
Math 250A Professor K.A. Ribet
Final Exam December 13, 2001

Question 0 was worth for 0 points. The other questions will count for 6 points each. The
maximum possible score on this exam will be 42.

0. Name a French mathematician who died as the result of a duel.

I asked this question once before, on an exam for our undergraduate Galois theory course
(Math 114). When I asked the question, I misspelled “duel” as “dual”; some of the students
made fun of me for this. Also, I worded the question in such a way that I had Galois dying
at the duel. However, I was told today at the MSRI that he died the next day as a result
of wounds that he got at the duel.

1. Let A be a normal subgroup of order p of a finite p-group G. Prove that A is contained
in the center of G.

The group G acts on A by conjugation via a homomorphism G : Aut A. The target group
has order p − 1, while the source group has p-power order. Thus the homomorphism is
trivial—everything in G is mapped to the identity automorphism. Thus A is in the center
of G, as required.

2. In a non-abelian group of order 55, find the number of elements of order n for n = 1,
5, 11, 55. Are there non-abelian groups of order 55?

There are no elements of order 55; if there were, the group would be cyclic, hence abelian.
There is one element of order 1: the identity. There is precisely one 11-Sylow subgroup
of the group because the number of 11-Sylows divides 5 and is congruent to 1 mod 11.
Hence there are 10 elements of order 11. It follows that the number of elements of order 5
is 55 − 1 − 10 = 44. This statement is equivalent to the fact that there are 11 5-Sylow
subgroups of the group, which we could have seen otherwise. To construct a non-abelian
group of order 55, we should take a semi-direct product. The idea is that a group of
order 5 can act non-trivially on a group of order 11 since the group of automorphisms of
a group of order 11 has order 10 and thus has some elements of order 5. A good exercise,
which I haven’t done, is to calculate the number of non-abelian groups of order 55, up to
isomorphism.

3. Let F be a finite field, and set q = #(F ). For each d ≥ 1, let fd ∈ F[X] be the
product of the monic irreducible degree-d polynomials over F. Show, for each n ≥ 1, that

Xqn

−X =
∏
d|n

fd.

I haven’t yet graded this question yet; in fact, I’m about to grade it. I anticipate that
there will be some question about what information it’s legitimate to use in your solution.
What’s clear to me going in is that the polynomial Xqn

−X has derivative −1; hence, it



cannot be divisible by the square of any non-constant polynomial. Accordingly, when we
factor it as a product of irreducible polynomials, each polynomial in the product occurs
only once. Thus it suffices to show that an irreducible polynomial f(x) divides Xqn

−X
if and only if its degree divides n. Let F be an algebraic closure of F. As explained on
page 245 of our text, the roots of Xqn

−X in F form a field F′ of degree n over F. (Thus
F′ has qn elements.) Suppose that f(x) is an irreducible polynomial that divides Xqn

−X,
and let α be a root of f(x) in F. Then α ∈ F′, which implies that F(α) is a subfield
of F′. Hence [F(α) : F] divides n. Since this field degree is the degree of f , we get that
the degree of f divides n. Conversely, suppose that d, the degree of f , divides n and let α

be a root of f in F. Since F(α) has degree d over F, all elements of F(α) satisfy Xqd

−X.
In particular, α satisfies this polynomial, which implies that f(X) = Irr(α,F, X) divides
Xqd

−X. This latter polynomial is a divisor of Xqn

−X.

4. Let K/k be a finite Galois extension. Set G = Gal(K/k) and let H be a subgroup of G.
Express the group of field automorphisms Autk(KH) as a quotient of a subgroup of G.

Let F = KH . An automorphism of F is the restriction to F of an automorphism of K.
(Maps F → K can be extended to maps K → K, but these latter extensions have images
in K.) Let g be an automorphism of K (tacitly assumed to be the identity on k). Then g
maps F , which corresponds to the subgroup H of G, to the field gF , which corresponds to
gHg−1 under the Galois correspondence. We thus have gF = F if and only if gHg−1 = H,
i.e., if and only if g ∈ N(H), where N(H) is the normalizer of H. Thus Autk(F ) is a
quotient of N(H). A g acts as the identity on F if and only if g belongs to H. Hence
Autk(F ) = N(H)/H.

