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Quantization and C*-Algebras

MARC A. RIEFFEL

ABSTRACT. We survey recent developments concerning the quantization
of Poisson manifolds, within the setting of C'*-algebras, with emphasis on
strict deformation quantization and Berezin-Toeplitz quantization.

One of von Neumann’s primary motivations for initiating the theory of opera-
tor algebras around 1930 was to establish a firm foundation for quantum physics.
Over a decade later, after Gelfand and Naimark [GN] launched the theory of
what we now call C*- algebras, Segal [Sel] gave general reasons why C*-algebras
might provide an appropriate foundation for quantum physics. Nevertheless, an-
other decade passed before many specific operator algebras began to be employed
in a significant way in quantum physics. However, during the past three decades
the relationship between quantum physics and operator algebras has flourished,
and by now operator algebras play an extensive role in several areas of quantum
physics, such as quantum statistical mechanics [BR1, BR2] and quantum field
theory [Con, Dp, GF, Hal]. '

It would be far too vast an undertaking to try to survey here the present state
of the relationship between operator algebras and quantum physics. Instead I will
confine my attention to one aspect of this relationship, which goes by the general
name of “quantization”, and which concerns the passage from classical systems to
quantum systems. I will restrict my attention primarily to finite systems. There
exist somewhat standard ways, which I will not discuss here, for then passing to
systems with unbounded numbers of particles which are being annihilated and
created (second quantization), or for passing to the infinite systems of quantum
statistical mechanics. The survey given here should not be considered to be
well-balanced; it is the product of the interaction between my comprehension of
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the moment and the deadline for submitting the manuscript for these conference
proceedings.

The first two sections of this survey will discuss various quantizations of R?",
while the next two sections will discuss some of their generalizations to more
general manifolds. I will be placing emphasis on the passage to the semi-classical
limit, that is, to the relationship between the quantized space and the original
Poisson manifold.

I will devote the rest of this introduction to going quickly through some of the
familiar incantations which set the stage for the relationship between classical
mechanics and quantum mechanics.

" Our universe has the remarkable property that ordinarily the future evolution
of a physical system is determined just by knowing at a given time the positions
and velocities (or momenta) of its constituents (all of this of course needing
suitable interpretation for any specific type of system). Typically, no higher
derivatives need be known, for example. Thus one says that the state of a
system at any given time is determined by its position and momentum at that
time. For a finite classical system, and under the usual idealizations, the possible
positions range over a certain manifold, the configuration space. For a given
position, the possible momenta of the system are the cotangent vectors of the
configuration manifold at that position. Thus, the collection of possible states
of the system is identified with the cotangent bundle of the configuration space.
Consequently this cotangent bundle is often referred to as the “state space” or
“phase space” of the classical system. Now the cotangent bundle of any manifold
carries a canonical symplectic form, with corresponding Poisson bracket. In the
case of a phase space, this Poisson bracket plays a basic role in the Hamiltonian
formulation of classical mechanics.

An observable quantity of a classical physical system will provide a number
(usually real) for each state of the system. Thus it will be a function on the
state space. Conversely, any function on the state space can be considered as
giving an observable. It is easy to argue that, when convenient, one can restrict
attention to functions which are continuous, or smooth, and also to ones which
are bounded or vanish at infinity. In particular, one can restrict attention to
the commutative C*-algebra, Coo(S), of continuous complex- valued functions
on S which vanish at infinity, where S is the state space. When statistical
considerations are involved, one can have “mixed states”, which are probability
measures on the state space, so that the expected value of an observable for a
mixed state will be the integral of the corresponding function with respect to
the probability measure. That is, the mixed states are just the usual “states” of
operator algebra theory, on the C*-algebra Coo(S). The points of S, and their
corresponding probability measures, are then the “pure states”.

One of the hallmarks of the physical regimes where quantum theory holds sway
is that observables are no longer always simultaneously observable. For exam-
ple, the position and momentum coordinates in a given direction are usually not



QUANTIZATION AND C*-ALGEBRAS 69

simultaneously observable. To model quantum mechanical systems, one tradi-
tionally associates self-adjoint operators on Hilbert space to observables in such
a way that the non-simultaneous-observability of two observables corresponds
exactly to the non-commutativity of the corresponding operators. The rays in
the Hilbert space are the pure states, while the mixed states are determined by
trace-class operators.

Usually the quantum mechanical system is considered to be a quantum version
of a specific classical system. One then wants many of the important observ-
ables of the classical system to have quantum counterparts, and one wants this
correspondence to satisfy favorable properties. A suitable process for making
operators correspond to functions will be called a quantization. Later we will
give precise statements of some of the properties a quantization should have.
But to motivate this, we will first examine the fundamental example in which
the configuration space is R™. The cotangent space (state space) is then R?",
and the Poisson bracket is the standard one given by

where p1,...,Pn, q1,- - -, ¢n are the coordinates for R??. We will let p; and g; also
denote the corresponding coordinate functions on R2", which are the observables
for momentum and position respectively.

A corresponding quantum system should have observables for momentum and
position modeled by self-adjoint operators P; and ();. These are required to
satisfy the fundamental Heisenberg commutation relation

[P;,Q;] = ihI

where £ is Planck’s constant (divided by 2«), reflecting the non-simultaneous- ob-
servability of the corresponding observables. (Here [A4, B] = AB—BA.) All other
pairs will commute, that is, [P}, Px] = 0 = [Q;, Q¢] for all j, &, and [P;,Q:] =0
for j # k. Since the p;’s and ¢p’s more-or-less generate the algebra of all func-
tions on R2", we can hope to extend the correspondence p; — Pj, qx +— Qi to
more-or-less all functions on R??, associating in this way quantum observables
to other classical observables. V

The first prescription for making such an extension was given by Weyl in
1931 (section 14 of chapter IV of [Wey]). Even today it is the most elegant
of the known prescriptions. We will describe it in the next section. Then in
the following section we will describe some other prescriptions which are also in
current use. In the last two sections of this survey we will then consider various
generalizations of these prescriptions to the setting of general Poisson manifolds.

1. Weyl Quantization

Suppose we have (unbounded) self-adjoint operators P; and @, j =1,...,n,
on some Hilbert space, which satisfy the Heisenberg commutation relations. Let
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P denote the n-tuple of the P;’s, and similarly for Q. For z € R™ let z - P =
3" z; P;, and similarly for z - Q. Then for fixed (z,y) € R**, z-P+y-Q will be
a self-adjoint operator (we are speaking heuristically here, not worrying about
domains), and so we can form the unitary operator U, ) = '@ P+y-Q) - Weyl
[Wey] said that this is the operator which we should associate to the function
(p,q) — €=P+¥°9) Now (heuristically speaking) any function f on the state
space R?" can be expressed in terms of its Fourier transform f as

f(p,q) = /f(ic,y)ei(x"p”'“dx dy .

Weyl [Wey] said that we should then associate to f the operator

L= /f(x,y)ei(a:~P+y'Q)d$ dy:/f(w)Uw dw |

where w = (z,y). This is the general form of the process known as Weyl quan-
tization.

This process was carried a step further by von Neumann in 1931 [Ne]. He
pointed out, in effect, that Weyl quantization induces a new product on functions.
More specifically, let f and g be functions on R?*. Then L;L, = L), where A is
determined by h = f . g, the twisted convolution of f and § for the cocycle w
on R?" defined by
‘ w(w, z) = exp(iJw - z)
for w, z € R??, where J is the standard symplectic matrix on R?" multiplied by
h.

