U (fi, �;i) ≤ ∫

b

a
fid� + �.

Assume  is a common refinement of i. It follows the following inequality

U (f1 + f2, �;) ≤ U (f1, �;) + U (f2, �;) ≤ U (f1, �;1) + U (f2, �;2),

and then

∫

b

a
(f1 + f2)d� ≤ U (f1 + f2, �;) ≤ ∫

b

a
f1d� + ∫

b

a
f2d� + 2�.

Since � > 0 can be arbitrarily small, this proves

∫

b

a
(f1 + f2)d� ≤ ∫

b

a
f1d� + ∫

b

a
f2d�.

Similarly, using lower sums, we will obtain

∫

b

a
(f1 + f2)d� ≥ ∫

b

a
f1d� + ∫

b

a
f2d�.

(b) Similar to (a) and is left to you.
(2) Exercise.
(3) Exercise.
(4) Exercise.
(5) Now for any partition  ,

U (f, �;) ≤ U (M,�;) =M(�(b) − �(a)).

Take supremum of  , since f ∈ R(�)([a, b]), we have

∫

b

a
fd� =

⨛

b

a
fd� = sup


U (f, �;) ≤M(�(b) − �(a)).

Similarly,
L(−f, �;) ≥ L(−M,�;) = −M(�(b) − �(a)).

Take infimum of  , since −f ∈ R(�)([a, b]) (from 1(b)), we have

−∫

b

a
fd� = ∫

b

a
(−f )d�⨜

b

a
fd� = inf


L(f, �;) ≥ −M(�(b) − �(a)).
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Together this proves

|∫

b

a
fd�| ≤M(�(b) − �(a)).

(6) Notice the following equality

fg = 1
4
((f + g)2 − (f − g)2).

Then fg ∈ R(�)([a, b]) follows from Property 1 and Theorem 1.6.
(7) |f | ∈ R(�)([a, b]) follows from the continuity of the absolute value function and Theorem 1.6.

Then inequality can be proved similarly as for (5).
�

REMARK 2.2. For the property (7) above, notice that |f | ∈ R(�)([a, b]) doesn’t imply f ∈ R(�)([a, b]).
Consider the following example

f (x) =

⎧

⎪

⎨

⎪

⎩

1 x ∈ ℚ ∩ [0, 1]

−1 x ∈ ℚc ∩ [0, 1].

It is not Riemann integrable over [0, 1] (Excise: prove this) but |f | is Riemann integrable.

The following three theorems are related to the useful formula of "substitution" for integration in
calculus.

THEOREM 2.3. Assume �′ exists and �′ ∈ R([a, b]). Assume f is bounded over [a, b]. Then f ∈
R(�)([a, b]) if and only if f�′ ∈ R([a, b]). In that case,

∫

b

a
f (x)d�(x) = ∫

b

a
f (x)�′(x)dx.

PROOF. Since �′ ∈ R([a, b]), for any � > 0, there exists a partition  for [a, b] so that

(2.2) U (�′;) − L(�′;) < �.

At the same time, apply the mean value theorem over each interval [xi−1, xi] from the partition  , there
exist points ti ∈ (xi−1, xi) so that

Δ�i = �(xi) − �(xi−1) = �′(ti)(xi − xi−1) = �′(ti)Δi.

If follows

U (f, �;) − L(f, �;) = Σi(Mi − mi)Δ�i = Σi(Mi − mi)�′(ti)Δi = Σi(Mi�
′(ti) − mi�′(ti))Δi.

On the other hand, notice that there exist points si, s′i ∈ (xi−1, xi)

Σi( sup
[xi−1,xi]

(f�′) − inf
[xi−1,xi]

(f�′))Δi

≤ Σi(Mi sup
[xi−1,xi]

�′ − mi inf
[xi−1,xi]

�′)Δi

≤ Σi(Mi�
′(si) − mi�′(s′i) +

�
b − a

)Δi

= Σi(Mi�
′(si) − mi�′(s′i))Δi + �.
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Now if f ∈ R(�)([a, b]), then |f | is bounded by some C > 0 and

Σi( sup
[xi−1,xi]

(f�′) − inf
[xi−1,xi]

(f�′))Δi

≤ Σi(Mi�
′(si) − mi�′(s′i))Δi + �

≤ Σi(Mi�
′(ti) − mi�′(ti))Δi + � + Σi(Mi|�

′(si) − �′(ti)| − mi|�′(s′i) − �
′(ti)|)Δi

≤ Σi(Mi�
′(ti) − mi�′(ti))Δi + � + 2C(U (�′;) − L(�′;))

= U (f, �;) − L(f, �;) + � + 2C�.

