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Recently I have been attempting to formulate a suitable
C*—-algebraic framework for the subject of deformation
quantization of Poisson manifolds [1,13]. Some of the main
examples which I have constructed within this framework
[27] involve "proper" actions of groups on C*—algebras,
where ‘'proper"” actions are to be defined as a
generalization of proper actions of groups on locally
compact spaces. Much of the material on proper actions
which I have developed for this purpose is of a general
nature which may be useful in other situations, so it has
seemed appropriate to give a separate exposition of it, in
the present article.

The notion of "proper" action which we introduce in
this article is closely related to various notions of
"integrable" actions which are discussed in the literature
[6,7,15]. The main difference is that our notion of
"proper" action emphasizes a natural inner—product having
values in the crossed product algebra for the action. It
turns out that because of this, our notion of "proper”

actions is more closely related to reduced crossed products
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than full crossed products.

Section 1 of this article is devoted to the definition
and basic properties of "proper" actions, especially a
strong Morita equivalence between a certain ideal of the
crossed product algebra and the generalized fixed-point
algebra which we associate to a proper action. Section 2
contains several general examples. The first of these,
which provides some clarifying counter—examples, consists
of the action of a group by conjugation by its left regular
representation on the algebra of compact operators. The
second, for Abelian groups, consists of the dual action of
the dual group on a crossed product algebra. The Morita
equivalence alluded to above provides in this case what can
be considered to be another manifestation of Takesaki
duality as it was extended to C*—algebras by Takai (as in
7.9 of [15]). In Section 3 we use the Morita equivalence
alluded to above to study when the field of generalized
fixed-point algebras corresponding to a continuous field of
proper actions will be continuous. The results so obtained
play a key role in the construction of the examples of
deformation quantization discussed in [27]. In particular,
[27] contains further interesting examples of proper
actions.

PROPER ACTIONS OF GROUPS ON C*-ALGEBRAS 143

§1 PROPER ACTIONS ON Cx-ALGEBRAS

We recall that an action, &, of a locally compact group
G on a locally compact space M. is said to be proper if
the map from GxM to MxM defined by (x,m) + (x, ax(m)) is
proper, in the sense that preimages of compact sets are
compact. (A recent paper concerning proper actions,
containing references to earlier papers, is [17]_.) A basic
fact about proper actions is that the space of orbits, X/,
with the quotient topology, is again locally compact and
Hausdorff (see propositions 3 and 9 in 3.4 of [2]).

et A = Cm(M), the algebra of continuous complex-
valued functions om M vanishing at infinity, and let o
also denote the action of G on A defined by (axf) (m) =
f(a;i(m)). Let A% = C&(X/a). How are A and A% related
via a? Well, the elements of A" can be viewed as
continuous bounded functions on X which are constant
on a-orbits. Thus A” is a subalgebra of the multiplier
algebra, M(A), of A. The action « on A defines a
corresponding action on M(A) (which need not be strong-
operator continuous). Let M(A)a denote the subalgebra of
fixed points in M(A) for this action. Then it is easily
seen that A% € M(A)a. But how do we characterize A% as
a subalgebra of M(A)? Intuitively, one obtains elements of
N\ by "averaging", that is by integrating, elements of A
over G. But if G is not compact, only elements in the

o
functions of compact support can be so integrated, and even

dense subalgebra A = CC(M) of A consisting of

then, the integration is not with respect to the norm
topology but rather with respect to the strict topology.
That is, if f, g € Ao’ then the function x +— ax(f) is
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not norm-integrable, but rather the function x - g (f)
is, since it has compact support.

Generalizations of the above situation to the case in
which A is non-commutative have been considered by
various authors, generally under some variation of the name
"integrable"” actions. (See 7.84 of [15] with the note at
the end of [14]}, definition I1.2.1 of [5], and [7].)
However, there is another important aspect of the commuta-
tive case A = Cm(M) which does not seem to have been
considered in the generalizations of properness to non-
commutative A, but which we need to stress here, and which,
when it is present, will lead us to use the term "proper"
action instead of "integrable" action. This aspect is that
for a a proper action of @ on M, there is an inner-
product on C (M) with values in the transformation group

—algebra E C (G, M). If for simplicity we assume for
the moment that @ is unimodular, this inner-product is
defined by

A, plx, m) = f@ge m)

where the properness of « ensures that <f, g> has
compact support, and so is in IL! (@, ¢ (M)) This k1nd of
inner-product already plays a key role in various commuta-
tive situations, such as those in [24]; and variants of it
have appeared in related contexts, such as equation 2.3 of
[20] and theorem 6.3 of [17]. In the case where G is
compact, so that every action of @ should be proper, this
kind of 1nner—product has also been used for actions on

non—commutative C —algebras, see section 7.1 of [16] and
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the references given there.

Suppose now that G is not necessarily compact, and
that o is an action of G on some C*—algebra A. We will
need to consider a dense subalgebra of A, but we do not
want to insist on an analogue of compact support (e.g.
using the Pedersen ideal [15]), because of interesting
examples that do not permit this, such as that of theorem
2.18 of [25], and the second example of the next section.
But then we must be careful about the treatment of modular
functions in case G is not unimodular. Guidance for this
can be obtained from 82 of [20], which treats a special
case of the situation we will consider here. Anyway, our
first crucial assumption is that there is a dense
a—invariant subalgebra, Ao, of A such that for any
a, b e Ao both the functions x - aux(b*) and

<a, b>E(x) = A(x) 1?2

anx(b*)
are norm integrable on G as A-valued functions, where A
denotes the modular function of G.