We would like to make all of the above more precise. In the process we would
like to bring out the functorial nature of the construction, and also change to
notation which will be more convenient when we consider general manifolds.
Accordingly, let V denote a finite-dimensional real vector space (alias for R??,
though V need not be even-dimensional), and let V'’ denote its dual vector space.
‘A translation-invariant Poisson bracket on V is determined by a bivector at 0,
which can be viewed equivalently as a skew bilinear form on V', or as a linear
map J from V’ to V whose transpose J* satisfies J* = —J. We choose such a
J, which we allow to be degenerate. As in the previous paragraph, we absorb
h into J. For later convenience we now change the usage of the variables z, p,
etc., from that employed at the beginning of this section. We denote the pairing
of z € V with p € V' by p-z. Let e denote the function e(?) = 2™, where ¢ is
a real variable. Then V' can be identified with the dual group of V' by means of
the pairing ’

(z,p) > e(p-z) .
Choose any Haar (Lebesgue) measure on V. We define the Fourier transform for
feLi(V)by

flp) = /f(:c)e(p -z)dz .
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Then on V' we will always take as measure the corresponding Plancherel (Lebes-
gue) measure for the given choice of Haar measure on V, so making the Fourier
transform a unitary operator between L2-spaces. The corresponding product
measure on V' x V will then be independent of the choice of Haar measure on
V.

Some fiddling with the twisted convolution of Fourier transforms mentioned
earlier shows that von Neumann’s product can be rewritten, at least formally, in
a way not explicitly involving the Fourier transform, namely, as

(1% 0@) = [ [ 56+ Ioote + velp- o dp, (L)

where our conventions are slightly different from those suggested at the beginning
of this section (by factors of m, -1, etc.). This way of writing the deformed
product probably first appeared essentially in VIII.5a of [Po]. We will call
the product x; the “deformed product” (deformed by J ). We remark that in
defining this product in [Rf6] we placed an inner product on V and used it to
identify V' with V. This was convenient for obtaining the various operator norm
estimates which we needed, but it obscures some of the functoriality-

Let S denote the space of Schwartz functions on V. Then for f,g € S the
integral in (1.1) can be viewed as an iterated integral, and the integration over
V can be viewed as a Fourier transform (after making the change of variables
v v — &), so that the deformed product can be rewritten as

(¢ xs9)e) = [ fle+ Imit)etp-2) (1)

(We will begin routinely omitting the dp etc. from integrals when this will not
cause confusion.) Since § € S if g € S, the above integral is well-defined as an
ordinary integral. Further examination [GV, Rf6] shows easily that f x;g € S
for f,g € S. Thus the deformed product is well-defined on S.

But in fact, the deformed product is much more widely defined [GV, Ho]. We
will only describe here the extension which is most pertinent to our needs and fits
best into the framework of C*-algebras. Let B denote the algebra of all smooth
bounded functions on V all of whose derivatives of all degrees are bounded. Then
for f, g € B the integral in (1.1) for the product fx yg can be shown to make sense
as an oscillatory integral [Ho, Rf6, SaR], and furthermore f x; g € B. This
product on B is associative, although because of the involvement of oscillatory
integrals the proof is a bit delicate ([Rf6, SaR]). Some further analysis shows
that for f € B and g € S the product as defined by (1.2) is still well- defined,
and f xy g € §. Carrying this a bit further, one finds that S is a two-sided ideal
in B for x.

Examination of the operator L; defined near the beginning of this section
shows that (Ly)* = Ly for f € S, where f is the complex conjugate of f. (It
is here that we need J to be skew-symmetric.) This suggests that we define an
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involution on B by f* = f; this is easily verified to be an involution for the
product X ;. ‘

We now want to define an operator norm on B for its deformed product and
the above involution. For this purpose we place on & the usual inner product,

defined by |
| (fr9) = /f(:c)ﬁ(:c)dx .

(It is not hard to see that this is just the GNS inner product for the positive (for
X s) linear functional on S defined by f +— [ f(z)dz.) Then for any g € B the
operator Ly on S defined by L,f = g xs f is a bounded operator for the above
inner product. This fact is a substantial theorem [Rf6], which is essentially the
Calderén-Vaillancourt theorem [CIV, Ho] from the theory of pseudo-differential
operators. (Within the context of pseudo-differential operators the function g is
usually called the “symbol” of L,.) We place on B the corresponding operator
norm, and denote its completion by By. The completion, Sy, of S for the
‘operator norm is a two-sided ideal in By. This ideal can be seen to be essential,
so that By can be viewed as a subalgebra of the multiplier algebra of S;. Of
course By will be realized as a C*-algebra of operators on the Hilbert space
completion of §. From the definition of the deformed product it is clear that
the action of V on B by translation gives an action by *-automorphisms for the
deformed product. This action is easily seen to extend to a strongly continuous
action on Bj.

Thus we have achieved much of our goal — we have obtained a representation
of at least all of the functions in B as bounded operators on a Hilbert space
in a way compatible with the deformed product. The deformed product can
also be extended to polynomial functions, which will give unbounded operators
on S. When V = R2" and J is the standard skew-form, it is easily seen that
the coordinate functions will, as operators, satisfy the Heisenberg commutation
relations for A = 1 (at least up to factors of 7 etc.); and the representation of B
can then be viewed as an extension of these relations to all of B. More generally,
when J is non-degenerate, the ideal S; can be shown to be isomorphic to the
algebras of compact operators on a Hilbert space; while if J is degenerate, then
S can be shown [Rf6] to be a continuous field of compact operator algebras
indexed by the quotient of V' by the range of J. In particular, when J = 0 the
deformed product is just the original pointwise product on B. This can be seen
easily from (1.2).

When J is non-degenerate so that Sy is the algebra of compact operators, we
can ask to represent By irreducibly on a Hilbert space, rather than by its left
regular representation, as we have in effect been doing above. For this purpose
we can choose bases in such a way that we are exactly in the situation of V = R2?"
with J giving the standard Poisson bracket. Denote the position and momentum
variables by (s;) and (£;) respectively, and let R™ be the configuration space
coordinatized by s = (sj). Then we can define a representation of the Heisenberg
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commutation relations (for & = 1) on L?(R™) by

(@) =580, (Ad)5) = —ipe (5).

It is appropriate to call this representation the “Schrodinger representation”.
Then one can calculate [F1, GLS] that

(e2wi(zP+yQ)¢)(t) — eZwi(t-y+x-y/2)¢(t + 3:) .

Let us denote this operator by W(; ,y. This gives a projective irreducible repre-
sentation of R?" on L%(R™). On applying the definition of Weyl’s quantization
to this representation and rearranging, we find that

i) = [[1(55 €] etts -0 epot0rat d (1)

for f € B, ¢ € S(R™). (See Proposition 3.1 of Chapter 1 of [T2], apart from some
factors of m, or 1.29 of [F1].) This gives an irreducible isometric *-representation
of B as bounded operators on L2(R"), and these operators are the usual general
pseudo-differential operators of the Weyl calculus, of order 0, with symbol f
[Ho]. The reason that we do not emphasize this representation is that when J
is degenerate this representation is not faithful. In particular, when J = 0 we
obtain the representation of B(R?") on L?(R™) by pointwise multiplication, and
this sees only the first n coordinates of functions in B. This makes it awkward
to use this representation to examine the limit as # (i.e. J) goes to 0.

Let us now consider this limit. For this purpose we will fix J, and we will
write X for x57. We will also denote the operator norm on B for £J by || ||5,
and we will denote the corresponding completion of B by Bs. Then it can be
shown [Rf6] that

(1) The algebras By form a continuous field of C*-algebras, so that in par-
ticular, i — || f||5 is a continuous function of # for any f € B.

(2) For any f,g € B we have ||(f xx g — g x5 f)/E —i{f,g9}slls — 0 as
ki — 0, where { , }; is the Poisson bracket defined by J (with a factor
of ). '

This second property, together with the continuity at £ = 0 of the first prop-
erty, can be viewed as the version in the present context of the famous Cor-
respondence Principle of quantum mechanics, which says that as h — 0 the
quantum mechanical model should converge to the classical model, with com-
mutators converging (after division by £) to the Poisson bracket (multiplied by

7).