By taking a refinement of  which we still denote by  , we can make U (f, �;)−L(f, �;) < �. Then
using Theorem 1.2, we proved f�′ ∈ R([a, b]).

Now assume f�′ ∈ R([a, b]). There exist ri, r′i ∈ [xi−1, xi] so that the following estimates hold

U (f, �;) − L(f, �;)

= Σi(Mi − mi)Δ�i
≤ Σi(f (ri) − f (r′i))Δ�i + �(�(b) − �(a))

= Σi(f (ri) − f (r′i))�
′(ti)Δi + �(�(b) − �(a))

= Σi(f (ri)�′(ti) − f (r′i)�
′(ti))Δi + �(�(b) − �(a))

≤ Σi(f (ri)�′(ri) − f (r′i)�
′(r′i))Δi + Σi(f (ri)|�

′(ri) − �′(ti)| − f (r′i)|�
′(r′i) − �

′(ti)|)Δi + �(�(b) − �(a))

≤ Σi( sup
[xi−1,xi]

(f�′) − inf
[xi−1,xi]

(f�′))Δi + 2C� + �(�(b) − �(a)).

If then follows from Theorem 1.2 that f ∈ R(�)([a, b]).

At last, the equality follows from the same estimates as above but for U and L separately: For
example, we have

U (f, �;)

= ΣiMiΔ�i
≤ Σif (ri)Δ�i + �(�(b) − �(a))

= Σif (ri)�′(ti)Δi + �(�(b) − �(a))

= Σif (ri)�′(ti)Δi + �(�(b) − �(a))

≤ Σif (ri)�′(ri)Δi + Σif (ri)|�′(ri) − �′(ti)|Δi + �(�(b) − �(a))

≤ Σi sup
[xi−1,xi]

(f�′)Δi + C� + �(�(b) − �(a)).

Take infimum of  and let � → 0, it follows

∫

b

a
f (x)d�(x) ≤ ∫

b

a
f (x)�′(x)dx.

The other direction can be obtained similarly and we skip details. �

THEOREM 2.4 (Change of variable). Assume f ∈ R(�)([a, b]). Assume ' is strictly increasing and
continuous that maps interval [A,B] to [a, b]. Define

� = �◦'
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which is increasing on [A,B], and define

g = f◦'.

Then g ∈ R(�)([A,B]) and

∫

B

A
gd� = ∫

b

a
fd�.

PROOF. By the strictly increasing property of ', each partition  = {xi} for [a, b] corresponds to a
partition  ′ = {yi} for [A,B] with xi = '(yi), and

U (f, �;) = U (g, �; ′), L(f, �;) = L(g, �; ′).

The conclusion then immediately follow from definition of integration. �

Using it, we obtain the following important formula for change of variables.

THEOREM 2.5. Assume f ∈ R([a, b]). Assume ' is strictly increasing that maps interval [A,B] to
[a, b] and '′ ∈ R([A,B]). Then

∫

b

a
f (x)dx = ∫

B

A
f ('(y))'′(y)dy.

3. Fundamental theorem of calculus

THEOREM 3.1. Assume f ∈ R([a, b]). For a ≤ x ≤ b, define

F (x) ∶= ∫

x

a
f (t)dt.

Then F ∈ C0([a, b]). Furthermore, if f is continuous at a point x0 ∈ [a, b], then F is differentiable at
x0, and

F ′(x0) = f (x0).

PROOF. (1) Because f ∈ R([a, b]), it must be bounded. (Why?) Assume |f | ≤ M . Consider
any x, y ∈ [a, b],

|F (y) − F (x)| = |∫

y

a
f (t)dt − ∫

x

a
f (t)dt| = |∫

y

x
f (t)dt| ≤M|y − x|.

This proves that F is uniformly continuous over [a, b], hence continuous.
(2) Assume f is continuous at a point x0 ∈ [a, b], then for any � > 0, there exists � > 0 so that any

|x − x0| < �, there is
|f (x) − f (x0)| < �.

