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For the J. Herbrand centennaire, I will revisit a subject that I
studied when I first came to Paris as a mathematician, in
1975–1976. At the time, I was working on a problem that was
posed to me by J-P. Serre, who encountered a variant of the
problem in connection with the Ramanujan τ -function (“Une
interprétation des congruences relatives à la fonction τ de
Ramanujan”).

In my work, I explained how to construct, using modular forms,
unramified extensions of cyclotomic fields whose existence I
believed to be well known.

I realized only in discussions with Coates and Serre that the
extensions that I constructed had been known only
conjecturally. My construction provided the first proof that they
existed.
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I learned around the same time that my construction provided a
converse to a theorem of Herbrand. In “Cyclotomic Fields,”
Lang provided a proof of Herbrand’s theorem and mentioned
that I had proved the converse. I am deeply grateful that my
name is associated with that of Herbrand.

Not long after 1976, my method was adapted by Mazur and
Mazur–Wiles to prove the “Main Conjecture” of Iwasawa theory.

Some years later, a radically different proof of the Main
Conjecture was given by Thaine, Kolyvagin and Rubin.
Because their proof was simpler than the original, the modular
forms technique received less attention than before.

In recent times, however, it has re-surfaced in new contexts.
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Presentation of the Problem

Start with a number field K : this is a finite extension of Q. We
view K as a subfield of the field Q of all complex algebraic
numbers.

Algebraic number theory began with the study of unique
factorization—and its failure—in the ring of integers OK of K .

The extent to which unique factorization fails is measured by a
finite group CK , the class group of K . This group may be
defined by taking the group of fractional ideals of K , i.e., the
free abelian group on the set of maximal ideals p of OK, and
dividing by the group of principal fractional ideals.
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Let H be the maximal abelian unramified extension of K in Q
(the Hilbert class field of K ). The Artin map of class field theory
furnishes an isomorphism

CK
∼→ Gal(H/K ), p 7→ Frobp .

Here, Frobp is the Frobenius element of the Galois group that
corresponds to the prime p of K .
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The Artin isomorphism, in particular, enables us to view
CK ≈ Gal(H/K ) as a quotient of the abelianization
of GK = Gal(Q/K ).

Equivalently, the abelian group Hom(CK ,C∗) dual to CK
becomes a subgroup of the group Hom(GK ,C∗) of continuous
characters of the Galois group of K .

The subgroup in question is the group of unramified characters
of the Galois group GK . As such, it can be viewed as the first
example of a Selmer group.
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In general, Selmer groups are tough nuts to crack. Much is
known about the class groups CK , but it would not be out of
place to say that already these Selmer groups present
mysteries to us. For example, it is unknown whether or not
there are infinitely many quadratic fields K for which CK is
trivial.

Nevertheless, partial information about groups CK can often be
extracted from analytic formulas that are related to the
Dedekind zeta function

ζK =
∏
p

(1− Np−s)−1, <s > 1.

The function ζK may be continued analytically to a
meromorphic function on the complex plane with a simple pole
at s = 1 and no other poles. The residue of the pole is given by
a formula that involves the class number hK = #CK , as well as
invariants derived from the unit group O∗K of K .
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The residue also involves various powers of π. As Serre has
stressed, it is cleaner to use the functional equation of ζK and
look at its behavior around s = 0 instead of s = 1. This tends to
lead to simpler formulas!

If K is an abelian extension of Q and K + = K ∩ R is the real
subfield of K , then the unit groups of K and K + are sufficiently
alike that one obtains a very useful formula for the ratio

h−K := hK/hK +

between the class numbers of K and K +, which is called the
first factor of hK . (The second factor is then h+

K = hK + .)

This is especially true if K = K +.
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When K = Q(µp) is the field of pth roots of unity (p > 3, say),
we obtain in particular the concrete expression

h−k = 2
p−3

2 p
∏
ε

L(0, ε)

expressing the “first factor” of the class number of K in terms of
finite character sums. In this formula, the product runs over the
odd complex-valued characters of the Galois group

∆ = (Z/pZ)∗ = Gal(K/Q),

i.e., those characters ε satisfying ε(−1) = −1. The L-value,
obtained by analytic continuation, is simply

L(0, ε) =
−1
p

∑
a mod p

ε(a)a.
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Kummer

The field K = Q(µp) is perhaps the birthplace of modern
number theory. Recall that Kummer proved Fermat’s Last
Theorem for exponent p whenever the prime p is regular in the
sense that hK is prime to p.

Further, he proved that hK = h−K h+
K is prime to p if and only if

h−k is prime to p. In other words: if p divides h+
K = hK + , then p

divides h−k as well.
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Kummer’s criterion states that p is regular if and only if p
divides the numerator of none of the Bernoulli numbers B2, B4,
B6,. . . , Bp−3. It derives from a mod p relation between the
factors L(0, ε) and Bernoulli numbers.
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To see how Kummer’s criterion is related to our formula for h−K ,
we view the characters ε as taking values in Q∗p instead of C∗.
Also, we write these characters as odd powers of the standard
Teichmüller character ω whose mod p reduction is the identity
map ∆ = (Z/pZ)∗ → (Z/pZ)∗. The term 2

p−3
2 pL(0, ω−1) is a

p-adic unit, while the remaining factors L(0, ε) in the product
for h−k are p-adic integers.

These factors may be written L(0, ωk−1) for k even,
2 ≤ k ≤ p − 3. A simple congruence due to Kummer proves
that p divides L(0, ωk−1) if and only if p divides the Bernoulli
number Bk .
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To summarize: p divides hK if and only p divides h−k , and p
divides h−k if and only if p divides one of the L(0, ωk−1). Finally,
p divides a given L(0, ωk−1) if and only if it divides the
corresponding Bernoulli number Bk .