As our notation suggests, we wish to view < , >E as an
1nner—product on A with values in a C ~algebra completion
of L1 (G, A). For thls inner—product to be useful, we need
to know that <a, a>E is appropriately positive for any
a € Ao. Now if (®, U) is any covariant representation of
(G, A) on a Hilbert space E, then for E € & we have,
using module notation for the integrated form of (m, U),
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«a, &> E, B> = I(n(aux(a*))uxﬁ, B> Ax) Y 24y

= I(an(a* )E, ft(a*)§> A(X)—l/zdx

If G is unimodular, the integrand is clearly a function
of positive type on @ which is integrable. But when @
is not amenable, it is easy to construct functions of
positive type and of compact support whose integral over G
is strictly negative. To see this, suppose for simplicity
that G is discrete, and recall [15] that if @ is not
amenable then the trivial representation, v, is not
contained in the left regular representation, A, This
means that we can find a € C*(G) such that flall = 1,
a=a*and t(a) > 0 while A(a) = 0. Then we can find
f€C.(6) such that Ifl = 1, £ = f* and fa- £ < t(a)/4.
This means that UA(f)Il < t(a)/4 while T(f) 2 3t(a)/4.
let g = (‘r(a)/2)8e - f where 6e is the delta~function
at the identity element. Then g€ CC(G), and A(g) is

positive so that g is of positive type. But

J g =1(g) < -v(a)/a .
G

Thus the integral we are examining above does not
appear to be automatically non-negative. Suppose, however,
that the covariant representation (r, U) is induced from a
representation p of A on a Hilbert space H, as
described in 7.7.1 of (15], so that & = LZ(G, H). Consider
any & € E which is actually in CC(G, H). Then
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(1.1) !(an(a*)g, 7(a*)E> Ax) Y 2dx

H

U m@NE), (n(a®)E) (v)>dy AG) ™ 2ax

Sdp@ (@ (a*))EGT a0 ™ %ax, ple _ (a%)E(¥)>dy
y y

oo (a*)EC A0 2ax, To(ay(a")EG A M 2ay>

z2 0.

.For this particular calculation we did not need to assume

that a, b € Ao. But if we do assume this, then x +—
A(x)—l/zaax(a*) is integrable, so <a, a)E defines a
bounded operator on E. Then from the above calculation we
conclude that this bounded operator is positive on Z. Thus
we see that the appropriate place to view the values of
<, >E is in the reduced C*—algebra C:(G, A}, since this
algebra is defined in terms of these induced representa—
tions [15]. (Our notation will not explicitly indicate the
action a involved, as there will be no ambiguity about
this in what follows.) A simple calculation shows that

X
{a, b>E = <b, a>E .
We want the linear space, Eo’ of finite linear combinations
of elements of the form <a, b>E to be a subalgebra of
C:(G, A), and we want this subalgebra to act on Ao on the
left. But none of this is evident without further

hypotheses.



148 M.A. RIEFFEL

To see what these hypotheses should be, let us remark
Tirst that A-valued functions f on G act on the left on
A, the appropriate formula being

= J fo0e (a)a” Fxyax

when this makes sense. In particular, for a, b, ¢ € Ao
we have

<a, b> j a (b c)dx

which does make sense by our hypotheses on A We need to
assume that such integrals are again in A » 80 that A has
a chance of being a left E -nodule. Slnce on Ao we
already have defined an E -valued inner product, A will
then be a left E —rlgged space in the terminology of 2 8 of
[21]. We can then look for its imprimitivity algebra, Do’
in the sense of definition 6.4 of [21] except using left
modules. This will be generated by the operators <b, c¢>

acting on the right on Ao and defined by the formula

D

a<b, c)D = <a, b>Ec .
We want these operators to be nicely related to the
situation. By slight abuse of notation, let M(A ) denote
the subalgebra of M(A) consisting of the mu1t1p11ers which
carry Ao into itself, and let M(Ao) denote its subalgebra
of a-invariant elements. We will require that <b, c)D come
from an element of M(Ao)a. Thus:
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1.2 DEFINITION. lLet o be an action of a locally

compact group G on a C*—algebra A. We say that o is a

proper action if there is a dense a-invariant x-subalgebra

Ao of A such that

1) for any a, b € Ao the function <a, b)E(x) =
A(x)—uzaax(b*) is in Ll(G, A), as is the function
X —> aax(b*).
2) For any a, b € Ao there is a (uniquely deter—
o
mined) element <a, b>D of M(Ao) such that for

every c € Ao we have
jcux(a*b)dx = c<a, by -

Under these hypotheses we can now show that Eo’ as

defined earlier, is an algebra. Indeed, for a, b, c, d € Ao’

we have

-1
<a, b>ple, dp(x) = J<a, b>E(y)ay(<C. ey x))dy

- - - X
= JA) M a0 bF)e (BT 1/2c“y—1x(d ))dy

= JaG) V2 jaay(b*c)dy ax(d*)

= <a<b, <> d>E(x) .

D’
Since a(b,. c>D is by hypotheses again in Ao, it follows
that E is an algebra. But, from a slightly earlier cal-

culation, the above calculation can be restated as giving
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<{<a, b>Ec, d>E = <a, b>E<c, d)E

From this it follows that for any e € E0 we have

{ea, b)E = e<a, b)E .

If we equip E0 with the norm from C:(G, A), so that Eo is
a pre—C*—algebra, then the above observations show that A
is a left Eo—rigged space in the terminology of definition
2.8 of [21].

As discussed in §2 of [21], we can define a norm on A
by
172

HaﬂE = [l<a, a)EH s
where the norm on the right-hand side is that of E and so
of C (G, A). We let Ao denote the completion of Ao with
respect to this norm. Let E denote the closure of E0 in
C:(G, A). Then the action of E0 on A0 defined above
extends by continuity to an action of E on Ao' A simple
argument, given in lemma 6.13 of [21], shows that this

action is non-degenerate in the sense that EKO is dense in

Ao.

We will show now that E is an ideal in C:(G, A). For
any a € A let m denote a viewed as a multiplier of
C:(G, A). Then for a,b,c € A, a simple calculation shows
that

ma<b, c)E = <ab, c>E .
It follows by continuity that maE € E for any a € A.
For any y € G 1let 6y denote y viewed as a multiplier

of C:(G, A). Another simple calculation shows that
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= s, b>
5y<8, b>E <ay(a) E

for any a, b € A . It follows by continuity that & E c
for every y € G. But for any f €C (G, A) end any
ne C (G, A) their product in C (G, ) can be written as

=1 mf(y)5 ndy ,

so that if n € E then fn € E. It follows by continuity
that E is a left ideal, and so a two-sided ideal since it
is a ¥-subalgebra. Since Ko .~is a non—deg?nerate left
E-module, the action of E on Ao extends uniquely to an
action of C:(G, A) on Ao.