Now consider any x ∈ (x0 − �, x0 + �) ∩ [a, b] and x ≠ x0. We have

|

F (x) − F (x0)
x − x0

− f (x0)| = |

1
x − x0 ∫

x

x0
f (t)dt − f (x0)|

= |

1
x − x0 ∫

x

x0
f (t)dt − 1

x − x0 ∫

x

x0
f (x0)dt|

= |

1
x − x0 ∫

x

x0
(f (t) − f (x0))dt|

≤
∫ x
x0
|f (t) − f (x0)|dt

|x − x0|

<
�|x − x0|
|x − x0|

= �.
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�

Usually, we call such F an antiderivative of f .

THEOREM 3.2 (The fundamental theorem of calculus). If f ∈ R([a, b]) and if there is a differentiable
function F on [a, b] so that

F ′ = f,

then ∫ b
a f (x)dx = F (b) − F (a).

PROOF. Since f ∈ R([a, b]), for any � > 0, there exists a partition  for [a, b] so that

U (f ;) − L(f ;) < �

and

|U (f ;) − ∫

b

a
f (x)dx| < �.

In each interval [xi−1, xi], apply the mean value theorem to F : There exists some ti ∈ (xi−1, xi) so that

F (xi) − F (xi−1) = F ′(ti)(xi − xx−1) = f (ti)Δi.

Take summation over all such intervals, we obtain

F (b) − F (a) = Σif (ti)Δi.

It follows

|F (b) − F (a) − ∫

b

a
f (x)dx| = |Σif (ti)Δi − ∫

b

a
f (x)dx|

≤ |Σif (ti)Δi − U (f ;)| + |U (f ;) − ∫

b

a
f (x)dx|

≤ � + � = 2�.

Take � → 0, we obtain ∫ b
a f (x)dx = F (b) − F (a).

�

A useful corollary for calculation is the following formula of integration by parts.

THEOREM 3.3 (Integration by parts). Assume F ,G are differentiable on [a, b] with F ′ = f ∈
R([a, b]) and G′ = g ∈ R([a, b]). Then

∫

b

a
F (x)g(x)dx = F (b)G(b) − F (a)G(a) − ∫

b

a
f (x)G(x)dx.

PROOF. Consider the function FG over [a, b]. It is differentiable and

(FG)′ = F ′G + FG′ = fG + Fg.

Notice that fG+Fg is Riemann integrable since both f, g ∈ R([a, b]) and F ,G ∈ C0([a, b]). Apply
the Fundamental Theorem of Calculus 3.2,

F (b)G(b) − F (a)G(a) = ∫

b

a
(fG + Fg)dx = ∫

b

a
fGdx + ∫

b

a
Fgdx.

�



CHAPTER 7

Sequence and series of functions

1. Uniform Convergence

If fn ∶ [a, b] → ℝ, n = 1, 2,⋯, is a sequence of functions, and for each x ∈ [a, b], fn(x) → f (x)
as n → ∞. The main question we are trying to answer in this chapter is whether we can obtain certain
properties of f from corresponding properties of {fn}. For example, if we know each fn is continuous,
can we conclude that f is also continuous over [a, b]? For this question, the answer is no for general
cases. An example is

fn(x) = xn, x ∈ [0, 1].

It pointwise converges to

f (x) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ x < 1

1 x = 1

which is discontinuous at 1.
But if we cut the domain to [0, 12 ], then the limiting function is continuous.
Let’s check what it needs to make f (x) be continuous at x0. Notice that the continuity at xo is

equivalent to

lim
x→x0

lim
n→∞

fn(x) = lim
x→x0

f (x) = f (x0) = lim
n→∞

fn(x0) = lim
n→∞

lim
x→x0

fn(x).

In another word, the continuity is in fact a problem about changing the orders of two limiting process.
For the above example, such change is not allowed for x0 = 1.

It turns out that if we require a stronger convergence than only the pointwise convergence, then we
can prove the continuity of each fn implies the continuity of f . Such stronger convergence is called
uniform convergence that we are going to introduce now.

In this chapter, we restrict to real-valued functions, but all results holds for complex-valued functions
too.

DEFINITION 1.1. Assume {fn} is a sequence of functions defined over a set X and f is also a
function defined over X. We say {fn} uniformly converges to f over X, if for any � > 0, there exists
N > 0 (which is independent of x), so that

|fn(x) − f (x)| < �

for any x ∈ X.

