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This talk is about counting, and it’s about solving equations.

Counting is a very familiar activity in mathematics. Many
universities teach sophomore-level courses on discrete
mathematics that turn out to be mostly about counting. For
example, we ask our students to find the number of different
ways of constituting a bag of a dozen lollipops if there are 5
different flavors. (The answer is 1820, | think.)
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Solving equations is even more of a flagship activity for
mathematicians. At a mathematics conference at Sundance,
Robert Redford told a group of my colleagues “I hope you solve
all your equations”!

The kind of equations that I like to solve are Diophantine
equations.

Diophantus of Alexandria (third century AD) was Robert
Redford’s kind of mathematician. This “father of algebra”
focused on the solution to algebraic equations, especially in
contexts where the solutions are constrained to be whole
numbers or fractions.
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Here’s a typical example. Consider the equation y? = x® + 1. In
an algebra or high school class, we might graph this equation in
the plane; there’s little challenge. But what if we ask for
solutions in integers (i.e., whole numbers)? It is relatively easy
to discover the solutions (0,+1), (—1,0) and (2, £3), and
Diophantus might have asked if there are any more.

There aren’t, but this is far from obvious.
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Which positive integers can be written as sums of squares? If
m is a positive integer, we consider the Diophantine equation
m = x2 + y2. We can ask:

@ Does the equation have any solutions at all?
@ How many solutions does the equation have?
@ Can we find all solutions?

Let’s look at three examples where we can answer the first
question. We’'ll take three consecutive 6-figure prime numbers
as values of m:

@ If mis the prime number 144169, there’s a positive answer
because m = 3152 + 2122,

@ If mis the prime 144173, we have similarly
m = 3382 + 1732,
@ If m= 144203, the equation has no solutions.
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Fermat (1601-1665) solved the first problem definitively:
@ The prime 2 is the sum of two squares.
@ All primes that are 1 mod 4 are sums of two squares
@ All other primes are not sums of two squares

If mis a given positive integer, factor m as a product of primes.
For example,

123456 = 2°. 3. 643, 1234567 = 127 - 9721.

The rule is that mis the sum of two squares if and only if every
prime that’s 3 mod 4 appears in its factorization with an even
exponent. Neither of 123456, 1234567 is a sum of two squares.
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Fermat also solved the second problem by giving a formula in
terms of m for the number of solutions to m = x2 + y2. Call this
number N(m). Thus N(123456) = N(1234567) = 0, and
N(144169) is non-zero.

In fact, it's pretty clear that N(144169) is at least 8 because in
the equation 144169 = 3152 + 2122 we can change the signs
of both 212 and 315 and we an flip the order of the two terms.
For example, 144169 = (—212)2 4 3152,

Fermat showed that N(144169) = 8, which we can paraphrase
as the statement that 144169 is the sum of two squares in
essentially one way.
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For a slightly more complicated example, consider 65, which is
both 1 4+ 64 and 49 + 16. By the same reasoning as for 144169,
N(65) is at least 16. Fermat showed that it's exactly 16.
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Fermat’s general formula for N(m) is that it’s 4 times the
difference between the number of positive divisors of m that are
1 mod 4 and the number of divisors of m that are 3 mod 4.

For example, if p is a prime that’'s 3 mod 4, p has two divisors,
namely 1 and p. One of them is 1 mod 4 and the other is 3
mod 4, so the difference between the counts is 0, and

N(m) = 0.
If instead p is a prime that’s 1 mod 4, the difference is 2, so
N(m) = 8.

The number 65 has 4 divisors (1, 5, 13, 65), all congruent to 1
mod 4. Since the difference is 4, N(65) = 16.
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Fermat’'s Last Theorem

It's time now to talk about the most notorious of Diophantine
problems. Until its resolution in 1994, it was perhaps the single
famous problem in mathematics.