We now consider further the imprimitivity algebra for

o .

the situation. Let d € M(Ao) . Then from calculation
(1.1), with the notation used there, we find that for any

<<ad, ad>E§, B> =

= <p(d )Ip(a (a VEMx )A(X) M2y

-1/2

p(d*)jp(aym*))5(y")A<y) dy>

< Hdl? «a, a>E, B .
Consequently, as elements of E,
<ad, ad>, < hdiP<a, &>

so that d is a bounded operator om A.o in the sense of
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definition 2.3 of [21], because d* is easily seen to
serve as an adjoint for d with respect to < s )E.
Consequently, d extends to a bounded operator on Ao. We
show next that the norm of this operator is the same as the
norm of d in M(A). To this end, choose p acting on H
and a unit vector v € H such that llp(d)vll is close to
dll. Then choose an a € A, close to a suitable element
of an approximate identity for A. Finally, let & be a
upnit vector in & = LZ(G, H) supported in a small neigh-
borhood of the identity element of G and constant there
with value a multiple of v. Then the calculation made
above shows that <<ad, ad>EE, E> is close to

lldllz«a, a)EE, E>. Consequently the norm of d as a
bounded operator on Ko is lldll. We have thus established:

1.3 LEMMA. With notation as above, each element
de M(Ao)a determines an element of the algebra, L(Xo), of
bounded operators on Ao’ defined by a + » ad for a € Ao.
The corresponding anti-homwomorphism of M(Ao)a into L(Ko)
is isometric.

The imprimitivity algebra, D, of Zo i8 by definition
the closure in L(XD) of the linear span, D of the
operators <a, b)D defined by

0’

c<a, b>D = <c, a>Eb

for a,b,c € AD. The norm on Do is that from L(Ko). Notice
that ])0 is already a *-subalgebra of L(Ao), by simple
calculations using the relation of < R >D to < , >E’ as
indicated in proposition 6.3 of [21]. But by hypothesis,
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the operators <a, b)D for a, b € Ao are all in M(Ao)a,
which we have just seen is isometrically embedded in L(Ao).
Thus we can now simply view D as the closure in M(A) of
the linear span of the <a, b>D’s for a, b € Ao.

In view of the fact that for a,b,c € Ao we have
c<a, b>. = [ co_(a’b)dx
k] D X k]
it is natural to write symbolically that
<a, b>, = [ a_(a*b)dx
s D X ’

even though the integral on the right will not converge
unless G is compact. But this suggests that the elements
of D should be viewed as the generalized fixed-points for
o, much as happens for proper actions on locally compact
spaces, as discussed at the beginning of this section.

Thus we make:

1.4 DEFINITION. Let o be a proper action of G on
A. Then by the generalized fixed-point algebra of a we
will mean the closure, D, in M(A) of the linear span, Do’
of the elements <a, b>D for a, b€ AD. When convenient we

will, by slight abuse of notation, denote D by A%,

The above discussion together with proposition 6.6 of
[21] shows that Ao is an Eo—Do~imprimitivity bimodule, as
defined in 6.10 of [21]. Taking completions, we obtain a

strong Morita equivalence as defined in [23]:
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1.5 THEOREM. lLet o be a proper action of a locally
compact group G op a C*—alg‘ebra A. Then, with notation
as above, A% is strongly Morita equivalent to the ideal E
of C:(G, A) defined above, with Ko serving as an equiv-

alence (i.e. imprimitivity) bimodule.

We remark that E can easily fail to be all of
C:(G, A). For instance, if G is compact and a is the
trivial action, then E will consist of exactly the
A-valued functions on G which are constant. If G is a
finite group acting on a compact space M, and thus on
A = C(M), then it is easily checked that E = C*(G, A)
exactly if the action is free. Since there are other
possible ways to try to generalize the notion of freeness,
as discussed in great detail in [16] (see also §10.8 of
[17]), we will not use the term "free" here, but will
rather use the following terminology, which is consistent

with that used for compact groups as discussed in §7.1 of
[16]:

1.6 DEFINITION. Let o be a proper action of a
locally compact group G on a

that « is saturated if R

C*—algebra A. We will say
C:(G, A), in the notation

used above.

1.7 COROLLARY. ILet o be a saturated proper action
of a locally compact group G on a C*-algebra A. Then,
with notation as above, A% is strongly Morita equivalent to
X
Cr(G, A).
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In 82 we will give some interesting examples of
saturated proper actions.

In concluding this section, let us remark that it is
not very clear how the results of this section depend on
the choice of the dense subalgebra Ao. It would be
desirable to have a more intrinsic definition of proper
actions, which produces the subalgebra Ao by some canonical
construction. It is also not clear how often the
integrable actions implicit in 7.8.4 of [15] will be

proper.

§2 EXAMPLES

We now give several general examples of proper actions.
The first of these will clarify the following issue. We
have been careful in §1 to respect the distinction between
C*(G, A) and C:(G, A). Of course, if G is amenable then
this distinction disappears (theorem 7.7.7 of [15]). But
actually, Phillips has shown (theorem 6.1 of [17]) that if
o is any proper action of an arbitrary G on any locally
compact space M, then C*(@, A) = C¥(6, A) for A = C_(M).
This suggests that this might also happen for A non-
commutative. But we now give a class of examples which
show that this is not always the case, and that our earlier
emphasis on the reduced algebras was appropriate. (Let me
record here my thanks to Chris Phillips for helpful

discussions about this matter.)

2.1 EXAMPLE. Let G be any locally compact group,
and let A denote the left regular representation of @
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on LZ(G). Let A = K(LZ(G)), the algebra of compact
operators on LZ(G), and let o be the action of @ on A
consisting of conjugation by A. We show now that « is a

proper action. Let Ao be the subalgebra of A

consisting of compact operators defined by keérnels
Fe CC(GXG), where

(FE)(x) = [ F(x, y)E(y)dy
for E € LZ(G). It is easily calculated that
(@ (F))(x, ¥) = F(z 'x, z ') ,

80 O carries Ao into itself. For any F, F’ € Ao we have

<E, FOp()(x, ¥) = 8@ V(R (7)) (x, )

AR 1R, W (o) () w, y)dw
A=) E 1 R, wF (27, 2 wdw

which is easily seen to have compact support in all
variables, as will be true also when the modular function
is omitted. Thus condition 1 of Definition 1.2 holds.
Next, we can prove a property slightly stronger than
condition 2, namely, that for any F € Ao there is a

® € M(A)® such that

J'F'otz(F)dz =Fe

for all F’ € Ao (where the juxtaposition means product of
operators, not pointwise product). As above, the integrand
has compact support, so the integral is well-detined since
the integrand is easily seen to be norm continuous. The

integral will be a compact operator, and it is reasonable
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to hope that it is givem by a kernel function. If we
calculate pointwise at the level of functions, we find that

UF @, (F)dz) (x, ¥) = JIF (x, WF(E W, 2 'y)dw dz

= JF'(x, w) JF(z ', z 'w 'y)dz dw .