If in our definition of the deformed product one substitutes for the function e
its Taylor expansion, and rearranges using Fourier transforms, then one obtains,
for J the standard Poisson-bracket, an expansion of the form

o i fer
rano= 3 (5) @7 neen o0

{a]=0
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where « is a multi-index in the usual way and (@) = ap41 + -+ + @2,. See
[EGV]. Of course there are serious questions about when and how such a series
will converge. But as a formal power series in A this formula is the basic example
underlying the extensive subject of formal deformation quantization, in which
one looks for similar “products” defined just in terms of formal power series,
for general manifolds with Poisson bracket. (See [BaF] as well as references
in [Rf6].) Since this does not involve operator algebras (and, indeed, for a few
authors it 1s explicitly an attempt to remove quantum mechanics from its reliance
on Hilbert spaces), we will not discuss it further here. However, since it is in
some sense easier to construct “products” in terms of formal power series than to
construct products analytically, the results of formal deformation quantization
can sometimes serve as a useful guide for what to hope for in the analytical case.

Let us also mention here that we will not be discussing the subject of geometric
quantization, since it too has not had much interaction with C*-algebras. But
see [Bt] for a brief discussion of its relation to other quantizations.

We now examine the functoriality of Weyl quantization. Since our treat-
ment here goes somewhat beyond that given in [Rf6], we will be somewhat less
sketchy than above. Let (V,J) and (W, K) be finite-dimensional real vector
spaces equipped with skew-symmetric bilinear forms on their duals. Call these
“Poisson vector spaces”. By a morphism from (V, J) to (W, K') we mean a linear
map T from V to W which is compatible with the forms in the sense that

J(T'wy, T'ws) = K (wy, wh)

for all wi,wy € W’ (where T' denotes the dual, or transpose, of T'). If we view
J and K as linear operators as done earlier, this can be rewritten as

('](le:ll)) T,wl2) = (I{wll»wg)i
or
(TIT' ), wh) = (Kuwh, wh),
so that TJT' = K, much as in the definition of symplectic linear maps. With
these morphisms, the Poisson vector spaces form a category.
We want to show that any morphism induces a homomorphism of the corre-

sponding C*-algebras. We work first at the level of functions. Let f,g € B(W),
so that foT and goT € B(V). Then '

(FoT) xs (9o T@) = [[ #Ta+ TIp)g(Te + To)e(o - v)

We need the following fact:

1.2 PROPOSITION. Let F € B(V' x W). Then for any linear transformation
T:V —W we have

/’/VF(P,T'U)B(P.U):/WI /W F(T'm,w)e(m - w) .
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PrOOF. This is basically an extension of proposition 1.13 of [Rf6], but will
not follow directly from it since V and W may have different dimensions. But we
can appeal to other results in [Rf6] as follows. Choose any basis for V such that
the unit cube has unit Haar measure. Take as isomorphism from V to V'’ the
map which sends each basis vector to its dual basis vector. This 1somorphism
determines an inner product on V for which the basis is orthonormal. Under
this isomorphism the Plancherel Haar measure on V' will be the image of the
Haar measure on V. Then it is easily seen that proposition 1.11 of [Rf6] yields:

1.3 PROPOSITION. Let F € B(V' x V) and suppose that in its second variable
F is constant on the cosels of a subspace Vy of V. Then

/ | /V F(p,v)e(p - v) = /V . /V L FE0el).

A similar statement holds if instead F is in its ﬁrst variable constant on the
cosels of some subspace of V'.

If we apply this to the situation of Proposition 1.2 with V, = kernel(T"), we

see that
/V/ F(p,Tv)e(p-v)=/ / F(p, Tv)e(p - v) .

Let W, be the range of T', so that 7" is an 1somorphlsm from V/V}, onto Wl Then
T" is an isomorphism from W{ onto (V/V;)' = Vi+. Notice that T'm)- (T~ 1w)
m-w form € W], w &€ Wy. It follows that T’ x T~1 will carry a Plancherel

Haar measure on W] x W; to one on Vit x (V/ Vb) Consequently, for any
G € B(Vgt x (V/V,)) we have '

/Vo* v G(P,V)e(p-v)=/wll /W1 G(T'm, T w)e(m - w) .

When we apply this to the integral obtained earlier, we get

/VI/VF(P, Tv)e(p - v) :/W{ /W1 F(T'm, w)e(m - w) .

Let Z denote the kernel of 7" as a transformation from W’. Then by the second
part of Proposition 1.3 we have

/ '/w F(T'm, w)e(m - w) :/ 2 /z¢ F(T'm, w)e(m - w) .

But since Z is the kernel of 7! we have Z = Wi, so that Z+ = W; and
W'/Z = W/{. This completes the proof of Proposition 1.2.
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When we apply Proposition 1.2 to the integral appearing just before its state-
ment, we obtain

(oD xs@omN@ = [ [ f(T2+TITma(Te +w)e(m -w)

= / f(Tz + Km)g(Tz + w)e(m - w)
=(F xg ¢)(Tz) .

That is,
(foT) xJ(goT):(fog)oT.

It is clear that (foT)™ = foT. Thus composition with 7" gives a *- homomor-
phism from B(W) into B(V'). '

We want to show that this homomorphism is norm non-increasing. A direct
proof can undoubtedly be given. But it will be briefer for us to appeal to one of
the deeper results in [Rf6], namely theorem 7.1, which implies that Bx (W) is
exactly the algebra of C®-vectors within the C*-algebra Bx (W) for the action
of W by translation. It follows that Bg (W) is closed under the holomorphic
functional calculus in Bx(W). Hence Bx (W) is a local C*- algebra as defined
in 3.1.1 of [Bl]. But by corollary 3.1.5 of [Bl], any *-homomorphism from a
local C*-algebra into a C*-algebra must be norm non- increasing. Thus our
homomorphism from Bg (W) into B;(V) is norm non-increasing, as desired. We
will denote the extension of this homomorphism to Bx (W) by B(T).

It is clear that if (X, L) is another Poisson vector space and if S is a morphism
from (W, K) to (X, L), then

B_(T) o E(S) = —B—(S oT).
We summarize the above as:

1.4 THEOREM. The process of attaching to a Poisson vector space (V,J) the
corresponding C*-algebra By (V) is a coniravariant functor from the category of
Poisson vector spaces to the category of unital C*-algebras with unital homomor-
phisms.

We also need the following refinement of the above ideas:

1.5 PROPOSITION. With V and J as above, let Q be a linear map of V onto
a vector space U, and let K = QJQ’, so that @ can be viewed as a morphism
from (V,J) to (U, K). Then the homomorphism B(Q) from B(U)x to B(V); is

injective (and isometric).

ProoF. By choosing a basis for V as discussed earlier, we can throw this
back to the setting of [Rf6] involving an inner product on V. Let  denote the
action of V on B(V) by translation. Then B(U) can be viewed as a subalgebra
of B(V) which is a-invariant. (Here B denotes closure in the supremum norm.)
Let 3 denote o as action of V on B(U). By proposition 5.8 of [Rf6], the map
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from B(U)5 into B(V)$ is injective. Let P denote the orthogonal projection of
V onto the orthogonal complement, V;, of the kernel of Q. So there is a natural
identification of V; with U. Then it is clear that 8 = f o P. By theorem 8.11 of
[Rf6] we then have

BUY; =BUY},p -

By theorem 8.7 of [Rf6] it follows that B(U )f, ;p = B(U)} where 7 is the re-
striction of B to V, and L is the restriction of PJP to V;. But under the natural
identification of V; with U we have L = K and 7 is just the action by translation,
so B(U)} = B(U)x. O

Let us consider the following interesting application of the above ideas, which
is motivated by the discussion in [KM]. Let V be an infinite-dimensional real
vector space, and let V’ be some vector space which is in non-degenerate duality
with V. Let J be a linear map from V' into V which is skew-symmetric in the
sense that

(J¢,p) = —(JIp,q)

for all p,q € V'. For example, let M be a manifold, let V = &'(M) be the vector
space of all complex-valued distributions on M, and let V' = C®(M) be the
vector space of complex-valued test functions (of compact support) on M, with
the evident duality between V'’ and V. Choose a smooth positive measure on M
of full support, and use it to define an inner product, [, ], on V'. Now view V
and V'’ as real vector spaces, and define the linear map J from V' to V' by

(¥, J¢) = Im([4,9]) -

As another, currently poplﬂar, example, let V = W be the vector space of real-
valued smooth functions on the circle, paired by the usual inner product. Define
J by

Jo=¢'€V
for ¢ € W, where ¢’ denotes the usual derivative of ¢.

