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In talking about elliptic curves, one can do no better than to
quote the Yale mathematician Serge Lang (1927–2005), who
began one of his many monographs as follows:

It is possible to write endlessly on elliptic curves. (This
is not a threat.)
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Although I have no intention of talking endlessly today, my goal
is to recall how elliptic curves intervened in the proof of
Fermat’s Last Theorem to discuss some subsequent
developments.

Elliptic curves are initially cubic equations such as

y2 = x3 + 1, y2 = x3 − x , y2 = x3 + x .

They become curves when we draw their graphs.
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In antiquity, elliptic curves arose in connection with Diophantine
problems. (Diophantus of Alexandria lived in the third
century AD.) For a simple example, we might consider solutions
to y2 = x3 + 1 when x and y are integers (or whole numbers).
For x , y ≥ 0, there are the solutions 12 = 03 + 1 and
32 = 23 + 1. If we allow y to be negative, we get a few more
solutions by flipping the sign of y . If we allow x to be negative
as well, then we get the genuinely new solution 02 = (−1)3 +1.

Are there any more solutions with x and y integral?

In turns out in fact that there are no other solutions even if we
allow x and y to be fractions (rational numbers).
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The embarrassing fact is that problems like this are still hard,
even 1700 years after Diophantus.

Indeed, if a and b are integers, it is nowadays not hard to figure
out whether there are finitely many or infinitely many solutions
to y2 = x3 + ax + b in rational numbers. However, the methods
that are used do not yield an algorithm that decides between
“finite” and “infinite” in a predictable amount of time.
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Fortunately, a tremendous amount is known about the set of
solutions to y2 = x3 + ax + b in rational numbers.

A basic fact is that this set is actually an abelian group! To
make up the group structure, it is necessary to add to the set of
points one additional point—the point at infinity. This point is
the one extra point that we discover when we consider
solutions to y2 = x3 + ax + b in the projective plane, not just in
the regular (affine) plane.

If one considers this extra point to be the 0-point of the abelian
group, we get a group structure by declaring that three points
P, Q and R sum to the 0-point whenever they are distinct and
all lie on a straight line.
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Equivalently, to get the sum M3 of two distinct points M1
and M2, draw a line through them and find the three points
where this line intersects the elliptic curve. Two of the three are
M1 and M2; the third (P, in this diagram that I grabbed off the
web) is −(M1 + M2) in the group law.
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The process of adding points together is called the chord and
tangent process. Tangents arise if you add a point to itself: the
chord connecting two close points on the curve becomes a
tangent line in the limiting case when the points coalesce.

A fundamental theorem of L. E. Mordell (1922) states that the
group of rational points on an elliptic curve is finitely generated
in the sense that there’s a finite set of points P1, . . . ,Pt such
that each point on the curve with rational x and y can be gotten
from this initial stock of points by repeated application of the
geometric chord and tangent process.

What we don’t have is a finitely terminating algorithm that
inputs rational numbers a and b and outputs points P1, . . . ,Pt
that generate all rational points on y2 = x3 + ax + b.
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Perhaps because the group of rational points on an elliptic
curve is so intractable, one is led to consider the easier problem
is counting the number of solutions to equations
y2 = x3 + ax + b modulo prime numbers. The idea is the
following: We fix a and b and let p be a (varying) prime number.
Instead of considering y2 = x3 + ax + b as a literal equation,
we think of it as defining a congruence modulo p and ask for
the number of solutions of this congruence.

The number is finite because there are only a finite number of x
and y modulo p. In fact, since there are only p possibilities for
each of x and y , the number of solutions to the congruence is
at most p · p = p2. (If we want to count the point at infinity, we
should add 1 to get the total number of projective points.)
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One might imagine that the number of solutions is close to p2,
but in fact a theorem of H. Hasse (c. 1937) states that the
number is approximately p. If Np is the number of (affine)
solutions to y2 = x3 + ax + b mod p, then we have

|Np − p| ≤ 2
√

p.

It is traditional to define an error term ap by the equation

Np = p − ap,

so that ap is an integer satisfying |ap| ≤ 2
√

p.
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For an especially nice example, consider the elliptic curve
y2 = x3 − x and take p to be a prime number other than 2 or 3.
We have

p 3 5 7 11 13 17 19 23 29 31 37 41 · · ·

ap 0 −2 0 0 6 2 0 0 −10 0 −2 10 · · · .