We use notation fn
X
⇉ f to denote this uniform convergence over X.

From definition, if we want to show fn doesn’t converge to f uniformly, we only need to find some
�0 > 0 and a subsequence {nk} of {n} together with sequence of points {xnk} in X so that

|fnk(xnk) − f (xnk)| ≥ �0.

79
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EXAMPLE 1.2. (1) fn(x) = xn , x ∈ [0, 1], doesn’t uniformly converge to its pointwise limit

f (x) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ x < 1

1 x = 1

For this, just notice that for each n, there exists some xn ∈ (0, 1) so that (xn)n =
1
2
. Then it

follows

|fn(xn) − f (xn)| = |

1
2
− 0| = 1

2
.

(2)

fn(x) =

⎧

⎪

⎨

⎪

⎩

n 0 < x < 1
n

0 1
n
< x < 1.

THEOREM 1.3. Consider a sequence of functions {fn} defined over X which pointwise converges to
f . Define

�n ∶= sup
x∈X

|fn(x) − f (x)|.

Then fn
X
⇉ f if and only if limn→∞ �n = 0.

THEOREM 1.4 (Cauchy’s Criterion). Consider sequence of functions {fn} defined over X. It uni-
formly converges to some function over X, if and only if it satisfies the following Cauchy sequence
condition: For any � > 0, there exists some N > 0 (which is independent of x ∈ X) so that any
m, n > N ,

|fm(x) − fn(x)| < �

for any x ∈ X.

PROOF. (1) Uniform convergence sequence satisfies the Cauchy condition, since the following
inequality

|fm(x) − fn(x)| ≤ |fm(x) − f (x)| + |f (x) − fn(x)|.

(2) Assume {fn} satisfies the Cauchy sequence condition. Then for each x ∈ X, {fn(x)} is a
Cauchy sequence in ℝ. By the completeness of ℝ, there exists a function f ∶ X → ℝ so
that {fn} converges to f pointwisely. Then we only need to show the convergence is in fact
uniformly.

For this, for any � > 0, take N > 0 so that any m, n > N ,

|fm(x) − fn(x)| < �.

Then

|fn(x) − f (x)| ≤ |fn(x) − fm(x)| + |fm(x) − f (x)| < � + |fm(x) − f (x)|.

It follows

|fn(x) − f (x)| ≤ lim
m→∞

(� + |fm(x) − f (x)|) = �.

We are done.
�
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THEOREM 1.5 (Weierstrass-M test). Assume {an(x)} is a sequence of functions defined over X and
assume that there exists some sequence {Mn} in ℝ so that

|an(x)| ≤Mn, for any x ∈ X.

Then Σan(x) uniformly converges over X, if ΣnMn is convergent.

PROOF. This immediately follows from Cauchy criterion for uniform convergence. �

Use the Weierstrass-M test, we obtain the following important result for power series.

THEOREM 1.6. Assume Σn=0cnxn is a power series with convergence radius R ∈ [0,∞]. Then for
any 0 < � < R, the series convergences uniformly over [−R + �, R − �].

PROOF. It immediately follows from the Weierstrass-M test based on the estimates

|cnx
n
| ≤ |cn|(R −

�
2
)n for any x ∈ [−R + �, R − �],

and the convergence of the series Σ|cn|(R −
�
2
)n (why is this series convergent?).

�

2. Uniform convergence and continuity

THEOREM 2.1. Assume X is a metric space and fn
S
⇉ f , where S is a subset of X. If x0 is a limit

point of E, and at x0 ∈ X, for each n, the limit

lim
x→x0

fn(x) =∶ An

exist, then {An} converges and
lim
n→∞

An = lim
x→x0

f (x).

In another word,
lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

lim
n→∞

fn(x).

An immediate corollary is that a uniformly convergent sequence can pass the continuity to the limit-
ing function.

COROLLARY 2.2. Assume X is a metric space and fn
X
⇉ f . If each fn is continuous, then f is also

continuous.

PROOF. For this case, An in Theorem 2.1 is taken as fn(x0). �

PROOF OF THEOREM 2.1. (1) To show {An} is convergent, it is enough to show it is a Cauchy

sequence. Take any � > 0, since fn
S
⇉ f , it follows from Theorem 1.4 that there exists some

N > 0 so that any m, n > N

|fm(x) − fn(x)| < �, for any x ∈ S.