We return to the case of general V, V/ and J. Let F denote the set of finite-
dimensional subspaces of V', ordered by inclusion. For F € F let Vp = V/F L
so that (Vr)' = F in the natural way. Let Jr be the “restriction” of J to (Vr)/,
defined by Jr(p) = Jp+ F* for p € F = (Vr). Thus (Vr,JF) is a Poisson
vector space. '

Suppose that E € F with E C F. Then we have an evident surjection, Prg, of
Ve onto Vg. It is easily verified that PrgJr Ppg = Jg. Thus Prg is a morphism
from (Vp, Jr) onto (Vg,Jg). From Theorem 1.4 and Proposition 1.5 it follows
that B(Prg) is an injection from B(VE)s, into B(Vr)s, (and so is isometric). It
is easily seen that if D € F with D C E then B(Prp) = B(Prg)oB(Pgp). Thus
the collection {B(Vr), B(Prg) : E,F € F} is a directed system of C*-algebras
with isometric morphisms. Thus we can form its direct limit C*-algebra.
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1.6 DEFINITION. The direct limit of {B(Vr), B(Prg)} will be denoted by
B(V);, and will be called the Weyl C"-algebra for (V, J) (where we think of J
as remembering that its domain is the particular V' being employed).

This Weyl C*-algebra for infinite dimensional (V, J) is larger, and so probably
more convenient and flexible, than that given in theorem 2.6 of [KM]. Let us see
that it contains the appropriate Weyl unitary operators. Suppose that p € W.
For any F € F for which p € F let pr be the function in B(VF) defined by

fz (v + F1) = e({v, p))-
If p,g € F, then a.-quick calculation shows that

55 xae I = e((Ip,a)) oy

so that the ff ’s satisfy the Weyl commutation relations for J. If pEECEF,
then B(Prg)( fE ) = fF Thus for fixed p € W the fF ’s form a coherent family
as F' runs over elements of F containing p, and so determme an element, f,
in B(V);. These fp’s will be unitary elements of B(V); which satisfy the Weyl
commutation relations for J.

We now turn briefly to some more traditional aspects of the functoriality of
our construction. Let (V,J) be a finite-dimensional Poisson vector space. Let
G denote the group of all invertible operators 7" on V such that TJT’ = J, that
1s, the group of automorphisms of (V, J). This can be viewed as the “symplectic”
group for (V,J). Then by the functoriality discussed above, it follows that G
acts on B as a group of automorphisms, though we must insert an inverse since
our construction is contravariant. We saw above that V also acts by translation
on Bj. It is easily seen that the semi-direct product V x G of V by the evident
action of Gy then acts on By. This action will carry the ideal Sy into itself.

Suppose now that J is non-degenerate. Then, as discussed earlier, Sy is
isomorphic to the algebra of compact operators on Hilbert space. The action of
V % Gy on S; will then give a projective unitary representation of V x Gy on
the Hilbert space, H, of any irreducible representation of 8. Restricted to Gy,
this projective representation is the much- studied metaplectic representation
[F1] of G;. Restricted to V it gives an ordinary representation of the Heisenberg
group for (V,J) on H. When this representation is used to conjugate operators
on H, it gives an action of V on the algebra B(H) of all bounded operators
on H. Since B; is contained in the multiplier algebra of Sy, it also will act on
H, and it is easily seen that the action of V on B(H ) essentially corresponds
under this representation to the action of V on B, by translation. (See 2.13
of [F1], where the conventions are slightly different.) From this it is easily seen
that the operators from B; are smooth vectors for the action of V on B(H).
For the Kohn-Nirenberg quantization (see the next section) Cordes [Cr,Pa] has
obtained the lovely results that the operators from Bj are exactly all the smooth
vectors. Presumably the same is true in the present setting. Thus we find that
By can be considered to be a smooth version of B(H).
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2. Other Quantizations of R?"

A. The Kohn—Nirenberg quantization.

The idea behind the Weyl quantization was to associate to the function
(p,q) — &(FPH¥9) the unitary operator e*(*P+¥'Q) and then to extend it by
using the Fourier decomposition of functions. But we could instead associate
to e*(®P+¥9) the unitary operator e*Pei¥'?. This can be viewed [GLS] as the
idea behind the Kohn-Nirenberg quantization [KN]. When P and @ are the
operators of the Schrodinger representation, this gives for suitable functions f
on R? (i.e. “symbols”) the operator K; on L%*(R") defined by

(Ky9)(s) = / F(,E)e((s — 1) - E)eo(t)dtde. (2.1)

(See 2.31 of [F1] or 3.25 of Chapter 1 of [T2).) The symbol for the product of two
such operators has an expression quite similar to that for the Weyl quantization
given in 1.1. (See the appendix of [GLS].) However an awkward feature of the
Kohn-Nirenberg quantization is that because of the unsymmetric ordering of
the P’s and Q’s, real-valued functions do not always go to self-adjoint operators.
‘This unsymmetric treatment also makes the functorial and symmetry properties
less clear. But a major advantage of the Kohn-Nirenberg quantization is that,
exactly because of its unsymmetric treatment of the variables, it can be localized
in the space variable. More specifically, let be an open subset of R™, and let
f be defined just on Q x R” (the cotangent bundle of 2). Then the formula 2.1
still makes sense for s € © (unlike the corresponding formula 1.3 for the Weyl
quantization), and defines an operator on the spaces of functions on Q. Such
operators are called pseudo-differential operators on . These operators have
attractive properties with respect to smooth changes of coordinates. Making use
of this, one can define what it means for an operator on the space of smooth
functions on a manifold M to be locally a Kohn~-Nirenberg pseudo-differential
operator, independent of any specific choices of coordinate charts. (See §5 of
Chapter IT of [T1].) Such an operator is called a pseudo-differential operator on
M. '

But for our purposes we must emphasize that this process does not give a
specific way for associating operators to functions on the cotangent bundle of
M. Thus it does not provide a quantization of the cotangent bundle. For this
reason we will not discuss the Kohn-Nirenberg quantization further, even though
pseudo-differential operators on manifolds can generate C*-algebras of great in-
terest [Con, Km1, Km2]. The general question as to which cotangent bundles
admit a quantization remains a mysterious and fascinating one. (But see [Wil,
Wi2].) '

For relations between the Kohn—Nirenberg quantization and the Weyl quan-
tization see [F1]. ’
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B. The Wick and anti-Wick quantization. ﬁ

We give here a brief summary of the lucid exposition of these quantizations
given in [Fl]. For clarity of ideas we will be sloppy about factors of 7. Let
P; and Q; be operators as before which satisfy the Heisenberg commutation
relations. Define the corresponding “annihilation” operator by Z; = Q; + iP;.
Then Z7 = Q; — iP;, which is the corresponding “creation” operator. These
operators satisfy the commutation relation [Z;, Z}] = 6;52RI. A product of Z;’s
and Z}’s is said to be “Wick-ordered” if all the Z*’s are to the left of all the Z’s.
By using the commutation relation, one sees that every element of the algebra
generated by the Z’s and Z*’s can be written as a sum of Wick-ordered terms.
This suggests the following quantization for polynomials on R??. Define complex
coordinates on R?™ by z = z+4€ and z = z —i¢ for (z,£) € R?". Any polynomlal
p on R?" can be expressed in terms of these coordinates as

p(z,2) = Zaaﬁzaiﬂ.