The table suggests that the error term is 0 for primes that are 3
mod 4 and is twice an odd number for the primes that are 1
mod 4.
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The first observation can be explained by a relatively
elementary argument. The second is explained by Gauss’s
beautiful formula for the error term ap when p is 1 mod 4. Such
primes can be written r2 + t2 where r and t are positive
integers; r and s are unique once we agree that r will be odd
and s will be even. What Gauss showed is that ap = ±2r ; the
sign is determined by the requirement that ±r + s − 1 should
be divisible by 4.

For example, 29 = 52 + 22, while 41 = 52 + 42. To make
±5 + 2− 1 be divisible by 4, we take the minus sign; to make
±5 + 4− 1 be divisible by 4, we take the plus sign.
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That there’s an explicit recipe for the error terms ap as p varies
turns out to be an accident that can be traced to the extra
symmetry of the equation y2 = x3 − x . For random integers a
and b, the elliptic curve y2 = x3 + ax + b has no symmetry and
there is no explicit formula for the error terms ap.

On the other hand, the link between elliptic curves and modular
forms (established in the 1990s) provides an amazing
far-reaching generalization of Gauss’s formula.
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The modularity of elliptic curves was first stated as a conjecture
in the middle of the last century. There is some dispute as to
the origin of the conjecture, but there is no doubt that Goro
Shimura was one of the first people to understand that every
elliptic curve would be linked to modular forms.

Shimura’s “The Map of My Life” was published several
weeks ago. It’s a slim volume that’s about Shimura’s
early life in Japan and about his mathematical career
in Princeton.
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The proof that elliptic curves are modular was initiated in
Andrew Wiles’s 1995 “Fermat” article and completed (for a
large class of curves) in the companion article by Taylor
and Wiles.
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Over the next several years, the class of elliptic curves for
which modularity could be proved was enlarged in a series of
articles that culminated in the 2001 article “On the modularity of
elliptic curves over Q : Wild 3-adic exercises” by Christophe
Breuil, Brian Conrad, Fred Diamond, and Richard Taylor.
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The idea of modularity is that there is a stock of special
complex functions—modular forms—that are defined in a
branch of mathematics that might not seem to be related to
number theory. The modular forms are described by formal
power series (Fourier series)

f = c1q + c2q2 + c3q3 + · · ·

in which c1 = 1 and the other coefficients are complex
numbers. If it so happens that the cs are all integers, then there
is an associated elliptic curve y2 = x3 + ax + b whose
arithmetic is linked to f via the relation cp = ap for all prime
numbers p.

The conjecture, now a theorem, is that the process could be
reversed: for each elliptic curve there is a form f so that the cp
for f are the same numbers as the ap for the curve.
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When we study elliptic curves, we often list them in order of
their conductor, a positive integer whose divisors are the prime
numbers p for which the equation defining the curve leads to a
singularity mod p. For such p, ap cannot be defined by the rule
that I explained, and there’s an alternative definition that yields
one of the three values −1, 0, +1 for ap.

In any event, the smallest possible conductor is 11. For the
curves with this conductor, the associated modular form is the
infinite series obtained by expanding out the product

q
∞∏

m=1

(1− qm)2(1− q11m)2.

In this (rather special) case, the product can be viewed as
yielding a formula for the ap, but the formula is different-looking
from the formula that Gauss gave.
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Before recalling the relation between modularity and Fermat’s
Last Theorem, we should pause to review the history of this
result.

The story starts with Pierre de Fermat’s marginal note to the
effect that an + bn = cn has no solutions in non-zero integers a,
b and c when n is an integer ≥ 2. This assertion was actually
proved by Fermat himself for n = 4; Fermat proved that a fourth
power plus a square can never be a fourth power, which is
more than enough to prove what is wanted for n = 4.
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In the 17th century, Euler treated the case n = 3 by a method
that is recounted in many textbooks; see for example “A
Classical Introduction to Modern Number Theory” by K. Ireland
and M. Rosen. Both Fermat and Euler implicitly considered
elliptic curves!
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Once one knows the cases n = 4 and n = 3, one can
concentrate on the case n = r , where r is a prime number ≥ 5.

There is a well known false proof for this case that relies on the
implicit assumption that cyclotomic integers (expressions
involving e2πi/r as well as ordinary integers) factor uniquely in
the same way that ordinary whole numbers factor. Unique
factorization is true only for primes < 23. Kummer set everyone
straight by showing that a modified form of unique factorization
is all we need and by giving a simple criterion to decide
whether or not this weak unique factorization is true for r . It’s
true, for example, for all primes less than 37, but false if r = 37.
We believe that it’s true for about 67% of all primes, but no one
knows how to prove this!
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The modern subject of algebraic number theory grew out of
attempts to prove FLT by modifications of Kummer’s
techniques. Two books by Paulo Ribenboim make good
reading: one is his “13 Lectures on Fermat’s Last Theorem”
and the other is “Fermat’s Last Theorem for Amateurs.”