To explain Fermat’s Last Theorem, we can begin with the
perfect squares: the numbers 0, 1, 4, 9, 16, and so on. Add two
of them and you'’re unlikely to end up with a third; for example,
4 + 9 =13, a non-square.

“Unlikely” does not mean impossible, since some sums of two
perfect squares are perfect squares: 32 + 42 = 52,

52 + 122 = 132, so on. If & + b? = ¢?, (a, b, ¢) is called a
Pythagorean triple.
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The ancient Greeks gave a general recipe for finding all
Pythagorean triples. If n and m are positive integers with
n > m, then

(r? — m?)? 4+ (2nm)2 = (n? 4+ m?)2.
For example, if n =3, n = 2, we get the familiar triple
(5,12,13).

This recipe really does give all Pythagorean triples, up to the
operations of scaling a triple and exchanging the first two
entries.
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What happens if we replace squares by cubes, fourth powers,
and so on? Fermat proved that the sum of two non-zero perfect
fourth powers is never a perfect fourth power.

After his death, Fermat’s son discovered a marginal note by his
father in which Fermat claimed to have proved that the sum of
two non-zero perfect nth powers is never a perfect n power,
when nis an exponent bigger than 2.

Most mathematicians believe that Fermat realized later in his
life that his “proof” was mistaken. We don’t know this for sure,
and we have little idea of what his proof might have been.
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Euler (1707-1783) proved that the sum of two non-zero perfect
cubes is never a perfect cube.

After Euler and Fermat, countless professional and amateur
mathematicians attempted to discover a simple proof of the
statement in Fermat’s marginal note. This statement—Fermat’s
Last Theorem—was proved in 1994 by an argument
engineered by Andrew Wiles and carried out partially by Wiles
and partially in joint work by Wiles and Richard Taylor.
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Andrew Wiles announced a proof of Fermat’s Last Theorem in
late June, 1993. A “gap” was found in the proof by Nicholas
Katz soon after. The proof was revived in Fall, 1994 by a new
argument that was crafted by Richard Taylor and Andrew Wiles.
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The argument by Wiles and Taylor-Wiles made crucial use of
modular forms, a magic power of number theory that was
described by Martin Eichler (1912—-1992) as the fifth
fundamental operation of number theory.
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A gathering at the University of Bonn around 1980.

MATHEM

Standing: Koji Doi, Ken Ribet, Martin Eichler, Don Zagier,
Tsuneo Arakawa, Carlos Moreno, Masami Ohta, Yevsey
Nisnevich. Kneeling: Hiroyuki Yoshida.
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Modular Forms

Modular forms seem to come up everywhere in mathematics
where one does systematic counts.

For example, consider the infinite series whose coefficients are
the numbers N(m) that we discussed before:

14+49+40°+49*+80°+4¢®+4¢°+8q"° +8q"% + - -

This infinite series, viewed in the right way, is a modular form.

In fact, this modular form can be used to give a short proof of
Fermat'’s formula for N(m).
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Modular forms are special functions that are analogous to the
trigonometric functions like sin, cos, tan,... in that they are
periodic in the same way that sin is periodic. (Recall the formula
sin(x + 27) = sin(x).) Modular forms have the periodicity of the
trigonometric functions plus enough extra symmetries that they
are essentially unchanged under a large group of substitutions.

Because of the symmetries, it is possible to write modular
oo

forms as Fourier series > anq™, where the “q” here is a
m=0
shorthand for 72,

When we say that the formal series 1 +4q +4qg°+--- isa
modular form, we mean that it becomes a modular form when
we substitute g = €272,
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To prove that 1 + 4q + 4g? + - - - is a modular form is not too
difficult. It's the square of a modular form that was studied by
Carl Gustav Jacob Jacobi (1804—1851). It belongs to a space of
modular forms that is so constrained that all non-zero modular
forms in the space are multiples of each other. Also in this
same space is the modular form corresponding to the series

1+NM1)g+N@)GF+ -,

where the coefficients N'(m) are as described before: N'(m) is
the number of divisors of m that are 1 mod 4 less the number
that are 3 mod 4. Because of the constraint, the two modular
forms are automatically multiples of each other. It follows they
are equal because they begin with the same constant term,
namely 1. This gives the “modular” proof of Fermat’s formula
for the number of solutions to x2 4 y? = m.
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Now we can begin to talk about the way in which the proof of
Fermat’s Last Theorem uses modular forms. Here’s a skeletal
outline:

@ You want to prove that there is no solution to af + b° = cP
when p is a prime number bigger than 2. Assume there is
such a solution, (a, b, ¢), and try to get a contradiction.