5. Let p be a prime number different from 2, and let ζ be a complex pth root of 1 (ζ 6= 1).
Set α = ζ + ζ−1. Show that Q(α) is a Galois extension of Q and determine the degree
[Q(α) : Q]. When p = 7, calculate Irr(α,Q, X).

As we discussed in class, Q(ζ) is a Galois extension of Q whose degree is p − 1. The
Galois group of the extension is canonically (Z/pZ)∗, a cyclic group of order p − 1. In
the dictionary between elements of (Z/pZ)∗ and automorphisms of Q(ζ), the number
i mod p corresponds to the automorphism that sends ζ to ζi. Since Q(α) ⊆ Q(ζ), Q(α)
is a cyclic extension of Q of degree dividing p − 1. The degree is the number of distinct
conjugates alphai := ζi + ζ−i of α = ζ + ζ−1. Let us calculate the number of distinct αi.
Certainly αi depends only on the image of i in (Z/pZ)∗/{±1}; i.e., αi = α−i. Conversely,
suppose αi = αj , which is to say that ζi + ζ−i = ζj + ζ−j . We can suppose that we have
1 ≤ i, j ≤ p−1 for definitiveness. An important fact here is that the numbers ζ, ζ2, . . . , ζp−1

are linearly independent over Q. Indeed, a linear dependence among them would yield on
division by ζ a linear dependence among 1, ζ, . . . , ζp−2, which would contradict the fact
that ζ has degree p− 1 over Q. The important fact implies that i = ±j, which is enough
to show that there are (p− 1)/2 different αi. Hence Q(α) has degree (p− 1)/2 over Q.

To find the minimal polynomial of α for p = 7 is a computation that is either annoying or
amusing, depending on your mood and personality. I did the computation in preparation



for a lecture last month, but I didn’t have time to present it in my lecture. The idea is
to start with the minimal polynominal for ζ and to divide it by the middle power of ζ so
that ζ and ζ−1 occur in a balanced way:

0 = ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 =⇒ 0 = (ζ3 + ζ−3) + (ζ2 + ζ−2) + (ζ + ζ−1) + 1.

We have to write each of the terms in parentheses on the right-hand side as a polynomial
in α = ζ +ζ−1. Since α2 = ζ2+2+ζ−1, ζ2+ζ−2 = α2−2. Also α3 = ζ3+3(ζ +ζ−1)+ζ−3,
so ζ3 + ζ−3 = α3 − 3α. Thus

0 = α3 − 3α + α2 − 2 + α + 1 = α3 + α2 − 2α− 1.

Your mileage here may vary—I may have screwed up this computation, which I’m doing
directly onto the screen. On the other hand, I just used a computer algebra system to
compute the discriminant of x3 + x2 − 2x− 1; the discriminant is 49, so I’m actually now
fairly confident that I got the right answer.

6. Let S be a multiplicative subset of a commutative ring A. Let I be the set of ideals
of A that contain no element of S. Show that each maximal element of I is a prime ideal
of A.

This was a homework problem, I believe. I believe also that I sketched or wrote out a
solution based on the correspondence between ideals of A and ideals of S−1A. Let’s try
to do this directly. Take a maximal element I ∈ I and suppose that it’s not prime. Then
there are x, y ∈ A with x 6∈ I, y 6∈ I, but xy ∈ I. The ideal (x) + I is bigger than I so
must contain an element s of S. Similarly, (y) + I contains some s′ ∈ S. Thus the ideal
J :=

(
(x) + I

) (
(y) + I

)
contains ss′ ∈ S. However, it is clear that we have J ⊆ I because

xy ∈ I.

7. Suppose that A is an abelian group with the following extension property: If N is a
subgroup of an abelian group M and ϕ : N → A is a homomorphism, there is a homo-
morphism Φ: M → A that extends ϕ. Show that A is a divisible abelian group: for each
a ∈ A and n ≥ 1, there is a b in A so that nb = a.

Given a ∈ A, we define ϕ : Z → A so that 1 7→ a. We consider Z as a subgroup of Q (the

additive group of rationals) and choose Φ: Q → A extending ϕ. We can take b = Φ
1
n

;
then nb = a.