Then the Wick quantization associates to p the operator

p(2,2%) = aapZ™f Z°.
If instead we associate to p the operator
> aapz°z*,
we obtain the anti-Wick quantization (of polynomials). This suggested to Bargman
[Bar] and Segal [Se2, Se3] that one seek a representation of the commutation
relations for Z; and Z} on a Hilbert space of analytic functions. In describing

this we will, for notational simplicity, set £ = 1. Accordingly, as in [Fl], let 7,
be the Hilbert space of entire functions F' on C” such that

1F||2 = / ()%™ dz < co.

Let Z; be the operator (1//7)0/0z; on Ty, and let Z7 be the operator of point-
wise multiplication by \/7z;. It is easily seen that these (unbounded) operators
satisfy the given commutation relations. A bit more surprising is the fact that
Z; 1s the adjoint of Z;. Some manipulation [F1] then shows that if p is a poly-
nomial, expressed as p(z, z), and if TPW and TPAW are the Wick and anti-Wick
quantizations, expressed now as operators on 7y, then they can be written as

(TPWF)(z) = /p(zb,z)e”'wF(w)e“”w‘wdw
(TPAWF)(z) = /p(ﬁ), w)e”é'wF(w)e_"w'wdw.

It is now feasible to try to use these formulas for functions p which are not
polynomials. But in spite of their similarity, these two potential quantizations
have quite different properties. Since the range of TpW must consist of entire
functions, p will need to be an entire function on C* x C*. There seems to
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be no way to define TPW for general (non-holomorphic) functions on R?*. Thus
we do not obtain a quantization of R?" in our sense. However, il},W does have
the favorable property that all bounded operators on 7;,, and many unbounded
operators, can be expressed as TPW for some (entire) p. In fact the p for an
operator T is recovered by the formula

p(®,2) = e~ (T(Ew))(2)

where Ey,(2) = ™" (a “reproducing kernel” or “coherent state”).

On the other hand, we see that the formula for TAW can yield an entire
function even when p is not holomorphic, so we can hope to make sense of TAW
for a fairly broad class of measurable functions on C*. In fact TAW is a kmd of
Toeplitz operator. To see this, note that 7, is a subspace of L2(C",e‘“'z dz).
Let P denote the projection onto this subspace. It can be seen [F1] that P is
given by

(PF)(z) = / Fw)e™ Te=m00 oy,

Comparing this with the earlier expression for fZ},AWF , We see that Z/;,AW consists
of forming the pointwise product pF by the measurable function p, and then
projecting back into 7,,. This is the traditional form for a Toeplitz operator.
It follows in particular that T;‘W is defined and is a bounded operator on 7,
whenever p € L*(C*) = L*°(R?"). Thus one can hope that T4W will give a
quantization.

A convenient way to examine this question is to note first that the representa-
tion of the Heisenberg commutation relations on 7, is irreducible. By the Stone-
von Neumann theorem all such irreducible representations are unitarily equiv-
alent, and so the representation on 7, must be equivalent to the Schrédinger
representation. The unitary operator intertwining these representations is the
Bargmann transform [F1]. By means of the Bargmann transform we can compare
the anti-Wick quantization with the Weyl quantization. It turns out [F1l, Gu]
that TI;AW will correspond under the Bargmann transform to the Weyl quan-
tization operator Ly whose symbol is given by f = Hyyop, where Hy is.the
heat-diffusion semigroup on R?". Since the operators H, are smoothing opera-
tors, it follows that only Weyl operators with quite smooth symbols come from
anti-Wick operators. In fact [F1], f must be the restriction to R?” of an entire
function on C".

As this might suggest, if p and ¢ are two anti-Wick symbols, the product
TAWTAY may.fail to be of the form TAY for some (bounded) symbol r. It
follows that the anti-Wick quantization does not lead to a twisted product on
symbols, in contrast to the Weyl quantization. Consequently we will not consider
it a deformation quantization (although this term is occasionally applied to it in
the literature).

However, with 7 restored in the formula, the crucial relationship with the
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Poisson bracket, namely
TF, T3/ 5= Ty s — 0

when & — 0, is established in [Co2] for symbols f and g vanishing at infinity,
and somewhat more widely. It remains an interesting question as to just how
widely this holds. , _

For various classes of symbols one can investigate the structure of the C*-
algebras generated by all the resulting operators Tz;qw. Interesting results about
this can be found in [Co3].

3. Deformation Quantization

In this section we will describe some generalizations of the Weyl quantization,
within the setting of C*-algebras, based on five different constructions. Given
a manifold M with Poisson bracket, { , }, we seek to deform the pointwise
product on suitable smooth functions on M “in the direction of the Poisson
bracket”. We also want to have corresponding deformed involutions and C*-
norms. The completions will then be C*-algebras which are in general non-
commutative. It turns out to be very useful to treat the more general situation
of a possibly non-commutative C*-algebra A with a “Poisson bracket” and to
seek to deform the product in A. The Poisson bracket will be defined on a dense

‘*-subalgebra A° of A. A definition of what is meant by a Poisson bracket in

the non-commutative case has been given in [X], and in slightly more concrete
form in [N2], though more experience is probably needed before it will be clear
precisely what definition is optimal. The definition involves a bilinear map from
A?° to itself, denoted by z in [N2], which is a Hochschild 2-cocycle and satisfies

-two additional conditions, which we will not repeat here as they are slightly

complicated and we do not need them in what follows. Following [N2], we call
A° equipped with z a “strict Poisson *-algebra”. :

When A is non-commutative it is awkward to consider the commutator a x5
b—b xp a for a deformed product, because of the interchanged order of a and
b. Rather we simply compare a x5 b with the original product ab. The basic
definition, motivated by the properties of the Weyl quantization, is:

3.1 DerFiNniTION. [Rfl, Rf2, Rf6, N2] Let (A%, 2) be a strict Poisson *-
algebra, where A° is a dense *-subalgebra of a C*-algebra A. By a strict defor-

“mation quantization of A in the direction of z we mean an interval I of the real

line containing 0, and for each & € I a product xj, an involution **, and a C*-
norm || || on A°, such that for i = 0 they are the original product, involution
and norm, and such that

(1) The completions of A° for the various C*-norms form a continuous field
of C*-algebras over I.
(2) (e x5 b— ab)/h—iz(a,b)||n — 0 as A — 0, for all a,b € A°.
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As in section 1, these two conditions express the famous “correspondence
principle” of quantum mechanics, under which, when one lets & — 0 in the
model for the quantization of a classical system, one should recover the model of
the classical system, including the Poisson bracket. The inclusion of the Poisson
bracket as data for this limit is often signified by speaking of the “semi-classical”
limit. ,

Condition 2 is what we had in mind when we said “in the direction of the
Poisson bracket” in the first paragraph. Note that it is just an infinitesimal
condition at # = 0, so in general there will be no uniqueness for deformation
quantizations.

As mentioned earlier, there is a large literature dealing with deformation
quantization of Poisson manifolds in terms of formal power-series. (See references
n [Rfl, Rf6].) In that setting the deformed products are often called “star
products”. . A

. We now describe some specific constructions of strict deformation quantiza-
tions.

A. Actions of V = R4,

This construction [Rf6] is closest to the original Weyl quantization described
earlier. The data will consist of a C*-algebra A, an action « of the vector group
V on A, and, exactly as in section 1, a linear map J from V' to V satisfying
Jt = —J. Let A denote the space of C®-vectors in A for a. It is well-known
that A is a dense *-subalgebra of A. As usual, the tangent space at 0 for V is
identified with V, but when elements of V' are viewed as tangent vectors we will
denote them by X,Y, etc. Then ax will denote the corresponding derivation
of A% in the direction of X. Let {X;} be a basis for V, and let {P;} denote
the dual basis for V’. Then in analogy with the Poisson brackets on C®(V)
considered in section 1, it is natural to define a “Poisson bracket” on A% by
z(a,b) = {a,b} = 3" asp;,(a)ax,(b). This will be independent of the choice
of the basis, and will make A® into a strict Poisson *-algebra along the lines
sketched above.

