Modular degrees and congruence numbers for modular abelian varieties over \mathbf{Q}

Kenneth A. Ribet

UC Berkeley

Southern California Number Theory Day
May 15, 2010

To fix ideas, we focus on $J_{0}(N)$ over \mathbf{Q}. We can work instead with $J_{1}(N)$ or with the Jacobian of a Shimura curve - as long as we don't need the q-expansion principle.

When f is a newform of weight 2 on $\Gamma_{0}(N)$, Shimura's construction associates to f an abelian subvariety A_{f} of $J_{0}(N)$ and a quotient

$$
\iota^{\vee}: J_{0}(N) \rightarrow A_{f}^{\vee}
$$

dual to the inclusion ι of A_{f} into $J_{0}(N)$.
The kernel

$$
B_{f}:=\operatorname{ker} \iota^{\vee}
$$

is an abelian subvariety of $J_{0}(N)$ that serves as a sort of orthogonal complement to A_{f}.

We abbreviate, setting

$$
J=J_{0}(N), \quad A=A_{f}, \quad B=B_{f} .
$$

What is essential for us is that A and B are stable under the Hecke operators $T_{n}: J \longrightarrow J$ for $n \geq 1$. We could alternatively take A to be the sum of a family of different f 's as long as we took B to be the complement of A.
We are interested particularly in the finite group

$$
A \cap B,
$$

considered with its Hecke action and the natural action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ on the intersection.

A tremendously important case is that where A is a "strong" modular elliptic curve E over \mathbf{Q}. Then naturally $A=E=B$, and the intersection $A \cap B$ is $E[d]$, where $d \geq 1$ is the modular degree of E.

Let \mathbf{T} be the subring of End J generated by all Hecke operators T_{n}. Then \mathbf{T} is a free \mathbf{Z}-module of rank $\operatorname{dim} J$ that is naturally dual to the space of weight-2 cusp forms on $\Gamma_{0}(N)$ with Z-integral coefficients. It is natural to consider the ideal

$$
I_{d}=\operatorname{Ann}_{\mathbf{T}}(A \cap B)
$$

the subscript "d" serves to remind us that this ideal is associated with the modular degree.

Let $\mathbf{T}_{A}=\mathbf{T} /\left(\mathrm{Ann}_{T} B\right)$ be the image of \mathbf{T} in End A. Because I_{d} clearly contains the kernel of $T \rightarrow \mathbf{T}_{A}$ (i.e., $\mathrm{Ann}_{\mathbf{T}} B$), I_{d} is the inverse image in \mathbf{T} of an ideal \bar{I}_{d} of \mathbf{T}_{A}. When $A=E$ is an elliptic curve, \mathbf{T}_{A} is just \mathbf{Z}, and $\bar{I}_{d}=d \mathbf{Z}$.

Of course, I_{d} contains not just $\mathrm{Ann}_{\mathrm{T}} B$, but also its analogue with B replaced by A :

$$
I_{d} \supseteq I_{c}:=\mathrm{Ann}_{\mathbf{T}} A+\mathrm{Ann}_{\mathbf{T}} B .
$$

The ideal I_{c} is the congruence ideal associated to A (or its orthogonal complement). Again, I_{c} is the inverse image of an ideal \bar{I}_{C} of \mathbf{T}_{A}.
In the special case $A=E, \bar{I}_{c}=c \mathbf{Z} \subseteq \mathbf{Z}$ is the ideal generated by the "congruence number" for the modular form f giving E. This number counts congruences between $\mathbf{Z} \cdot f$ and the space of integral cusp forms in the same space as f that are Petersson orthogonal to f. Because $\bar{T}_{d} \supseteq \bar{I}_{c}$, we have $d \mid c$ in the elliptic curve case; one can say that the modular degree forces congruences.

It is sometimes fruitful to view I_{C} as the conductor of the ring extension $\mathbf{T} \hookrightarrow \mathbf{T}_{A} \times \mathbf{T}_{B}$, where \mathbf{T}_{B} is the analogue of \mathbf{T}_{A} with B replacing A.

Theorem

If N is prime, the ideals I_{c} and I_{d} coincide.
The proof begins by noting the inclusion that

$$
I_{d}\left(\mathbf{T}_{A} \times \mathbf{T}_{B}\right) \subseteq(\mathbf{T} \otimes \mathbf{Q}) \cap(\text { End } J)
$$

which implies $I_{d} \subseteq I_{C}$ whenever $(\mathbf{T} \otimes \mathbf{Q}) \cap($ End $J)=\mathbf{T}$.
Mazur's "Eisenstein ideal" article presents the stronger-looking equality End $J=\mathbf{T}$ in the prime-level case; the theorem then follows.

The essence of Mazur's proof is to show for arbitrary N that $(\mathbf{T} \otimes \mathbf{Q}) \cap($ End $J)=\mathbf{T}$ locally at rational primes $p \nmid N$, and also at the particular prime $p=N$ when N is prime.

Mazur's argument proves essentially instantly that $I_{d}=I_{C}$ away from the level. With more work, one (Agashe-R-Stein) gets:

Theorem

The ideals I_{c} and I_{d} coincide locally away from primes whose squares divide the level.

The proof channels arguments in Wiles's Annals article on Fermat to establish new cases of multiplicity one for the Jacobians $J_{0}(N)$:
Wiles looks at primes $p \mid N$ with $p^{2} X N$ and proves "multiplicity one" at p even if $J_{0}(N / p)$ is non-trivial. (In Mazur's article, p was N, and it was somehow important that $J_{0}(N / p)$ is trivial.)