It seems to be abundantly clear that the techniques of algebraic
number theory alone are not sufficient to prove the Theorem,
but people keep trying. I receive many manuscripts and e-mail
messages from amateur mathematicians who believe that they
have found direct proofs of FLT.
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The proof that works—the only one that we have so far–arose
as follows. If ar + br = cr (where a, b and c are non-zero, and r
is a prime ≥ 5), G. Frey promoted the idea that it should be
possible to prove that no modular form could be associated with
the elliptic curve

y2 = x(x − ar )(x + br ).

After Frey’s idea has circulated for some months, I proved
(in 1986) that his idea was indeed correct.

Once the modularity of elliptic curves was established, we had
a proof of Fermat by contradiction: since a solution to Fermat’s
equation would give a non-modular elliptic curve, there are no
solutions to Fermat’s equation because there are no
non-modular curves.
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In the 15 years since the proof of FLT was completed (Fall,
1994), we have seen increasing generalizations of and
applications of the modularity techniques that Taylor and Wiles
pioneered in their article.

As we stressed in the 1990s, what Taylor and Wiles did in their
article was to link modular forms to Galois representations.
Since elliptic curves are tightly associated with Galois
representations, it is nearly a tautology that modular forms are
linked with elliptic curves whenever they are linked with the
Galois representations that one attaches to elliptic curves.
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Basically, Galois representations are all about symmetry. When
I thought about explaining things that way, I remembered that
there’s a book by Avner Ash and Rob Gross that attempts
exactly this approach.

Lots of books have been written about Fermat’s Last Theorem.
This one is written for a general reader and tries to do justice to
the actual proof.
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Maybe it’s fruitful to give the general idea. We need to introduce
some fields, systems of numbers that are closed under
addition, subtraction, multiplication and division (by non-zero
numbers). The set of rational numbers forms a field, Q. The set
of complex numbers forms a field C. In between them is the
field of algebraic numbers, Q. (A number is algebraic if it’s a
root of a a non-zero polynomial with rational coefficients.)

The Galois group of Q is the group G of symmetries of the field
Q. This group is infinite and fear-inducing. People study it by
looking at finite images of G.

In the old days (starting with Galois and running through the
mid-20th century) people explored G by starting with a
polynomial like x4 − 3x2 + 2x + 1 and looking at the smallest
field that contains all the roots of the equation in Q. Taniyama,
Shimura, Serre, Tate and others stressed the importance of
considering objects other than polynomials—things like elliptic
curves.
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If you take an elliptic curve and fix an auxiliary prime number `,
you end up with a finite image of G inside a group of 2× 2
matrices, whose entries are integers mod `. The association
that yields a matrix for each symmetry in G is a Galois
representation; it’s the mod ` representation attached to the
curve.

What is new is that you don’t get finite images of G by starting
with a polynomial and looking at its roots. Instead you start with
an object coming from algebraic geometry and look at the
symmetries of a finite set that’s associated with the object.
There’s a famous 1967 article of Shimura that studies the
mod ` Galois representations attached to the elliptic curves of
conductor 11 that I mentioned before.
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The proof of Fermat’s last theorem leverages the fact that the
various numbers ap mod ` are visible from the mod ` Galois
representation attached to an elliptic curve. If there’s a modular
form f whose prime-indexed coefficients agree with the ap
mod `, we say that the representation is modular.

When Wiles announced his proof in 1993, he had at his
disposal at theorem of Langlands to the effect that the mod 3
Galois representations attached to elliptic curves are all
modular. The Taylor–Wiles article and its successors parlayed
this input into the conclusion that elliptic curves are modular.
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There’s an increasingly sophisticated technology that enables
one to prove that “big things” are modular if one knows that little
pieces of the big things are modular. The buzzword for this
technique is “relative modularity”; relative modularity is an
outgrown of Taylor–Wiles.

Amazingly, there’s a companion technique that tends to prove
that the little pieces are modular. I’m thinking of the recent work
by Khare and Wintenberger that establishes the modularity of
mod ` representations like those coming from elliptic curves.
How do they do this—you can’t get something from nothing?!

Their work builds very elaborate bridges from the initial starting
point back to a representation that is known already to be
modular. It’s as is Langlands’ theorem about mod 3
representations is a sourdough starter that has enabled bakers
around the world to make new bread.
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