We wish to construct a strict deformation quantization of A in the direction
of {, }. Once we notice that in formula 1.1 for the twisted product of the Weyl
quantization the term f(x + Jp) is just the translate of f by Jp, so that what is
involved is the action of V on C°(V) by translation, it is natural to generalize
that formula by setting

axyb= /‘/ILaJI,(a)qv(b)e(p-v) ,

where this integral is taken as an oscillatory integral [Rf6]. As involution we
keep the original involution from A. To define a C*-norm, we let S# denote the
space of A-valued Schwartz functions on V, as right A-module, and we define an
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A-valued inner-product on S# by

(9= [ o).
For a € A we define an operator, L,, on S4 by

L(e) = [[ aztsn(@fa+v)e-o)

Then one finds that L is a *-homomorphism from A* with product x; into
the algebra of operators on S4. A suitable version of the Calderon-Vaillancourt
theorem shows [Rf6] that L, is a bounded operator on $# for the A- valued
inner product. We place the corresponding operator norm on A (for x;), and
denote the completed C*-algebra by Ay. If we hold J fixed but replace J by fJ
in the above formulas, then we obtain [Rf6] a strict deformation quantization of
A in the direction of { , }.

This construction is functorial with respect to equivariant homomorphisms
between C*- algebras on which V acts. Even more, if I is an a-invariant ideal in
A, so that the quotient, B, also carries an action of V' and we have an equivariant
short exact sequence of C*-algebras

0——A—B—10,
then the corresponding sequence of deformed algebras
0— Iy — Ay — By —0,

will be exact [Rf6]. This property can be quite useful in determining the struc-
ture of 4. :
One way to get a feeling for the meaning of this process of strict deformation
quantization is to look at the spectral subspaces for a. Suppose that the action
a of V on A factors through a compact Abelian group G. For each character p
of G one has the corresponding spectral subspace, Ap, of A, and the direct sum
of the spectral subspaces is dense in A. Now characters of G give characters of
V, and so elements of V’. Let this set of characters be denoted by K. Then
one can show (as in Proposition 2.2 of [Rf6]) that if p,q¢ € K and if a € A, and
b € A, then the deformed product takes the attractive form ‘

axyb=¢e(p-Jq)ab.

Of course when the action does not factor through a compact group we no
longer have spectral subspaces in general. But intuitively we can think of in-
finitesimal spectral subspaces for each point of V’, with the deformed product
given by the above formula. One situation in which this does make sense is when
A is the cross-sectional algebra of one of Fell’s C*-algebraic bundles [FD], over
V’. For then the bundle structure gives exactly infinitesimal spectral subspaces
over the points of V'’ for the dual action of V on the cross-section algebra, and
the corresponding deformed algebra is determined by the above formula. It does
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not seem to be known when an action of an Abelian group G on a C*-algebra
A comes about as the dual action for a C*-algebraic bundle structure for A over
the dual group G, but it seems to me likely that this is closely related to the
notion of proper actions on C*-algebras discussed in [Rf4].

We now give some specific examples.

ExampLE 1. Let A = Cy(V), the space of bounded uniformly continuous
functions on V, and let « be the action of V on A by translation. Then A® in
this case is just the algebra B of section 1, and the deformed algebra is just the
Weyl quantization of section 1. The space I = C (V) of functions vanishing
at infinity on V will be an a-invariant ideal, and if J is non-degenerate then I;
will be isomorphic to the algebra of compact operators on a Hilbert space. Then
B = A/I will be the algebra of functions on the “uniformly continuous fringe” of
V, a compact space on which V acts quite non- trivially. And B* with twisted
product can be thought of as a smooth version of the Calkin algebra, with By a
uniformly continuous version of the Calkin algebra, for an action of a Heisenberg
group on an underlying Hilbert space. (Question: is By simple?)

We consider next several subalgebras of A.

ExAMPLE 2. Let M be the closed disk consisting of V = R? with circle T
adjoined at infinity, and let a be the action of V on A = C(M) by translation. (So
A is a subalgebra of C,(V').) With I as in example 1, we see that A/I = C(T), on
which o acts trivially. For non-degenerate J we then see that Ay is an extension
of the compacts by C(T"). This extension can be seen to be the usual Toeplitz
extension [Rf6]. '

ExampPLE 3. Following [BC2] we let BCESV denote the subalgebra of Cy (V)
consisting of the eventually slowly varying continuous functions, that is, the func-
tions f such that '

0= Jlim sup{|f(z — 1)~ f(z)|: [t| < 1, |z > R} .

Of course BCESV ‘contains the ideal I of example 1, and it can be seen that
BCESV consists of exactly the functions in Cy,(V) whose image in Cy(V)/I is
fixed by a. If F denotes the maximal ideal space of BCESV/I, then the action
a on F' will be trivial, and we will obtain an exact sequence

0 — Iy — BLESVy — C(F) — 0

of deformed algebras. (There exist even larger subalgebras B of Cy (V) for which
(B/I); is commutative (= B/I).) If J is non-degenerate so that I is the algebra
of compact operators, then a function in BCESV® will determine a Fredholm
element in BCESV; exactly if its image in C(F') never vanishes, or equivalently
if outside some sufficiently large ball in V it is bounded away from 0. For such
functions one presumably has an index theorem in terms of the values of the
function on sufficiently large spheres, much as in Theorem 19 of [BC2]. See also
section 6 of [Pw].
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EXAMPLE 4. For any p € V' let u, denote the character on' V defined by

up(z) = e(p- z). Each u, is in Cyy(V'), and is carried to multiples of itself by the
action of Example 1. The closed subalgebra of C,,(V) generated by the Up’s 1is
the commutative C*-algebra AP = AP(V) of almost periodic functions on V.
It 1s a-invariant. Thus we can construct the deformed algebra AP;. It is easily
checked that, much as in Example 10.2 of [Rf6] and in our discussion above of
spectral subspaces, '
' Up Xy g = &(p - Jq)up4q -
(This is, of course, related to the fact that the action of V on AP factors through
the Bohr compactification of V.) In particular, each u, will be a unitary element
of AP;. If J is non-degenerate, it follows that the u,’s give a representation of
the canonical commutation relations (CCR) for the symplectic space (V’,J) as
defined in [BR2]. Since the C*-algebras generated by such representations are
all simple, and isomorphic to each other (see Theorem 5.2.8 of [BR2]), and are
called the CCR algebra for (V’, J), it follows that AP; is just the CCR-~algebra
for (V',J); and in particular it is simple. Thus we see that the CCR-algebra
is just a deformation quantization of the algebra of almost periodic functions.
This point of view appears in [BC1, Col, Co3]. Presumably other results in
these papers have corresponding versions in the present setting. For some related
algebras which are fun to consider see [Sa).

EXAMPLE 5. Let T denote the d-torus, let A - C(T*?), and let « denote the
action of V = Rd on A by translation. (This is a subalgebra of the previous
example.) Then A; is a quantum d-torus — see example 10.2 of [Rf6].

Further examples can be found in [Rf2, Rf6]. We will now describe here only
the class of examples described in [Rf8], which provides a construction of some
quantum groups.

EXAMPLE 6. Let A and B be C*-algebras, and let o and 3 be actions of R on
A and B respectively. Then we have the evident product action a ® 8 of R? on
A® B, where we let @ be any C*- algebra tensor product. Let J be the standard
symplectic matrix on R2. Then for any A we can construct the deformed algebra.
(A ® B)gs, which we denote for brevity by A ®; B. This can be viewed as a
“twisted” tensor product of A and B, in the sense that if B has an identity
element 1, then A @ 1 will be a subalgebra of A ®; B on which the product
{rom A®p B gives the original product on A, and similarly for B, and these two
subalgebras together generate A ®; B and meet only in the scalar multiples of
1®1. HoWever, these subalgebras do not, in general, commute with each other,
hence the term “twisted”. (In the absence of identity elements, one works with
the multiplier algebras.) This construction is functorial on the category of C*-
algebras with R-action and equivariant homomorphisms. (If one wants A @5 B
to be again in that category, one can restrict the action a ® [ which one obtains
on A ®ps B to the diagonal of R2.) There are evident generalizations of this
construction to actions of R”. Quantum 2-tori, and certain higher-dimensional



QUANTIZATION AND C*-ALGEBRAS 87

quantum tori, are examples of this construction. Other examples can be seen
in examples 10.5 and 10.6 of [Rf6], as well as in the “quantum quadrant” and
“algebraist’s real quantum plane” of sections 11 and 12 of [Rf6].