Set
f(u) = JF(z }, z w)dz .

Then it is easily seen that f € Cc(G), while, of course,
. -1
(JF'« (F)dz)(x, y) = JF'(x, wf(w y)dw .
Applying this to a & € LZ(G), still at the pointwise

level, we obtain

((Fa (F)dz)E) (x) = J(JF (x, w)f(w 'y)dw)E(y)dy
JF’ (x, w)(Jf(y)E(wy)dy)dw
(F'(pgE)) ()

it

where p denotes the right regular representation of @
on LZ(G). This makes sense since M(A) = B(LZ(G)), the
algebra of all bounded operators on Lz(G), and we expect to
obtain something in M(A)“, that is, in this case, an
operator commuting with A. But the operators commuting
with A are exactly those in the von Neumann algebra
generated by the right regular representation, p, of G.
Anyway, we have found above, symbolically, that

I aX(F) = pf .

Now that we see what the answer must be, it is straight-
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forward to justify the above calculations at the level of
operator norms, rather than just pointwise. (One technique
for this is given in the next example.) In this way condi-
tion 2 is verified. Furthermore, it is not difficult to
see that every f can be approximated arbitrarily closely

in the Li—norm by functions of the form

u > f F(z_i, z_iu)dz

for FecC (GXG) It follows that Aq, as defined earlier,
will be all of C (G), acting by the right regular
representation on 12 (G)

It is ea511y checked that E contains an approximate
identity for C (G A), so that E = C:(G, A}, and a is
saturated. Slnce « is an inner action, that is, comes
from a representation of @G into the group of unitary
elements of M(A), and since inner actions are not usually
viewed as being analogues of free actions, this indicates
some of the limitations of viewing saturation as an
extension of freenmess (even when G is compact). However,
the above a certainly acts in some respects more like a
free action than does, say, the trivial action, even though
these actions are closely related, as we next discuss.

It is well known that the crossed product algebra for
an inner action is isomorphic to the corresponding crossed
product for the trivial action, the isomorphism being given

at the level of functions by the map
f— (x > f(x)lx)

for f e Cc(G’ A), where A is the unitary representation
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defining the action. This also works for reduced crossed

products, as is seen by applying the mapping
E — (x — A E(x))

to vectors E € Lz(G, H) where H is the Hilbert space of
a faithful representation of A, and Lz(G, H) is the
Hilbert space of the corresponding induced representation.

Thus in our specific situation where A = K, we find that

c*@, &) = c¥@) ok

X X
Cr(G, A) o Cr(G) ®K .

From this it is clear that if G is not amenable, then the
full and reduced crossed product algebras do not coincide
for the action &« of conjugation by the left regular
representation. For example, if G is the free group on
two generators, Powers has shown [18] that C (G) is simple,
whereas C (G) certainly is not simple since G has finite
dimensional unitary representations. Consequently, theorem
6.1 of [17] does not generalize to non—commutative A.
Since we saw above that the generalized fixed point algebra
is C:(G), this example also supports the emphasis which we
put on reduced crossed products in the definition of proper
actions, since if matters had worked out using full crossed
products, we would have found that C*(G) is strongly Morita
equivalent to C:(G), which fails here since strong Morita
equivalence preserves simplicity (by theorem 3.1 of [22]).
These considerations show that, in part, it is our

insistence that the generalized fixed-point algebra be a
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closed subalgebra of M(A) which is forcing us to use
reduced crossed products.

Our next example involves G which are Abelian, and
can be considered to be another manifestation of Takesaki-
Takai duality [15]. For G Abelian, CL(G, A) = c*(G, A)
for any action o of G on a C*—algebra A, and so for
simplicity of notation we will here denote this crossed
product algebra by Ax c(G’ Let G denote the dual group of
G, and let o denote the dual action [15] of G on AxaG.
For f € L?(G, A) this is defined by

@ (£)(x) = <, t>E(x)

for x € G and t € &, where < , > denotes here the
duality between G and & For simplictiy of exposition
we will actually assume that G is elementary in the sense
of no. 11 of (28], that is, that G is a compactly
generated Abelian Lie group, so of the form RPxZIxT"xF
where R, Z, T and F denote respectively the reals,
integers, circle group, and a finite Abelian group. There
seems to be little doubt that the results obtained here can
be extended to all locally compact Abelian groups by using
their Schwartz space as defined by Bruhat [3] and employed
in (28] and [25], but I have not checked this carefully.
We state this example as:

2.2 THEOREM. ILet o be an action of an elementary
locally compact Abéjjan group G on a C*-—alg‘ebra A. Then
the dual action, o s IS proper. Furthermore, a is saturated,
and the generalized fixed-point algebra of « is naturally
identified with A. Thus (Ax G)x:G is stromgly Morita
equivalent to A.
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Proof. Notation is now a bit confusing because here
the roles of G, A and o in Definition 1.2 are played by
a, AXGG and &. To verify the conditions of Definition
1.2 we must first pick a suitable dense subalgebra of AX«G.
In preparation for this and for later needs, we consider
the following slightly more general situation. Let H be
another elementary group (which may also be G), and let
Cw(H, A) denote the Banach space of continuous A-valued
functions on H vanishing at infinity, with the supremum
norm. Define a strongly continuous action B' of GxH on
Co(H, A) by

Bix, yy()(2) = a (f(z -vy)) .

We let Sa(l-l, A) denote the space of elements of Cm(H, 4)
which are infinitely differentiable for the action B, and
which, with all of their higher partial derivatives for
either G or H, wvanish more rapidly at infinity than any
polynomial on H grows. Here derivatives are taken in the
R and T directions of G and H, whereas polynomials
are taken with respect to the R and Z directions of H.
Of course Sa(H, A) ¢ L1(H, 4), and the values of
functions in Sa(H’ A) are in Aw, the space of ¢®-vectors
for the action a. Furthermore, there are plenty of
elements in Sa(H, A), since any function of form a¢ for
a€A” and $€S(H) will be in S (H, A).