At the same time, because

lim
x→x0

fm(x) = Am, lim
x→x0

fn(x) = An,

there exists some � > 0 (may depend on m, n) so that any x ∈ S with 0 < |x − x0| < �, there
are

|fm(x) − Am| < �, |fn(x) − An| < �.
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Now apply the triangle inequality as follows, where x ∈ S with 0 < |x − x0| < � is fixed,

|Am − An| ≤ |Am − fm(x)| + |fm(x) − fn(x)| + |fn(x) − An| ≤ 3�.

We have proved that {An} is a Cauchy sequence.
(2) Denote by A = limn→∞An. We now show that limx→x0 f (x) = A.

For any � > 0, take N > 0 so that |AN − A| < �. Then for such N , take x ∈ S in a
neighborhood of x0 so that

|fN (x) − f (x)| < � and |fN (x) − AN | < �.

Then the convergence follows from the estimates:

|f (x) − A| ≤ |f (x) − fN (x)| + |fN (x) − AN | + |AN − A| < 3�.

�

The above theorems have a topological interpretation.
Consider a compact metric space X. Define C0(X) as the set of real-valued continuous functions

over X. This set is closed under addition, subtraction and scaler multiplication.
Over C0(X), there is a natural norm defined as

‖f‖C0 ∶= sup
x∈X

|f (x)|.

(The well-definedness of the this norm is by Theorem 3.5 from Chapter 2.) Using ‖ ⋅ ‖C0 , we define a
metric

dC0(f, g) ∶= ‖f − g‖C0 .

(Check this is a metric. ) From Theorem 1.3, we know a sequence of points {fn} in the metric space
(C0(X), dC0) which converges to some f ∈ C0(X), if and only if it uniformly converges to f over X.

Moreover, in fact we have proved that

THEOREM 2.3. The metric space (C0(X), dC0) is complete, i.e., every Cauchy sequence in this metric
space is convergent.

PROOF. Assume {fn} is a Cauchy sequence in the metric space (C0(X), dC0). Then it is a uni-
form Cauchy sequence as a sequence of functions over X. By the Cauchy’s Criterion 1.4, it uniformly
converges to some function f ∶ X → ℝ. Then from Corollary 2.2, f ∈ C0(X).

This proves the completeness of (C0(X), dC0). �

Different from the metric space ℝn that every bounded sequence has a convergent subsequence,
bounded sequences in (C0(X), dC0) may not have any convergent subsequence, as shown from Example
1.2(1). However, by adding the condition of equicontinuity, a bounded closed subset in C0(X) must be
(sequentially) compact.

DEFINITION 2.4. A subset F ⊂ C0(X) is called an equicontinuous family, if for any � > 0 there
exists � > 0 so that any x, y ∈ X with dX(x, y) < �, there is

|f (x) − f (y)| < �.

EXAMPLE 2.5. (1) Try to prove the sequence in {fn} in Example 1.2(1) is not an equicontin-
uous family.
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(2) For a sequence of differentiable functions {fn} over [a, b], if is derivative sequence {f ′n} is
uniformly bounded, then it is equicontinuous.

PROOF. This follows from the mean value theorem that for any x, y ∈ [a, b], there exists
some � between x, y so that

|fn(x) − fn(y)| = |f ′(�)||x − y| ≤ C|x − y|.

�

The following theorem is referred as Arzela–Ascoli lemma, which is very useful in analysis.

THEOREM 2.6 (Arzela–Ascoli Lemma). Assume X is compact metric space. Then any uniformly
bounded, equicontinuous sequence {fn} of functions over X has a uniformly convergent subsequence.

(We skip the proof but it is not hard and you are welcome to have a try. )
As a corollary, we immediately get the following statement.

COROLLARY 2.7. AssumeX is compact metric space. Then a bounded closed subset F in the metric
space (C0(X), dC0) is (sequentially) compact, if it is equicontinuous.

3. Uniform convergence and integration

THEOREM 3.1. Assume {fn} is a sequence of functions defined over [a, b] and each fn ∈ R(�)([a, b]).

If fn
[a,b]
⇉ f , then f ∈ R(�)([a, b]), and

lim
n→∞∫

b

a
fnd� = ∫

b

a
fd�.