EXAMPLE 7. Let G be a compact Lie group and let H be a closed connected
Abelian subgroup, so that H is a torus. Let § be the Lie algebra of H, and let 5
denote the exponential map from § to H viewed as a map into G. Let V = @ §
and let a denote the action of V on C(G) defined by

(a5, ) (=) = f(n(s)zn(t))

for s,t € hand z € G. Let K : § — § be any skew operator, and let J =
K & (~K), so that J : V/ — V. Then we can construct the deformed C*-
algebra C(G);. ‘

Now C(G) is a Hopf algebra, with comultiplication A defined by

(Af)(=z,y) = f(=zy) ,

and with corresponding coidentity and coinverse. What is surprising is that A,
restricted to C°°(G), determines a homomorphism A from C(G)s into C(G)y®
C(G)J. (The algebras C(G)s are nuclear by [Rf7], so we don’t need to specify
the tensor product.) Of course Aj will still be associative. The coidentity and
coinverse will persist on C(G);, and so C(G)s is a quantum group. Similar
results hold for non-compact groups if suitable restrictions are placed on the
position of H in G [Rf9].

We now turn to a very different construction of strict deformation quantiza-
tions.

B. Linear Poisson brackets.

Let g be a Lie algebra, with dual g’. Then on g’ there is'a canonical Poisson
bracket, called a linear Poisson bracket, coming from the Lie algebra structure
of g. For f,g € C*(g¢’) and p € g’ it is defined by

{£, 93 (1) = ([df (), dg(p)], 1) .

We seek a deformation quantization of g’ in the direction of this Poisson bracket.
Suppose first that g is nilpotent. Then the exponential map is a diffeomorphism
from g onto its simply-connected Lie group. So we can view the group structure
as being on g itself. For each 7 let g5 be g but with bracket h[, ], and let G}
denote g but with group law coming from gx. In particular, on the Schwartz
space S(g) we have convolutions *4 coming from Gjs. Let ~ denote the Fourier
transform from S(g’) to S(g), and let " denote the inverse Fourier transform.
Then for each & we can define a product, x5, on S(¢') by setting, for every
[,9€ S(g,)a ) v

Fxng=(f*g) .

We can also define ||f||5 to be the norm of f in the group C*-algebra C*(G}).
We obtain in this way a strict deformation quantization [Rf3]. Of course, the
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completed C*-algebra will be isomorphic to C*(Gj). Thus we can say that
C*(G#) is the deformation quantization of g’ for its canonical Poisson bracket.
Some related results, closely connected to star products, can be found in [AC1,
AC2, AG, M1, M2]. One very interesting question is to what extent this
construction can be modified to produce such deformation quantizations which

- have the additional property that they respect the symplectic leaf structure of

g, in the sense that the functions which vanish on a symplectic leaf will form an

~ ideal for the deformed product [BeA]. These papers also contain references to

papers treating the quantization of coadjoint orbits of Lie groups, again often in
the setting of star products.

The procedure described above has been used to construct some non-compact
solvable quantum groups in [Rf5]. Their dual quantum groups are constructed
in [VaD]. For closely related quantum groups see [SZ].

For more general Lie groups, for which the exponential map is not as nicely
behaved, one can obtain [Rf3] a considerably weakened form of the above con-
struction, in which the deformed product a x5 b of two elements is only defined
when £ is sufficiently small, depending on @ and 4. This idea has been used more
recently by Landsman [L1, L2, L3] to treat the cotangent bundle of a homoge-
neous space G/H with H compact, and more generally the space T* P/H where
P is a principle bundle for a compact group H.

C. Quantum groups, and generators and relations.

Drinfeld [Dr1, Dr2] has singled out certain Poisson brackets on Lie groups
as the ones giving the directions in which one can hope to deform the Lie groups -
into corresponding quantum groups. These are called the “compatible” Poisson
brackets. The quantum groups mentioned near the end of the previous subsec-
tion correspond to certain compatible Poisson brackets, as do those described
in example 6 of the first subsection. For semi-simple Lie groups much is known
about the classification of compatible Poisson brackets [L.S]; but for solvable Lie
groups little seems to be known.

The construction of quantum groups corresponding to semisimple Lie groups
has progressed rapidly at the algebraic level. At the C*-algebra level most of
the progress has been restricted to compact Lie groups. Quantizations of SU(2)
within the C*- algebra framework were constructed by Woronowicz in [Wr1] as
well as by Vaksman and Soibelman [VaS], and then extended to other simple
compact Lie groups by various authors, see e.g. [Wr2, Wr3, LS, Rs, An]. Al-
though intuitively these quantizations are deformations of the ordinary compact
Lie groups, the sense in which this is true was not made precise until Sheu [Sh2,
Sh3, Sh4] showed that for SU(2) they are strict deformation quantizations (see
also [Baul, Bau2]), and then Nagy [Ng] showed that this is true for SU(n) for
all n. The other cases have not yet been treated, but it seems highly likely that
they also are strict deformation quantizations.

Unlike the approach taken in the previous two subsections, in the present case
it is not known up to now how to deal with the algebra of allsmooth functions on
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SU(n). Instead, one restricts attention to the “representative” functions, that
is, the span of the coordinate functions of the finite-dimensional representations
of SU(n). Sheu capitalized on recent work of Dubois-Violette [DV] in which
he defined a “Weyl transform” from the commutative algebra of representative
functions on SU(2) into the algebra of the quantum SU(2). Sheu [Sh4] showed
that this Weyl transform gives a strict deformation quantization. (But he points
out that this quantization does not respect the symplectic leaf structure of SU (2),
in the sense that the functions which vanish on one of the symplectic leaves of
the Poison bracket do not form an ideal for the deformed product. It is a very
interesting question as to whether a quantization with this additional property
can be found, or whether a genuine obstacle to doing this exists.)

Nagy based his approach on the original presentation of quantum SU (n) in
terms of generators and relations given by Woronowicz [Wr3]. In fact Nagy
provides a somewhat general framework for treating deformation quantizations
of C*-algebras which are defined by generators and relations. This permits him
to treat a variety of other examples in addition to quantum groups, including
examples 2 and 5 of subsection A above. (See [NN, Ni] for related examples.)
The key idea in Nagy’s approach is to look for a field of faithful states which
one is able to prove is a continuous field. For the quantum SU(n)’s he is able
to show that the Haar states are faithful [N1] and form a continuous field [N2].
(For quantum versions of the other classical simple Lie groups this faithfulness
seems still not to be known, though presumably it is true.) The details are too
lengthy for us to describe here.

For other discussions of continuous fields of quantum groups, see [Baul,
Bau2, Bn, Mul].

In addition to the few quantizations of non-compact Lie groups mentioned
earlier, there has been considerable investigation of quantum versions of the
group of Euclidean motions of the plane [Wr4, Wr5, Wr7, ‘Wr8, Ba], and
of the Lorentz group and SL(2,C) [PoW, Wr6, WZ1, WZ2]. But there has
been essentially no precise discussion of the passage to the semi-classical limit
for these quantum groups. In this connection however, see the very interesting
comments in [Wr6]. '

D. Riemannian symmetric spaces.

The Weyl quantization for R?® and its Schrodinger representation can be
recast in a very interesting and suggestive alternate form. Let S, denote the
symmetry of L*(R™) defined by (Sg¢)(t) = ¢(—t). Let W be the projective
representation defined just before equation 1.3. Notice that W, S, = SoW_y.
For each w € R?" define a “symmetry”, S,,, of L%(R") by Sy = SoWay. Notice
that S2 = I. Then equation 1.3 can be rewritten as

Lid= | Ff(w)Suwé dw .