The algebra which will play the role of the Ao of Defi-
nition 1.2 is Sa(G, A). Some straightforward calculations
show that Sa(G’ A) is, in fact, a *-subalgebra of Ax aG’ and
that Sa(G, A) is carried into itself by the dual action a.

We must now examine the functions on G of the form
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<f, g>E(t) = fat(g)

for f, g € Sa(G, A). As functions of both t and x we

have
(fx, (£)) (%) = [ £(¥)or, (@, (8(x = ¥)))dy

= f f(x - Ve, (g(¥))<y, tdy ,

which we recognize as just the partial Fourier transform
(for appropriate conventions) with respect to the second
variable, of the function

O(x, y) = f(x - vy _ (&(y)) .

A simple linear change of coordinates converts this
function to the function

(%, ) ¥ f(x)a (g(y)) ,

which is easily seen to be in Sa(GxG, 4), and from this it
follows easily that @ itself is in Sa(GXG, A). Standard
arguments show, much as indicated at the top of page 159 of
[28], that the partial Fourier transform of @ in its
second variable will then be in sa(cxé, A), that is, the
function

(, £) > (fa, (8))(x)

is in §_(GxG, A). In particular, it is in L'(GxG, A), and
so <f, g)E(t) is in Sq(G, A) € Li(G, A) for each fixed t.
It follows from the Fubini theorem that
1 ~
Lf, g>E € L (G, AxaG).

We have thus verified condition 1 of Definition 1.2.

To verify condition 2 we wish to evaluate
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J fa (g)dt
G

for any f, g € Sa(G, A). For this purpose, let IC(G, A)
be the Banach space L! (G, A) n C&(G, A) with the norm
II-II1 + Il-llm. Note that Su(G’ A) € I€(G, A), and that the
injection of LC(G, A) into L‘(G, A), and so into AxaG, is
continuous. The utility of the above norm is that evalu-
ations at points of G are clearly continuous for it.

To take advantage of this we must also notice that if

f ¢ IC(G, A), then t &t(f) is continuous not only for
el o but also for ll-llo. But this is true essentially by
the definition of the topology on G. Note also that
convolution is clearly at least separately continuous for

the above norm, so that
t — f&t(g)

is continuous for this norm. Thus, to calculate the
integral of this function with values in AxaG, under the
assumption that f, g € Sa(G, 4), it suffices to view its
values as being in LC(G, A), and calculate pointwise. But,
calculating as we did somewhat earlier, we see that for

X € G we have
JUt()ay (@, (8) (x - y))dy)dt
= J(ff(x - y)«x_y(s(y))w. t>dy)dt

For our fixed x, define a function h by

h(y) = f(x - y)o,_ (g(¥)) .
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It is easily seen that h € Soz(G’ A). Furthermore, the
above calculation shows that

U fa (gat)(x) = () (0)
G

where =~ denotes the inverse Fourier transform. Thus we
need to know that the Fourier inversion formula can be
applied to h. But by composing h with continuous linear
functionals on A, we obtain complex-valued functions in
S(G), and it is well known [28] that the Fourier inversion
theorem applies to these. It follows that it applies to
h, and so we find that

(J £, (g)dt) (x) = h(0) = £(x)a (g(0))
P
Now for a € A let m, denote a viewed as an element of

M(AxaG). Then we recognize the right-hand side above to be

just (fmg(o))(x). Thus we have found that
_{ fat(g)dt = fmg(o) ,
G

or, symbolically,

! a (g)dt
G

Boy

(this latter integral not converging in norm unless é is
compact). From this it is easily seen that condition 2 of

Definition 1.2 is satisfied, and that for f, g € Sa(G’ A)
we have

<f, g>D =

B exg)(0)
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By taking f and g of the form a¢ for aEAm and
¢ € S(G), and letting the corresponding ¢’s range over an
approximate identity for L‘(G), one sees easily that the
elements of A of the form <f, g)D are dense in A. Here
we identify a € A with m which is appropriate, as it
is easily seen that the norms coming from A and M(AXGG)
coincide. It follows that the generalized fixed-point
algebra of a is A.

The one fact which remains to be verified is the
density of Eo’ that is, the fact that a is saturated. To
this end'\we show fir;st that Eo is invariant under the
action & dual to a. It suffices to verify this for
elements of E0 of the form <f, g)E for f, g € Sa(G,, A).
But for z € G,

@, (<8, DRI = <z, X, D(t)

<z, t>f&t(g*)

_ X o o X
= <z, t>(f62)62at(g ) .
But &t(Gz) = <z, t>82, so the above
PP Xk, K X
= (,féz)at((gSZ) ) = <f62, g&z>E(t) .

Since f8: and §6§ are both again in SQ(G, 4), it
follows that E0 is a-invariant. Of course, then also E
is &—invariant.

The proof of Theorem 2.2 will thus be complete once we
have gi:ven a proof of the following proposition, which

returns to the notation of Definition 1.2 rather than that
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used just above.

2.3 PROPOSITION. Let o be a proper action of a
locally caompact Abelian group G on a C*-algebra A. Let
E be the ideal of AxaG defined as above. Then the
following conditions are equivalent:

1) o is saturated.

2) E contains an approximate identity be'AxaG.

3) E is carried into itself by the dual action «.

Proof. Since saturation means just that E = AxaG’
and since E is an ideal, it is clear that conditions 1
and 2 are equivalent. We have included condition 2 because
it has been a frequently used method for showing this kind
of thing — not only earlier in this paper, but also in,
for example, the proof of situation 10 of [24], and lemma
2.4 of [20]. It is also clear that conditions 1 and 2
imply condition 3.

To show that condition 3 implies condition 1, we use
proposition 6.3.9 of [16] (which for the separable case also
appears as corollary 2.2 of [10]). This proposition 6.3.9
tells us that because E is &—invariant, it must be of the
form IxaG for some a-invariant ideal I in A. Then the
image of E in (A/I)xaG must be (0). But if I # A, we
can find a, b € AO\I, and then the image of <a, b>E in
(A/I)xaG will clearly not be 0. Thus I = A, so
E = Ax G. Q.E.D.