@ Using (a, b, ¢), set up an auxiliary Diophantine counting
problem.

@ Show that this problem yields a modular form.

@ Pinpoint the modular form as a member of a highly
constrained space of modular forms.

@ Show in fact, that this space has no non-zero elements!
@ That’s a contradiction, so the proof is complete.

Kenneth A. Ribet Five fundamental operations



The auxiliary counting problem is associated to the
simple-looking equation y? = x(x — aP)(x + bP), where (a, b, ¢)
is a Fermat counterexample.

Of course, it’s impossible to give an actual example because
there are no solutions to a° + bP = cP! As a proxy, we can
consider the even more simple equation

y2=x(x—-1)(x+1)=x3—x.

It may recall the equation y? = x3 4 1 that we encountered
before. Both are examples of elliptic curves. Elliptic curves are
basically just fancy names for cubic equations in two variables.
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Elliptic curves give rise to counting problems (as I'll explain)
and hence to infinite series q + a(2)q + a(3)g® + - - -. For
y? = x3 — x, the series begins

q—2q5—3q9+6q13+2q17 _q25 _ 10q29_2q37”_ ]

A famous conjecture (known as the modularity conjecture, the
Taniyama—Shimura conjecture, the Shimura—Taniyama
conjecture, Weil’s conjecture, the Shimura—Taniyama—Weil
conjecture,. . .) predicted that these infinite series are all
modular forms.
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Goro Shimura and Ken Ribet, summer 1973
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Wiles’s essential contribution was to break open this conjecture
by finding a revolutionary method to prove modularity. He,
along with Taylor, proved the modularity of lots of elliptic curves
in 1994. A series of authors completed the proof of the
modularity conjecture in 1999. The method launched by Taylor
and Wiles has found numerous applications to other
Diophantine problems.
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My contribution was to show that if the counting problem is
modular, then the associated modular form can be shoe-horned
down into a space with no non-zero elements.

My work on this problem was done around 20 years ago. It
provided the motivation for Wiles to work on the modularity of
elliptic curves.

Kenneth A. Ribet Five fundamental operations



To conclude, | need to explain the counting problem for

y? = x3 — x. It will produce a number a(¢) for every prime
number ¢; this number becomes the coefficient of g in the
series for the curve. For example, a(5) = —2.

The remaining coefficients a(m) are calculated from the
prime-indexed coefficients a(ell) by a relatively uninteresting
combinatorial formula. Only the prime-indexed coefficients hold
interest.
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To calculate a(¢), we have to view y? = x3 — x as a congruence
modulo ¢. This just means systematically throwing out all
integers that are multiples of ¢. (Divide by ¢ and consider only
the remainders.) The only relevant xs and ys are the
0,1,2,...,¢—1. Out of the ¢2 possibilities for (x, y), count the
number of them that are solutions to y?> = x3 — x as a
congruence modulo ¢. Call this number C(¢). Then

a(t)=1¢— C(0).

For ¢ =5 and y? = x3 — x, the values 0, 1 and 4 for x give 0
mod 5 on the right-hand side, so there is only one y that
satisfies the congruence, namely 0. The values 2 and 3 for x
give 1 mod 4 and 4 mod 4 on the right-hand side; each of these
correspond to two possible values of y. Altogether there are 7
possible (x, y), so C(5) = 7 and a(5) = —2, as announced.
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