; R2n

This suggests that we may be able to quantize Riemannian symmetric spaces
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M in the following way. Let Gp denote the group of isometries of M, and
let p denote a Gps-invariant measure on M. For each m € M let S,, denote
the geodesic symmetry.about m, so that S,, € Gur. Let 7 be any unitary
representation of Gps on a Hilbert space H. Then for any function f on M we
can attempt to define an operator, Ly, on H by

Ly = [ $m)Sm dis(m)

Of course if f € L'(M, p) then Ly will be a well-defined bounded operator. But,
much as with the original Weyl calculus, we can hope that this will also be true
for a much wider class of functions f. And we can hope that this procedure will
provide a quantization of functions on M.

Investigation of all of this plunges one into the very rich structure of Riemann-
ian symmetric spaces. Some interesting specific situations have been explored
by Gracia-Bondia and his collaborators — see [Gr] and its references. Other
leaders in this investigation have been the Unterbergers [UU1, UU2, UU3|
and Upmeier [Up3, Up4, Up5]. Most of the attention so far has been concen-
trated on obtaining suitable formulas and then showing that the operators Ly
are bounded for wide classes of f’s. In most cases it has not yet been shown that
the operators Ly form an algebra, which would then give a deformed product on
the functions on M. Very little seems to have been done about letting a Planck’s
constant vary and showing that in the semi-classical limit the situation is related
to a Poisson bracket in the way required by our definition of a strict deformation
quantization. But the situation looks promising enough that one can hope that
in favorable cases one will eventually be able to show that one obtains a strict
deformation quantization.

Attractive recent surveys of this approach have been written by Upmeier
[Up3, Up4], so we will not try to give more details here. Let us only mention
that the Unterbergers have also developed several closely related “calculi” gen-
eralizing the Weyl calculus, which one can also hope will eventually be shown
to provide strict deformation quantizations. Specifically, they describe a “Bessel
calculus” in [UUS3], a “Fuchs calculus” in [Un1, Un2], and a “Klein-Gordon
calculus” in [Un3, Un4, Un5]. Very recently use of the Bessel calculus for
constructing deformation quantizations has been studied by Miiller in [Mu2].

E. Symplectic groupoids.

We conclude this section by mentioning a highly interesting program initiated -
separately by Karasev [Kr], Zakrzewski [Z], and Weinstein [Wel], though up
to now it is less complete than the approaches described above. A detailed
description of this program can be found in [We2]. Very briefly, the idea is that
to a Poisson manifold P one can often associate a symplectic groupoid G whose
unit space is P and whose groupoid structure induces the Poisson bracket on P.
One can then try to apply Renault’s theory [Re] for associating a C*-algebra to
a locally compact groupoid. Actually one needs to twist this construction by a
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suitable line bundle (or 1-cocycle) much as one does in geometric quantization.
The C*-algebra constructed in this way is too large, and one must then try
to reduce its size by some kind of choice of a “polarization”. This program is
carried out for quantum tori in a very attractive way in [Wel]. Further pieces
of this program appear in [WX1]. It seems reasonable to hope that when this
program is more fully developed it will provide interesting strict deformation
quantizations for a variety of situations.

4. Berezin-Toeplitz Quantization

A generalization of the anti-Wick quantization was proposed by Berezin [Bel,
Be2, Be3, Be4], employing Toeplitz-type operators. In recent years it has seen
rapid development. We will be fairly vague about the détails, for which we send
the reader to the papers [Pe, Up4, Up5, UUp], as well as to other papers
mentioned below. One starts with a complex manifold M and a measure u. Let
H denote the subspace of L?(M, u) spanned by the holomorphic functions, and
let P denote the orthogonal projection on H. For any bounded measurable func-
tion f on M let By denote the operator on L2(M, p) of pointwise multiplication
by f. The corresponding Toeplitz operator, Ty, is the compression of By to H,
that is, PB; P on H. One can then ask whether the correspondence f + T} is a
quantization, especially when one has a natural way to vary the measure x, and
thus H, as a function of a Planck’s constant.

We emphasize that in this approach one does not seek a deformed product
on an algebra of functions on the manifold. For this reason we will not refer
to these as deformation quantizations. One only seeks linear maps T" from a
Poisson algebra of functions into operators on Hilbert spaces such that in the
limit as i — 0 one obtains as semi-classical limit the original Poisson algebra.
As before, the “semi” in semi-classical refers exactly to the fact that one keeps
track of the Poisson bracket. More specifically, one requires that

as h — 0.

Of course, for matters to work out well one needs more structure. The main
technical tool is that of reproducing kernels, which already made an appearance
in our discussion of Wick quantization in section 2. A reproducing kernel for H
1s a continuous function £ on M x M such that for each m € M the function
En(n) = E(n,m) is in H, and for every ¢ € H one has

¢(m) = (¢, Em) .

This plunges one into the detailed theory of complex manifolds, especially Kahler
manifolds. We will not attempt to describe the details here. (See [Up4, Up5,
UUp, RCG].) But the structure of some of the resulting C*-algebras has been
worked out in great detail, and can be quite fascinating [SSU1, SSU2, Shi,
Upl, Up2, Up6].
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In this setting there has been greater progress in verifying that one often ob-
tains a quantization, than has been seen for the related Weyl setting described
in subsection D of the last section. To begin with, Klimek and Lesniewski [KL1]
study the closed unit disk with its usual action of SU(1,1). They construct a
Berezin-Toeplitz quantization (depending on a parameter) which has the impor-
tant property of respecting the action of SU(1,1). They verify property (4.1)
for their construction. (The sections of [N2] which deal with the quantum disk
can be viewed as strengthening the results of [KL1] to show that if one takes
as dense subalgebra the polynomials in z and Z then one actually can obtain a
deformation quantization.)

Once one has a quantization of the disk which respects the action of SU(1, 1),
1t 1s very tempting to try to construct quantum compact Riemann surfaces by
choosing in SU(1,1) a lattice which is the fundamental group of an ordinary
Riemann surface for the action of SU(1, 1) on the ordinary disk, and then trying
to “divide” the quantum disk by the action of this lattice. There appear to
be severe technical difficulties in carrying this out, but Klimek and Lesniewski
do manage to overcome them in a quite restricted setting in [KL2]. In a very
interesting related paper [KL3] they construct a two-parameter Berezin-Toeplitz
quantization of the unit disk, for a family of Poisson brackets, such that in the
second parameter the quantum disks carry an action of the quantum universal
enveloping algebra U,(sl(2)), and so, heuristically speaking, an action of the
quantum group SU,(1, 1) if it were well-understood what this meant. (See [Wr4]
for a discussion of why SU,(1,1) may not exist.)

More recently, Borthwick, Lesniewski and Upmeier [BLU] have greatly gener-
alized the above results to construct Berezin-Toeplitz quantizations for bounded
irreducible Hermitian symmetric spaces. An important ingredient in their con-
struction is again the transitive Lie group of automorphisms which these spaces
possess. Their approach also relies heavily on the application of Jordan algebra
techniques in ways which have been extensively developed by Upmeier in earlier
work [Up5]. The details are too complicated to describe here. However, they
are so far only able to establish relation (4.1) for the case in which one of the
two functions involved has compact support.

In a striking new direction, Borthwick, Klimek, Lesmewskl and Rinaldi [BK1
BK2] have extended these ideas to supermanifold versions of Hermitian sym-
metric manifolds. Here one would not initially expect to obtain C*-algebras
since the (super)-commutative algebra in this case is not a C*-algebra. But its
component of degree 0 is a C*-algebra, and this turns out to be sufficient.
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