For the case of actions for which @ is not Abelian,

one has instead of a dual action of the dual group, a dual
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coaction of G itself, as discussed in [11] and the refer—
ences therein. It seems to be an interesting challenge to
formulate an appropriate definition of what it means for a
coaction to be proper, and then to show that the dual
coaction to an action will be proper.* Also, the dual
action to a coaction should be proper. All this should
also be possible for duality of twisted crossed products,
as discussed in [19].

Let us also remark that for G Abelian the strong
Morita equivalence of Theorem 2.2 fits into the framework
of [4] and [6]. To be specific, with notation as earlier,

define an action ® of G on Ao = Sa(G’ A) by

X

azf = fGZ .
Then the calculation used above to show that Eo is «
invariant shows that
<azf, azg>E = az(<f, g)E) .

Furthermore, we have (identifying D with A)

- - I P | _ L 30 PR |

@f, aep = @070 = (15)* @8 (0)

=8 (£ 985 (0) = o« (D) (0)) = o (<£, ) ) .
z z 2 2 ’ D

Thus the actions &, o« and &« on (AXaG)Xaa, Xo’ and A

respectively satisfy exactly the relations of theorem 1 of

*This has now been verified by Kevin Mansfield in "Inducgd
representations of crossed products by coactions," preprint.
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(6], that is, o provides a Morita equivalence between §
and o as defined in §3 of [4]. Thus we can conclude from
these articles the unsurprising fact that ((AXGG)XGG)x‘a’iG
is strongly Morita equivalent to AxaG.

Because the ideas involved will be useful in [27], let
us see how condition 3) of Proposition 2.3 can be used to
obtain the following well-known result (see [24], where it

is seen to be true for any locally compact G).

2.4  COROLLARY. Let @ be a discrete countable
Abelian group, and let o be a proper action of G on a
locally compact space M. lLet o also denote the corres—
ponding proper action of G on the C*—a.lg‘eb.ra Cm(M). If
tlzé action o on M is free, then the proper action «o
on Cw(M) Is saturated.

Proof. We will show that the ideal E is carried into
itself by «.  We assume the dense subalgebra is CC(M), but
the same proof would work for various other choices, such
as C:(M) if M is a manifold. Anyway, let ¢, p € CC(M),
and let t € G. We need to show that ctt(<¢, lp)E) is
again in E. Since o is free and proper, and G is
discrete, we can assume that all the translates of the
closure of the support of % are disjoint, for if this is
not the case, then we can expressv ¥ as a finite sum of
elements of Cc(M) which do have this property. Likewise we
can then assume that the support of ¢ meets the support
of at most one translate of 9. If it meets no translate,

then <¢,w)E = 0 and so «a applied to it is in BE.

PROPER ACTIONS OF GROUPS ON C*-ALGEBRAS 169

Otherwise, there is a unique ko € G such that
@, Pg(k) # 0. Let 0= <k, t> ¥. Then for x € M
and k € G,

(@, (B, WP, k) = Kk, £¢8, Pp0x, K)
= <k, DOV

which is 0 if k # ko’ and so can be rewritten as

= d(x)<k,, BP0 (1)) = ()8 (%) = <@, Op(x, k)

as desired. Q.E.D.

Our next two examples are somewhat less interesting
since they explicitly involve proper actions on spaces.

Hence we present them in somewhat sketchy fashion.

2.5 EXAMPLE. This one comes from theorem 2 of [6].
The set—up used there, and in situation 10 of [24],
consists of a locally compact space P and locally compact
groups G and H having commuting proper and free actions
on P, which we now denote by juxtaposition. One can then
define an action o of G on the (non-commutative) trans-

formation group C*-—algebra A= C*(H, P) by
o« (£)(t, ) = £(x, x 'P)

for f € CC(H, P) = Ao. Because of the properness of the

action of G on P, it is easily seen that x fctx(g)

has compact support for f, g € Ao’ so that condition 1 of
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Definition 1.2 is satisfied. Furthermore, it is not
difficult to check that for f, g € Ao’

J fo_(g)dx = £g
[¢]
where g € C.(H, P/G) is defined by

g(t, p) = [ g(t, x ‘pldx ,
G

and elements of CC(H, P/G) act as multipliers on C*(H, P)
in the evident way. Thus « is a proper action. But what
norm does CC(H, P/G) obtain when it acts as multipliers
on c*(H, P)? Now c*m, P) = c*(H, P) according to
theorem 6.1 of [17]. Thus we can choose a faithful
representation of Cm(P) on some Hilbert space E, and then
the corresponding induced representation on LZ(H, Z) will
give a faithful representation of C*(H, P), and so of
M(C*(H, P)). So CC(H, P/G) obtains the norm from its
corresponding action on LZ(H, Z). But the representation
of Ca(P) on E extends to a faithful representation of
M(C&(P)), and so of CO(P/G) < M(CQ(P)). And it is easily
seen that if this faithful representation of Cw(P/G) is
induced up to H, omne obtains just the representation of
CC(H, P/G) considered above. Since it is reduced crossed
products which are defined in terms of such induced
representations [15], it is now clear that the norm on
C.(H, P/G) is that of CI(H, P/G). It is mot difficult to
then show that the generalized fixed-point algebra for «

is all of C:(H, P/G). But it takes some serious work,
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along the lines given in [24], to show that a is
saturated. Once this is done, one obtains the fact that
C:(GXH, P) is strongly Morita equivalent to c:(n, P/G),

since, using theorem 6.1 of [17],
X X b 3 b 3
Cr(G, C(H, P)) = Cr(G, Cr(H, P)) = Cr(GXH, P) .

This should be contrasted with theorem 2 of [6], which
gives the corresponding conclusion for the full crossed
products.

We remark that if we consider the special case in which
P=6 =H, so that G acts on the left and right on
itself, then we obtain essentially the first example of
this section. And one sees, as done there, that it must be

the reduced crossed products which are involved here.

2.6 EXAMPLE. This one comes from theorem 2.2 of [20].
The set—up used there consists of a locally compact space
P with a free and proper action of a locally compact group
G, as well as of an action f of G on a C*—algebra B.
Let A = CQ(P, B), and let o be the diagonal action of
G on A defined by

@ (£)(p) = B (£(x 'p))

for f € CC(P, A) = Ao. Then it is not difficult to verify
that o is proper, with generalized fixed—-point algebra
GC(P, A)a as defined in [20]. Again, it requires some
serious work, along the lines found in [20], to show that

the action is saturated, so that one obtains a strong
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. o

Morita equivalence of C:(G, Cm(P, A)) with GC(P, A) . But
in theorem 2.2 of [20] the assertion is that it is the full
algebra of C*(G, CQ(P, A)) which is strongly Morita equiva-
*
lent to GC(P, A)a. Thus one can expect that Cr(G, CQ(P, A))
= C*(G, Cw(P, A)), in mild generalization of theorem 6.1
of [17].