Assembling this information, we see that p is regular if and only
if it divides none of the Bk and irregular if and only if it divides at
least one of them.
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Galois action

Structually, p is regular if and only if the p-Sylow subgroup A of
the class group of Q(µp) is zero. The p-primary torsion abelian
group A is naturally a Zp-module. Further, it carries a functorial
action of the Galois group ∆ = Gal(K/Q) = (Z/pZ)∗.

Canonically,
A =

⊕
ε

A(ε),

where A(ε) is the subgroup of A on which ∆ acts as ε; the direct
sum is over the Z∗p-valued characters ε of ∆.
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By the middle of the last century, a tremendous amount of
information about the components A(ε) had been amassed.

Herbrand proved that A(ω) vanishes and also, for k = 2, 4,. . . ,
p − 3, that A(ω1−k ) is annihilated by the p-adic integer
L(0, ωk−1). In particular, if L(0, ωk−1) is a p-adic unit (i.e., if p
doesn’t divide Bk ), then A(ω1−k ) = 0.

Leopoldt proved for odd characters ε that the vanishing of A(ε)
implies the vanishing of A(ωε−1); this statement refines
Kummer’s implication p|h+ =⇒ p|h−k .
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The odd part of A decomposes as the direct sum⊕
A(ω1−k ), k = 2,4, . . . ,p − 3.

Meanwhile, the order of the odd part A− of A is the “p-part” of
the integer h−K , which decomposes as the product of terms
L(0, ωk−1).

Is the decomposition of the order of the group A− a reflection of
the decomposition of A− itself?
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Despite the suggestive theorem of Herbrand to the effect that
the individual odd eigenspaces of A are annihilated by the
corresponding individual L-values, there is no a priori
relationship between the direct sum decomposition of the odd
part of A and the product decomposition of its order!

However, such a relationship was predicted by Iwasawa theory
and established in the early 1980s by Mazur and Wiles.
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A theorem of Mazur–Wiles

For each k, the order of A(ω1−k ) is the largest power of p
dividing L(0, ωk−1).

Because the two numbers being compared for each k are equal
in the large (i.e., after multiplying together the terms of all k ), to
prove the above statement, one can:

Prove, for each k , that the p-part of L(0, ωk−1) divides the
order of A(ω1−k ), or
Prove, for each k , that the order of A(ω1−k ) divides the
p-part of L(0, ωk−1).
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The first method, which amounts to showing that an eigenspace
of a class group is “big,” goes back to my 1976 construction of
unramified extensions. This is the method of Mazur and Wiles.

In my original article, I proved only a mod p statement: if
L(0, ωk−1) is divisible by p, then A(ω1−k ) is nontrivial. To get the
full theorem, Mazur–Wiles consider together all the fields
Q(µpn ) (n ≥ 1) and use the tools of Iwasawa theory.
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The second method, due to Thaine and Kolyvagin, is explained
by K. Rubin in his appendix to Lang’s “Cyclotomic Fields.”
Using the language of Euler systems, one shows that ideal
class groups are “not too big” by exhibiting many principal
ideas. This is also the principle behind Stickelbeger’s theorem!
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The main idea of my 1976 article is to use the hypothesis
p|L(0, ωk−1) to construct a reducible 2-dimensional mod p
representation of Gal(Q/Q) that appears as an extension of the
1-dimensional representation with character ωk−1 by the
1-dimensional representation with trivial Galois action. This
extension gives rise to an element of

H1
(

Gal(Q/Q),Fp(ω1−k )
)
↪→ Hom(Gal(Q/K ),Fp)(ω1−k ).

One proves by local arguments that this element is an
unramified homomorphism and thereby obtains the
non-triviality of A(ω1−k ).
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The method is quite flexible, but one needs some way of
constructing the representation. Basically, what’s required is to
prove the existence of a GL(2)-cusp form that’s congruent
mod p to the Eisenstein series whose constant term is
congruent to the number L(0, ωk−1) (which is 0 mod p by
hypothesis). One can do this within the realm of modular forms
(my method), think geometrically about modular curves (Wiles
et. al.) or work with cohomology (Harder, . . . ).
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As I mentioned at the outset, the upper-bound method of
Thaine and Kolyvagin seems more elementary than the
lower-bound method of modular forms and Galois
representations.

However, in contexts where there is no a priori formula for the
order of the class group (or a Selmer group analogue), both
methods (upper and lower bounds) are likely to be required if
one wants to calculate the order.
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For example, let E be an elliptic curve over Q, and let L(E , s)
be the L-series of E . Suppose that L(E ,1) is non-zero. Then
Kolyvagin proved that E(Q) is finite and moreover that the
Shafarevich-Tate group X(E/Q) is finite as well. Because the
Mordell–Weil group E(Q) is finite, the group X is essentially a
Selmer group.

The conjecture of Birch and Swinnerton-Dyer predicts an
equality of the shape

#(X(E/Q))
?
=

L(E ,1)

Ω

#(E(Q))2∏
` w`

where Ω is a period and the w` are local Tamagawa numbers
(one for each prime `, almost all equal to 1). Kolyvagin showed
that the left-hand side divides the product of the right-hand side
and a modest fudge factor. To prove something close to the
desired equality, one must complement Kolyvagin’s upper
bound by a lower bound.
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C. Skinner and E. Urban expect to obtain lower-bound type
information by a method that is inspired by the method use to
bound class groups from above. Beginning with an elliptic curve
and congruences between Eisenstein series and cusp forms on
U(2,2), they obtain 4-dimensional Galois representations that
lead to non-trivial elements of Tate–Shafarevich groups.
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