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Introduction

Let p and q be distinct primes. The old part of Jo(pq) is the abelian subvariety
A + B of Jo(pq) generated by the images

A = Image(Jo(p)2 α→ Jo(pq)), B = Image(Jo(q)
2 β→ Jo(pq))

of the two indicated degeneracy maps. Here, Jo(N) denotes the Jacobian
Pico(Xo(N)) of the standard modular curve Xo(N), for each integer N ≥ 1.
Also, we have written Jo(p)2 for the product Jo(p) × Jo(p), and have used
analogous notation for Jo(q)

2. The definitions of α and β will be given below;
see also [6], §2a.

The structure of A was determined in [14]. Namely, the kernel of α is
the Shimura subgroup Σp of Jo(p), viewed as a subgroup of Jo(p)2 via the
antidiagonal embedding x 7→ (x,−x). Thus we have A = Jo(p)2/Σp and,
analogously, B = Jo(q)

2/Σq. Since A and B are known, we consider that to
understand A + B is to understand A ∩ B, which is a finite abelian group.
The main purpose of this note is to identify A ∩B, up to groups of 2-power
order. In other words, we identify the `-primary part of A ∩ B for each odd
prime `.

Let Cp be the cuspidal subgroup of Jo(p). This group is cyclic of order
num(p−1

12
), and appears frequently in [5]. (The symbol “num” denotes the
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numerator of a rational number. Thus, for r ∈ Q∗, num(r) is the order of 1
r

in Q/Z.) For the moment, view Cp in Jo(p)2 by the antidiagonal embedding,
and let C̄p be the image of the antidiagonal Cp in A. Since Cp ∩Σp is known
to be the group Cp[2] of elements of order dividing 2 in Cp ([5], p. 102), the
group C̄p is cyclic of order num p−1

24
. After consulting Ogg [9], and performing

some computations, one checks that C̄p is a subgroup of the cyclic subgroup
C of Jo(pq) generated by the class of the divisor

P1 − Pp − Pq + Ppq

on Xo(pq). (See §5 below.) According to [9], p. 459, the order of C is

num
(

(p−1)(q−1)
24

)
.

Let C̄q ⊂ B be the analogue of C̄p with p replaced by q. Then C̄q has
order num( q−1

24
), and again lies in the cyclic group C. (The primes p and q

play symmetric roles in the formation of C.) It follows that the group C̄p∩ C̄q

has order
n : = gcd

(
num

(
p−1
24

)
, num

(
q−1
24

))
.

Our main result is

Theorem 1 The finite abelian group A ∩ B and its subgroup C̄p ∩ C̄q are
equal up to 2-groups. In other words, the quotient Q = (A ∩ B)/(C̄p ∩ C̄q)
has 2-power order.

Corollary 1 The order of the odd part of A ∩ B is the odd part of the
integer n.

As explained above this Corollary follows from the Theorem, together
with the computation of §5.

A simple application of Theorem 1 concerns the kernel κ of the natural
map

γ : Jo(p)2 × Jo(q)
2 −→ Jo(pq)

which is obtained from α and β. The image of γ is the abelian variety
A + B mentioned above; it is the old subvariety of Jo(pq). View γ as the
composite of the surjection α × β : Jo(p)2 × Jo(q)

2 → A × B and the map
A×B → Jo(pq), (a, b) 7→ a + b, whose kernel is identified with A∩B by the
map x ∈ A ∩B 7→ (x,−x) ∈ A×B. We find an exact sequence

0 → Σp × Σq → κ → A ∩B → 0.

2



Let κo be the inverse image of C̄p ∩ C̄q in κ; then we have an exact sequence

0 → Σp × Σq → κo → C̄p ∩ C̄q → 0.