§3 CONTINUOUS FIELDS OF PROPER ACTIONS

In this section we consider continuous fields of proper
actions, and how they lead to continuous fields of the
corresponding generalized fixed-point algebras. We work in
the setting of [26], especially theorems 3.1 and 3.4. Th:s
{Aw} will be an upper semi-continuous field [8B] of C -
algebras over a locally compact Hausdorff space Q, and A
will be the corresponding maximal C*—-algebra of sections.
For each ® € Q the evaluation map from A to Aw will
be denoted by T, and its kernel by Kw' By an upper
semi—-continuous field of actions on {Aw} we mean an action
a of a locally compact group G on A which carries each
Kw into itself, and so defines an action « on A for

© o)
each ® € Q,

3.1 DEFINITION. Let « be an upper semi—continuous
field of actioms of G on the field {Aw}. We will say
that a is an upper semi-continuous field of proper
actions if there is given a dense %—subalgebra Ao of A
with respect to which « is a proper action, and if, in
addition, the evident action of Cm(Q) on A carries A

[¢+]
into itself.
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A glance at Definition 1.2 shows that the action o,
on each A(.) is then proper, where as dense subalgebra we
take the image Ag of Ao under ®. The only point which
needs a few moment’s thought is that each T, extends to a
homomorphism, T, from M(A) into M(Aw)’ which carries
M(Ao)a into M(Ag)a, so that for any a, b € Ao the element
<{a, b>D in M(Ao)a determines corresponding elements in each
M(Ag)a, which depend only on the images of a and b in
Aw’ Accordingly, for each @ we can define the corres—
ponding generalized fixed-point algebra, D(o’ which from the
above comments will just be the image of D under LA
Then {Do)} is a field of c*—algebras over Q, with D ident-
ified as an algebra of sections of this field, but without
any obvious continuity properties.

We remark that since upper semi—continuity is assoc-
iated with full crossed products, as seen in theorem 3.1 of
[26], while proper actions involve reduced C*—algebras as
seen in 81, it can be expected that in order to obtain
upper semi-continuity for a field of generalized fixed-
point algebras, we will need to assume that the full and
reduced crossed products agree. The next theorem will play
a key role in our discussion of deformation quantization in
[27], and so is the main result of the present paper. The
term "Hilbert-continuous" used here is defined in
definition 3.2 of [26].

3.2 THEOREM, Let o be an upper semi-continuous
field of proper actions on a field {Ao)}’ and let D be the
generalized fixed-point algebra for the actiom o on the

maximal algebra, A, of sections. Assume that C:(G, Am) =
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X

c (G, Ao)) for all w. Then the field {Dw} of generalized
fixed-point algebras is upper semi ~continuous, when D is
used to define its continui ty structure. Furthermore, D
can be identified with the maximal algebra of sections of
{Dw}' If, in addition, the field {Aw} Is actually Hilbert-

continuous, then the field {Do)} Is continuous.

Proof. According to Theorem 3.1 of [26], {C (G, A )}
is an upper semi—continuous field, with C (G, A) as 1ts
maximal C —algebra of sections. By exactly the same argu-—
ment as in the second paragraph of the proof of Theorem 3.4
of [26], our assumpt1on that ¢C (G A ) C*(G, Am) implies
that C (G A) = C (G, A). Consequently, in those places
where C (G A) is needed in the treatment of proper
actions, we will here write C*(G, A) instead. Accordingly,
let E denote the ideal in C¥(G, A) spanmed by the
elements <a, b>E for a, b € A just as in 81. For each
©w let Ew be the image of E in C (G, A ) It is clear
that, equivalently, Ew is the closed 1deal of C (G, A )
spanned by the functions <a, b> for a, b € A in the

way described in §1. “’

We need the following simple result, in part because it

is crucial for us to know that E & E/EI where, as in

[26], I is the ideal in Cm(Q) of functlons which vanish at
.

3.3 PROPOSITION. Let {B } be an upper sem1-cont1nuous
field of C -algebras over Q, and let B be its maximal C -
algebra of sections. ILet E be an ideal of B with the
property that if c € Cw(Q) and if cE = {0}, then c = 0.
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For each ® let Eo) be the image of B 1in Bw' Then {Ew}
is an upper semi—continuous field of C* -algebras over Q,
which is continuous if {B } is. In part.icu]ar, E/EI

for each w, and E 1is tbe maximal C ~-algebra of sections

of {Ew} .

Proof. Multipliers of B act as multipliers of E.
Because of the special hypotheses made on E, the corres-—
ponding homomorphism of C&(Q) into M(E) is isometric, so
that CQ(Q) can be viewed as a subalgebra of M(E), and the
theory of §1 of [26] applies. Now the kernel of the evalu-

ation map =X restricted to E is, of course, E n BIQ.

@
But the latter is clearly an essential Iw—module, and so
E n BIw = EIQ. Thus Ew = E/EI@. The rest of the

assertions now follow immediately from the results of §1 of

[26]. Q.E.D.

We now return to the proof of Theorem 3.2. It is clear
that, in this setting, {Em} # {0}, because we tacitly
assume that A(.) # {0}. Thus Proposition 3.3 applies, and
we conclude that {Ew} is* an upper semi-continuous field,
with E as its maximal C —algebra of sections. Now E is
strongly Morita equivalent to D according to Theorem
2.4, with Ko serving as equivalence bimodule. Using this
strong Morita equivalence, we should be able to tramsfer
the field structure of E to D. Recall from theorem 3.1
of {22] that if A and B are C*—algebras, and if X is
an A-B-equivalence bimodule (i.e. imprimitivity bimodule),
then X establishes a canonical inclusion—preserving

bijection between the (two-sided) ideals of A .and those
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of B, which is given, for example, by sending the ideal
J of A to <X, JX)B.