PROOF. Define

�n ∶= sup
[a,b]

|fn(x) − f (x)|.

If follows

(3.1) fn(x) − �n ≤ f (x) ≤ fn(x) + �n, for any x ∈ [a, b].

Since fn
[a,b]
⇉ f , there is

lim
n→∞

�n = 0.

(1) We first prove f ∈ R(�)([a, b]). For this, it is enough to show

⨜

b

a
fd� =

⨛

b

a
fd�.

Notice, from (3.1) we have

(3.2) ∫

b

a
(fn − �n)d� ≤ ⨜

b

a
fd� ≤

⨛

b

a
fd� ≤ ∫

b

a
(fn + �n)d�,

then it follows

0 ≤
⨛

b

a
fd� −⨜

b

a
fd� ≤ 2�n(�(b) − �(a)).

Let �n → 0, what we need follows.
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(2) Now we go back to (3.2) and get

∫

b

a
(fn − �n)d� ≤ ∫

b

a
fd� ≤ ∫

b

a
(fn + �n)d�

and then

|∫

b

a
fd� − ∫

b

a
fnd�| ≤ �n(�(b) − �(a)).

Take n→∞, we obtain

lim
n→∞∫

b

a
fnd� = ∫

b

a
fd�.

�

COROLLARY 3.2. Assume an ∈ R(�)([a, b]) and

f (x) ∶= Σ∞n=0an(x)

converges uniformly. Then it follows

∫

b

a
fd� = Σ∞n=0 ∫

b

a
and�.

PROOF. Consider the sequence of partial sums

fn(x) ∶= Σnk=0ak(x), n = 0, 1,⋯ .

It follows fn ∈ R(�)([a, b]) and fn
[a,b]
⇉ f . Apply Theorem 3.1 to {fn}, the conclusion follows. �

EXAMPLE 3.3. Prove that ∫ a
0 e

xdx = ea − 1, a ≥ 0, from the definition of ex as ex ∶= Σ∞n=0
xn

n! .

PROOF. The convergence radius of ex ∶= Σ∞n=0
xn

n!
is R = +∞. Hence by Theorem 1.6, this series

converges uniformly over [0, a]. Each term xn

n!
is Riemann integrable. Then the integration follows from

direct calculation term by term and Corollary 3.2. �

4. Uniform convergence and differentiation

THEOREM 4.1. Assume {fn} is a sequence of functions defined over [a, b] and differentiable. If
{f ′n} uniformly converges on [a, b] and {fn} converges at some point x0 ∈ [a, b], then {fn} uniformly
converges on [a, b] to some function f . Moreover, f is differentiable and

f ′(x) = lim
n→∞

f ′n(x), for any x ∈ [a, b].

PROOF. (1) Using the Cauchy criterion, we prove the convergence of {fn} by showing it is a
uniform Cauchy sequence.

First, the convergence of {fn(x0)} implies it is a Cauchy sequence in ℝ. Then for any
� > 0, there exists N > 0 so that

|fn(x0) − fm(x0)| < �, for any n, m > N.

Second, for each such n, m > N , the function fn − fm is differentiable over [a, b], hence apply
the mean value theorem, we obtain

(fn(x) − fm(x)) − (fn(x0) − fm(x0)) = (f ′n(�) − f
′
m(�))(x − x0)

for some � living between x0 and x, where x ∈ [a, b] is an arbitrary point.
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The uniform convergence of {f ′n} implies it is a uniform Cauchy sequence. Hence, we can
make N bigger if necessary so that

|f ′n(�) − f
′
m(�)| ≤ �.

Then using the triangle inequality

|fn(x) − fm(x)| ≤ |(fn(x) − fm(x)) − (fn(x0) − fm(x0))| + |fn(x0) − fm(x0)|

≤ �|x − x0| + � ≤ �((b − a) + 1).

We are done in proving {fn} is a uniform Cauchy sequence.
(2) Denote by f the limiting of {fn}. Now we prove it is differentiable and

f ′(x) = lim
n→∞

f ′n(x), for any x ∈ [a, b].

Take any x ∈ [a, b], denote by

�n(y) ∶=
fn(y) − fn(x)

y − x
, y ∈ [a, b] ⧵ {x},

and by

�(y) ∶=
f (y) − f (x)

y − x
, y ∈ [a, b] ⧵ {x}.

