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After Serre’s article on elliptic curves was written

in the early 1970s, his techniques were generalized

and extended in different directions. In particular,

Serre and Swinnerton-Dyer began to study the mod `

representations of Gal(Q/Q) attached to the cusp

form ∆ of weight 12 on SL(2,Z).
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These representations weren’t always with us: It

was only in his 1967–1968 DPP seminar on modular

forms (“Une interprétation des congruences relatives

à la a fonction τ de Ramanujan”) that Serre proposed

the possibility of linking Galois representations to

holomorphic modular forms that are eigenforms for

Hecke operators. Almost immediately afterwards,

P. Deligne constructed the representations whose

existence was conjectured by Serre.
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If you want the full `-adic representations

of Gal(Q/Q) that are associated to a modular

form, then you need to understand Deligne’s

construction. A forthcoming book by Brian Conrad is

recommended. [“My book on Galois representations

and modular forms is still undergoing revisions. (It

is now shorter than it was before, with much better

proofs; if you have an earlier version, please burn it.)

The following link has been disabled.”] For mod `

representations, it’s enough to look in J1(Nl)[l].
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Recall that

∆ = q

∞∏
n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn, q = e2πiz.

For each prime `, let ρ` : Gal(Q/Q) → GL(2,F`)
be the mod ` representation associated with ∆. Then

ρ` is unramified at all primes different from `. If p is

such a prime and Frobp is a Frobenius element for p

in Gal(Q/Q), then the matrix ρ`(Frobp) has trace

τ(p) mod ` and determinant p11 mod `.
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These constraints determine ρ` up to isomorphism

once we agree to replace ρ` by its semisimplification

in the rare situation where it is not already simple.

Serre and Swinnerton-Dyer proved that the image

G` of ρ` is “as large as possible” except for an

explicit list of prime numbers `, namely 2, 3, 5, 7,

23 and 691.

5



Because the determinant of ρ` is the 11th power

of the mod ` cyclotomic character χ`, we have

G` ⊆ A` := {M ∈ GL(2,F`) | det M ∈ F∗
`
11 }.

We say that G` is as large as possible if G` =
A`. An equivalent condition is that G` contains

SL(2,F`). For this, there are two necessary and

sufficient conditions: (1) irreducibility of ρ`; (2)

divisibility by ` of |G`|.
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The group G` is reducible when ` = 2, 3, 5, 7, 619
and irreducible but of order prime to ` when ` = 23.

Note that ∆ is of weight k = 12. Looking at

the list of exceptional primes, we observe that 2,

3, 5, and 7 are small primes (they’re less than the

weight) and that 23 = 2k − 1. The prime 691
has become “famous” as the first numerator > 1
of a Bernoulli number: if

x

ex − 1
=

∑
Bn

xn

n!
, then

B12 = − 691
2·3·5·7·13.
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One can replace ∆ by a normalized cuspidal

eigenform of weight k, level N and coefficients that

are not necessarily rational integers. If f =
∑

anq
n

is such a form, then f |Tn = anf for n ≥ 1, and

the an are algebraic integers. Moreover the field

E = Q(. . . , an, . . .) has finite degree over Q; it is

either a totally real or a CM field.

While preparing this lecture, I decided that it

would already be interesting to stick with N = 1, so

the form f will be on SL(2,Z).
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Here, the only known cases where E = Q,

i.e., an ∈ Z, are the analogues of ∆ for weights

16, 18, 20, 22 and 26; these were treated by Serre

and Swinnerton-Dyer. They uncovered the example

of the mod 59 representation associated with the

form of weight 16: the projective image of G59 is

isomorphic to the exceptional group S4.

When the weight is 24, E = Q(
√

144169), as

some of us recalled on Wednesday while walking in

Custer National Forest.
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Suppose now that f is a normalized weight-

k cuspidal eigenform on SL(2,Z) and let O =
Z[. . . , an, . . .] ⊆ C be the ring generated by the

coefficients of f . Then O is a subring of finite

index in the ring of integers of E. The analogue

of the family (ρ`) is a set of representations

ρλ : Gal(Q/Q) → GL(2,Fλ), one for each maximal

ideal λ of O. Here we have written Fλ = O/λ. The

determinant of ρλ is the (k−1)st power of the mod `

cyclotomic character where ` is the characteristic of

Fλ. For p 6= `, the trace of ρλ(Frobp) is ap mod λ.
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Let Gλ be the image of ρλ. In 1975, I proved that

Gλ contains SL(2,Fλ) for all but finitely many λ.

Note that Gλ is a subgroup of

Aλ := {M ∈ GL(2,Fλ) | det(M) ∈ F∗
`
k−1 }

that maps via det onto F∗
`
k−1. Hence Gλ = Aλ if

and only if Gλ contains SL(2,Fλ).

Today’s theme is to revisit the proof from a

reasonably modern point of view while tacitly

contemplating questions of effectivity.

11



First consider the irreducibility of ρλ. Because of

the “almost all” situation, we can and will suppose

that k ≤ ` + 1. Assume that ρλ is reducible,

say of the form

(
α ∗
0 β

)
, where α and β are

characters Gal(Q/Q) → F∗
λ. Because α and β are

unramified outside `, each of these characters is a

power of the mod ` cylotomic character, say α = χn
` ,

β = χm
` . The integers n and m are determined

by the restriction of ρλ to the inertia group for p

in Gal(Q/Q).
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When f is supersingular at λ in the sense that we

have a` ≡ 0 mod λ, a theorem of Fontaine asserts,

in particular, the irreducibility of the restriction of ρλ

to the decomposition group for p in Gal(Q/Q).
In particular, of course, ρλ is (globally) irreducible.

Hence the reducible case is necessarily ordinary, i.e.,

non-supersingular.