3.4 THEOREM Let {A } be an upper semi-continuous
field of C —a]g‘ebras over a locally compact space Q, with
A Iits maximal C —algebra of sections. ILet B be a C*—
algebra which is strongly Morita equivalent to A via an
A-B-equivalence bimodule X, and let h denote the
corresponding bijection from ideals of A to ideals of B.
Ffor each ® let K be the kernel of the evaluation map
from A to A, and let B B/h(K ). Then {B } is an
upper senu—contznuous field a.f‘ C —algebras over Q, with B
as its maximal C*—algebra of sections. If {AQ} is actually

continuous, then so is {Bw}.

Proof. From corollary 3.3 of [22], the restriction of
h to primitive ideals gives a homeomorphism, also denoted
by h, from Prim(A) to Prim(B). Now CQ(Q) can be viewed
as a subalgebra of bounded continuous functions on Prim(A),
and so, by this homeomorphism, as a subalgebra of bounded
continuous functions on Prim(B). The points of Q then
correspond to closed subsets of Prim(A) and Prim(B) which
correspond under h. Then the commonly called Dauns—Hofmann
theorem [9] (which, as discussed in [8], is Just a special
result on the way to the main theorem of Dauns and Hofmann)
says that CQ(Q) can be viewed as a central subalgebra of
M(B). Let Io) denote, as before, the ideal in CQ(Q) of
functions vanishing at ®. Then {B/BIQ} will be an upper
semi-continuous field with maximal algebra B, by Proposi-

tion 1.2 of [26]. But it is easily seen from the way h
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is involved here that BIQ = h(AIm) = h(Kw), thus demonst—
rating the first assertion. Suppose now that {Aw} is lower
semi—continuous, hence continuous. According to theorem 4
of [12] this is equivalent to the assertion that the
evident continuous map p from Prim(A) to Q coming
from Cm(Q) € A is open. But the corresponding map from
Prim(B) to Q is easily seen to be ph_l, and h is a
homeomorphism, so this map also is open. Then, again by
theorem 4 of [12], {Bn)} will be continuous. Q.E.D.

We return now to the proof of Theorem 3.2. From the
strong Morita equivalence of D with E, we obtain, by
Theorem 3.4, a structure for D as an upper
semi—continuous field over Q. For any ® the ideal in D
corresponding to EIw will be <Ko EI(-)A0>D (Ko A0>DI(.)
DI so the fiber algebra is D/DIQ.

It might seem that we have now almost completed the

m’

proof, but in fact we have only just begun, for we must
show that this field structure coincides with that given by
the field of generalized fixed point algebras as in the
statement of Theorem 3.2. The proof of this is somewhat
slippery, because of the many identifications which one is
tempted to assume, but which need to be verified. Thus we
praoceed with some care. Also, perhaps we should comment
here that the reason for the approach we are taking is that
it appears difficult to prove directly the upper semi-
continuity of the field of generalized fixed-point
algebras, whereas, as we have just seen, the upper semi-
continuity of the field coming from the strong Morita

equivalence follows from quite straightforward considera-
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tions.

The main identification which we must carefully check

is the following

3.5 LEMMA. Let :—&3 and Ko denote the completions
o
of A(.o and Ao for < , >E and < , >E respectively. Let
@

iw denote the restriction of no) te A 0’ mapping onto Ag.

Then 1_tw extends to an Ew—modu]e homomorphism

-— . - — —0
L AO/AOIw — Aw s

which is an isometric isamorphism preserving the Ew—-va_lued
Inner products.

Let us remark that if we were to make precise the idea
of a field of modules with C*—algebra valued inner
products, along lines similar to those used in 83 of [8],

then this lemma would signify that the field {K:)} is upper

semi—continuous.

Proof of Lemma 3.5. For a, b € Ao we have

1!

Fo(@)s TyB)>g (1) = 4607w (@dac (1, %))

A2 x (a0 (b*))

If we let ;im denote the quotient map from E to E

coming from T, then the above says that
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(Ew(a), Ew(b)>E = Ew(<a, by

(%]
that is, ;‘w respects inner products via ;t'w. In particular, -
lluw(a)llxo < IlallK s
[0 0

so that ;((o extends to a map, again r between the

s
completions, which will again respect the(oinner—products.
Now uw(AOIw) = 0, and so by continuity iw(xolw) = 0.
Thus T, drops to a map from Ao/Aon‘ Now Ew = E/EIw by
Proposition 3.3, so that Ew acts on Ao/Aon’ and the inner-
product there can be viewed as having values in Ew‘ From
this and the earlier calculations, it is easily checked
that ;t(o is an Ew—nodule homomorphism which preserves. the
Em—valued inner—products, and hence is isometric. Since nw
clearly has dense range, it follows that nw is a module

isomorphism. Q.E.D.

We are now prepared to deal with D. As earlier, let
;‘(.) denote the homomorphism from D onto DQ obtained by
extending T, to a homomorphism x, from M(A) to M(Am).
Since x, clearly has Im in its kernel, T, drops to a
homomorphism, T of D/DI@ onto D(o' Our objective is to
show that r, is an isomorphism. Now D/DIQ clearly acts
on the right on Ko/‘;‘oI«)’ as does D(o on Kg, while iw and 1—(@
are easily seen to be compatible for these actions in the
sense that

n,((x + AT )(d + DI)) = ® (x + Kolw);cu(d + DI)
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for x € AD and d € D. But Ew is an isomorphism by
Thus the kernel of T, must act as zero
operators on Ao/AoIm' B BBt D/DIQ is exactly the
imprimitivity algebra for Ao/Aon as left Ew—rigged space
by corellary 3.2 of [22], and so D/DIw is faithfully repre-

sented on Ao/AoIm‘ Thus %, must be an isomorphism, as

desired. Consequently, {Dw} is upper semi-continuous.
Suppose now that {Aw} is Hilbert-continuous, with
faithful represen:ations %, of Aw on the fixed Hilbert
space H. Then {C (G, Am)} is Hilbert-continuous by theorem
3.4 of [26] with faithful representations P, on LZ(G, H) as
in the proof of that theoren.

Lemma 3.5.

From Proposition 3.3 it
follows that {EQ} is continuous. But then from Theorem 3.4
it follows that {Dw} is continuous, because of the fact
that we have shown earlier in this proof that D = D/DI

® (4N

(It is not clear to me whether {Dm} will always, in fact,
be Hilbert-continuous.) Q.E.D.

No examples are given here of the application of

Theorem 3.2, because such examples will be given in [27].
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