In the elliptic curve case, c and d are integers with $d \mid c$, and the A-R-S theorem amounts to the inequality

$$
2 \operatorname{ord}_{p}\left(\frac{c}{d}\right) \leq \operatorname{ord}_{p} N
$$

when the right-hand side is ≤ 1. It would be interesting to find an upper bound for $\operatorname{ord}_{p}(c / d)$ that is valid even when p^{2} divides N.

Multiplicity One

The point of "multiplicity one" is to consider the kernels $J_{0}(N)[\mathrm{m}]$ for maximal ideals m of \mathbf{T}. For each m, there is an associated 2-dimension semisimple representation ρ_{m} of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ over \mathbf{T} / m whose determinant is the mod ℓ cyclotomic character (if $m \mid \ell$) and whose Frobenius traces are Hecke operators mod m . For "generic" $\mathrm{m}, \rho_{\mathrm{m}}$ is irreducible, and one proves that $J_{0}(N)[\mathrm{m}]$ is isomorphic to a non-empty direct sum of copies of the representation ρ_{m}. The number of copies of ρ_{m} in the sum is the multiplicity, which turns out typically to be equal to 1 .

For N prime, Mazur proved that the multiplicity is 1 for all "irreducible" m away from 2 and N; he then went on to prove multiplicity 1 both for those m dividing N and for those m such that ρ_{m} is reducible (Eisenstein).

In the early part of this decade, Kilford found examples of multiplicity > 1 in cases when N is prime and m has residue characteristic 2 . His smallest example occurs for $N=431$. More recently, Wiese, Emerton and others have explained these examples through a local failure of multiplcity 1.

Meanwhile, authors such as Gross, Ribet, Mazur-Ribet and Wiles have established multiplicity 1 in a plethora of cases by variants of Mazur's arguments.
A central component of the argument is to show that the dimension of $H^{0}\left(X_{0}(N)_{/_{\ell}}, \Omega^{1}\right)[\mathrm{m}]$ is ≤ 1 when ℓ is the residue characteristic of m . If $\ell=p$ is a divisor of N, the statement must be interpreted appropriately (and then proved!).

This same multiplicity-one statement for differentials in positive characteristic is behind the proof that $I_{c}=I_{d}$. Namely, one uses this multiplicity-one statement, Serre duality and Nakayama's lemma to show that $H^{1}\left(X_{0}(N), \mathcal{O}\right)$ is free of rank one over \mathbf{T} locally at the prime m. Because $H^{1}\left(X_{0}(N), \mathcal{O}\right)$ can be associated functorially to the Néron model for J, it is naturally a module for End J; we get easily that \mathbf{T} is saturated in End J locally at m .

Thus there is a link between multiplicity 1 for $J_{0}(N)[m]$ and the equality $I_{c}=I_{d}$ locally at m , but it appears that this link is rather weak because it stems from the fact that both statements arise from the same ingredient.

Observe especially that in the prime-level case we do have $I_{c}=I_{d}$ but might not have multiplicity 1 (at least when $\ell=2$).

I somehow failed to focus until recently on the following:

Proposition

Let m be a maximal ideal of \mathbf{T} for which $J_{0}(N)[\mathrm{m}]$ has dimension 2 . Then $I_{c}=I_{d}$ locally at m .

In the statement, we do not assume that ρ_{m} is irreducible and therefore do not know a priori that $\operatorname{dim} J_{0}(N)[\mathrm{m}]$ is even. In the reducible (Eisenstein) case, Mazur proved by elaborate arguments that $J_{0}(N)[\mathrm{m}]$ is indeed of dimension 2 when N is prime, but little seems to be known in the case where N is composite.

To prove the proposition is to show that if $I_{c} \subset I_{d}$ (strict inclusion) locally at m, then $J[m]$ has dimension >2. This is immediate at least in the case where I_{d} is locally \mathbf{T}, i.e., where $(A \cap B)[\mathrm{m}]=0$. If $I_{c} \subseteq \mathrm{~m}$, then both $A[\mathrm{~m}]$ and $B[\mathrm{~m}]$ must be non-trivial (and hence of dimension at least 2). Because $A[\mathrm{~m}] \oplus B[\mathrm{~m}]$ injects into $J, J[\mathrm{~m}]$ will have dimension ≥ 4.
It is fun to experiment with examples. For elliptic curves, the first case where the division $d \mid c$ is strict occurs at conductor 54. For the curve $E=54 \mathbf{b}$, we have $d=2, c=6$. The \mathbf{T}-module $E[3]$ cuts out an Eisenstein prime m in \mathbf{T} that contains the particular elements T_{3} and $T_{2}-1$. The non-triviality of $B[\mathrm{~m}]$ in this case can be traced back to the old part of $J_{0}(54)$, which is isogenous to a product of two copies of the elliptic curve $J_{0}(27)$.

Agashe's new observation is that the multiplicity-one hypothesis $\operatorname{dim} J[m]=2$ implies a structure theorem for the intersection $A \cap B:$
Theorem
If dim $J[\mathrm{~m}]=2$, then (locally at m), $A \cap B$ is free of rank 2 over T / I_{c}.

Since the annihilator of $A \cap B$ is I_{d} by definition, the theorem implies in particular that $I_{d}=I_{c}$ locally at m .
The proof is quite straightforward: it begins by expressing $A \cap B$ as the cokernel of the map that the surjection $A \times B \rightarrow J$ induces on the level of covariant Tate modules. This theorem will appear in an article by Agashe, Mladen Dimitrov and me.