For the theorem of Fontaine, and the next theorem

of Deligne, see B. Edixhoven, “The weight in Serre’s

conjectures on modular forms.”
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The theorem of Deligne in question is the one that

tells us (in the ordinary case) that the restriction of ρλ

to the decomposition group for p in Gal(Q/Q) has

an unramified 1-dimensional quotient. It follows that

α and β are (perhaps up to permutation) the trivial

character and the (k − 1)st power of the cyclotomic

character. This gives the congruence ap ≡ 1 + pk−1

mod λ for all primes p 6= `.
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Finally, an argument of Serre and Swinnerton-

Dyer shows that the numerator of Bk is divisible

by `: one compares f with the weight-k Eisenstein

series on SL(2,Z), whose pth Fourier coefficient is

1 + pk−1 and whose constant term is −Bk
2k .

Thus ρλ is irreducible for ` large and we know

explicitly what “large” means in this case.

If we had forms of level N > 1, we would still prove

that ρλ is irreducible for ` large, but the estimate for

“large” would be less tight.
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Next, think what happens if Gλ is irreducible

but of order prime to `. If the projective image

of Gλ is cyclic, then Gλ is contained in a Cartan

subgroup of GL(2,Fλ). This implies that ρλ

becomes reducible if we replace Fλ by a finite

extension of Fλ, but the argument that we have

given rules out this case except when ` is small or a

divisor of Bk. Hence the projective image is either

dihedral or one of the three exceptional groups S4,

A4, A5.
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The theorems of Deligne and Fontaine show that

the projective image of inertia at p has order either
`−1

gcd(k−1,`−1) or `+1
gcd(k−1,`+1). When ` is large relative

to k, these quotients exceed the orders all elements of

the exceptional groups. Hence these groups cannot

occur as projective images for large `.

17



Suppose that the projective group D = Gλ is

dihedral, so that it has a cyclic subgroup C of

index 2. The group D/C is then the Galois group of

a quadratic extension of Q. Because ρλ is ramified

only at `, this extension is ramified only at `. Thus

it is ramified at `, which implies that the projective

image of the inertia subgroup for ` in Gal(Q/Q) is

not contained in C. It follows that this image has

order 2: the elements of D not in C all have order 2.

The argument we have just given (with `± 1) rules

out this case for large `.
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Let’s focus in now on the case where Gλ is

irreducible and of order divisible by `. A theorem of

L. E. Dickson implies that Gλ ⊆ GL(2,Fλ) contains

(after a possible change of basis) the group SL(2, F )
for some subfield F of Fλ.

Because ` is bigger than k, a short argument

shows that Fλ is generated by the images of the ap

with p 6= `. Thus Fλ is generated by the traces of

the elements of Gλ. This suggests that Gλ contains

SL(2,Fλ). We aim to establish this fact.
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Fixing λ, we will simplify notation and write F
for Fλ, ρ for ρλ, G for Gλ. Note that G is a

subgroup of

A := {M ∈ GL(2,F) | det(M) ∈ F∗
`
k−1 }

and that G maps onto F∗
`
k−1 via the determinant.

We seek to show that G = A. This statement is

true if and only if G contains SL(2,F).
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Let G be the image of G in PGL(2,F). Let F
be an algebraic closure of F and let K be a subfield

of F. I claim that G is contained in PGL(2,K)
if and only if G is contained in GL(2,K). One

direction is obvious. For the converse, we assume

that G ⊆ F
∗ ·GL(2,K) and seek to show that G

lies in GL(2,K).
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The composite map

α : Gal(Q/Q) → G → F
∗ ·GL(2,K)/GL(2,K)

may be viewed as taking values in F
∗
/K∗, a torsion

abelian group whose elements have order prime to `.

It is unramified outside `. We want to that α is

trivial. For this, it suffices to show that α(σ) = 1 for

some σ ∈ Gal(Q/Q) whose image in Gal(Q(µ`)/Q)
is a generator of this cyclic group, i.e., for some σ

that is mapped to a generator of F∗
` by the mod `

cyclotomic character.
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It is elementary that α(σ) = 1 for all σ ∈ Gal
such that tr(ρ(σ)) is a non-zero element of K; in

particular, α(σ) = 1 if tr(ρ(σ)) happens to be a

non-zero element of F`.

In the non-supersingular case, let σ be an element

of the inertia group for p such that t = χ(σ)
generates Gal(Q(µ`)/Q) = F∗

`. By Deligne’s

theorem, tr(ρ(σ)) = 1 + tk−1. When ` is large

relative to k, this quantity is non-zero, as required.

The supersingular case is quite similar.
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To summarize: (1) G ⊆ GL(2,F); (2) tr(G)
generates F over F`; (3) G contains SL(2, F ) for

some subfield F of F. Further, G has the property in

the claim: for K ⊆ F, G is contained in PGL(2,K)
if and only if G is contained in GL(2,K).

Assuming that ` is at least 5, we will deduce that

G contains SL(2,F), as desired, by invoking more

results of Dickson.
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Let L be a finite extension of F inside F for which

[L : F`] is even. Then G ⊆ PSL(2, L). By Dickson’s

theory, we have (after a change of basis) either

G = PSL(2,K) or G = PGL(2,K), for some

subfield K of L. In both cases, G ⊆ PGL(2,K).
By the claim, G ⊆ GL(2,K).
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Because F is generated by tr(G), we get F ⊆
K. Since G contains PSL(2,K), F

∗ · G contains

SL(2,K). Taking commutators, we get that the

commutator subgroup of G contains SL(2,K) and

hence SL(2,F). Comparing with the original set-up

in which G was a subgroup of

A := {M ∈ GL(2,F) | det(M) ∈ F∗
`
k−1 }

that maps onto F∗
`
k−1, we see that G = A.
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