Notice that by the mean value theorem

|�n(y) − �m(y)| =
|(fn(y) − fm(y)) − (fn(x) − fm(x))|

|y − x|

=
|f ′n(�) − f

′
m(�)||y − x|

|y − x|
= |f ′n(�) − f

′
m(�)|,

for some � living between x and y. Then we obtain that {�n} is a uniform Cauchy sequence
over [a, b]⧵{x} from the assumption that {f ′n} is a uniform Cauchy sequence (since it uniformly
convergent).

Moreover, from the convergence fn
[a,b]
⇉ f , it follows �n

[a,b]⧵{x}
⇉ �. Also notice that by

assumption

lim
y→x

�n(y) = f ′n(x).

We can now apply Theorem 2.1 to the sequence {�n} over [a, b] ⧵ {x}, and thus obtain the
change of limiting processes as

lim
n→∞

f ′n(x) = limy→x�(y).

This proves that

�′(x) ∶= lim
y→x

�(y)

exists and the same as limn→∞ f ′n(x).
�

Again, apply this theorem to series, we obtain the following corollary.
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COROLLARY 4.2. Assume {an(x)} is a sequence of functions defined over [a, b] and differentiable.
If Σa′n(x) uniformly converges on [a, b] and Σan(x0) converges at some point x0 ∈ [a, b], then Σan(x)
uniformly converges on [a, b] to some function f . Moreover, f is differentiable and

f ′(x) = Σa′n(x), for any x ∈ [a, b].

EXAMPLE 4.3. Prove that (ex)′ = ex for any x ∈ ℝ.

PROOF. Take any x0 ∈ ℝ and an interval [a, b] that containing x0 as an interior point. Take

an(x) =
xn

n!
, n = 0, 1, 2,⋯ ,

and then

a′n(x) =
xn−1

(n − 1)!
, n = 1, 2,⋯ , a′0(x) = 0,

and
Σa′n(x0) = e

x0 .

Since the series Σn=0a′n(x) has convergent radius R = +∞, it is uniformly convergent over [a, b] by
Theorem 1.6.

Apply Corollary 4.2 with so defined {an(x)}, we obtain

dex

dx
|x=x0 = Σa′n(x0) = e

x0

for any x0 ∈ ℝ.
�

REMARK 4.4. The uniform convergence of {fn} doesn’t imply the uniform convergence of {f ′n},
even assuming each fn is differentiable.

For example, the sequence { sin nx
n
} uniformly converges to 0 over ℝ and each sin nx

n
is differentiable

with
( sin nx

n
)′ = cos nx.

The sequence {cos nx} is not convergent even in pointwise sense.

5. The Stone-Weierstrass approximation theorem (*This is not required for the final.)

The following result which was first shown by Weierstrass and then generalized by Stone to a more
general statement is a very useful result in understanding (complex or real valued) continuous functions
over a closed interval. We state the result and sketch the proof. For details and Stone’s generalization,
you may refer Rudin’s book P159–165.

THEOREM 5.1 (Stone–Weierstrass approximation theorem). For any f ∈ C0([a, b]), there exists a
sequence of polynomials functions {Pn} over [a, b] which uniformly converges to f .

SKETCH OF THE PROOF. WLOG, we can assume [a, b] = [0, 1] and f (0) = f (1) = 0. We continu-
ously extend such f to ℝ by defining

f (x) = 0, x ∉ [0, 1].

A sequence of functions called Landau kernel functions defined as

Qn(x) = cn(1 − x2)n, ∫

1

−1
Qn(x)dx = 1, n = 1, 2,⋯ ,

play an essential role in the construction of {Pn}.



5. THE STONE-WEIERSTRASS APPROXIMATION THEOREM (*THIS IS NOT REQUIRED FOR THE FINAL.) 87

To be concrete, define Pn as the convolution of f with Qn, i.e.,

Pn(x) = (f ∗ Qn)(x) ∶= ∫

1

−1
f (x + t)Qn(t)dt, x ∈ [0, 1].

A key advantage of introducing such Qn is that every Pn is a polynomial. Moreover, {Pn} uniformly
converges to f as we want.

�

Because polynomials are among the simplest functions, and because computers can directly eval-
uate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial
interpolation.