This sequence is “nearly” split in the sense that there is a cyclic subgroup of
κo which maps onto C̄p ∩ C̄q and whose intersection with Σp × Σq has order
dividing 2. Indeed, to find such a subgroup, we can choose a generator t
of C̄p ∩ C̄q and lifts x and y of t in Cp and Cq, respectively. The element
(x,−x,−y, y) of Jo(p)2× Jo(q)

2 maps to the element (t,−t) of A×B, which
we have identified with t ∈ A ∩ B; it therefore is a lift of t to κo. The
cyclic subgroup of Jo(p)2 × Jo(q)

2 which is generated by (x,−x,−y, y) has
an intersection with Σp × Σq which is of order 1 or 2, since Σp ∩ Cp = Cp[2]
in Jo(p), and Σq ∩ Cq = Cq[2] in Jo(q).

Corollary 2 The groups κo and κ are equal up to groups of 2-power order.
More precisely, κ/κo is a 2-abelian group.

Proof . Indeed, the indicated quotient is isomorphic to the quotient Q which
appears in Theorem 1.

Another application of Theorem 1 concerns a question which was raised
by Mazur ([6], §2b, Remark). For brevity, let us set J = Jo(pq) and let Jold

be the old subvariety A + B of J . Let Jnew = J/Jold, so that we have a
tautological exact sequence

0 → Jold → J → Jnew → 0.

Dualizing, we obtain a second sequence

0 → (Jnew)∨ → J∨ → (Jold)
∨ → 0.

Since there is a canonical polarization J ≈ J∨ (the theta polarization, coming
from the fact that J is a Jacobian), we may regard (Jnew)∨ as an abelian
subvariety of J . This subvariety of J is the new subvariety Jnew of J , and the
quotient J/Jnew is the old quotient Jold of J . The composite of the inclusion
Jold ↪→ J and the projection J → Jold is an isogeny

λ : Jold → Jold.

Mazur asks for information about the degree of λ.
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By the reasoning employed in §3 of [14], we obtain a direct relation be-
tween the kernel of λ and the group κ which appears above. Namely, let Θ
be a line bundle on J corresponding to the “theta divisor” of J , and let M
be the pullback of Θ to Jold ⊆ J . The isogeny λ is then the polarization
φM which is attached to M (as defined in [8], Chapter II, §6). Let L be
the pullback of Θ to Jo(p)2 × Jo(q)

2, and let Ω = K(L) be the kernel of the
polarization

φL : Jo(p)2 × Jo(q)
2 → (Jo(p)2 × Jo(q)

2)∨

arising from L. The group Ω contains κ, and Ω is endowed with a canon-
ical skew-symmetric Gm-valued pairing. Let κ⊥ be the annihilator of κ in
this pairing. As explained in [8], §23, we have κ⊥ ⊇ κ, and a canonical
isomorphism

ker(λ) ≈ κ⊥/κ.

In particular, we have

degree(λ) = card(Ω)/ card(κ)2.

To identify Ω, we rewrite (Jo(p)2 × Jo(q)
2)∨ as Jo(p)2 × Jo(q)

2, again
using the autoduality of the Jacobian, and view φL as an endomorphism of
Jo(p)2×Jo(q)

2. Note, for the purposes of orientation, that any such endomor-
phism decomposes a priori as the “external product” of an endomorphism
of Jo(p)2 and an endomorphism of Jo(q)

2, since there are no homomorphisms
in either direction between Jo(p) and Jo(q). (One can see this, for exam-
ple, from the fact that Jo(p) has good reduction at q, while Jo(q) has purely
toric reduction at q.) Hence Ω is automatically the product of a subgroup
Ωp of Jo(p)2 and a subgroup Ωq of Jo(q)

2. By the method of [14], §3, we
find that φL may be decomposed as the the product of the endomorphism(

1 + q Tq

Tq 1 + q

)
of Jo(p)2 and the endomorphism

(
1 + p Tp

Tp 1 + p

)
of Jo(q)

2.

These endomorphisms are both isogenies, and their degrees are respectively∏
f

(
(1 + q)2 − aq(f)2

)2
,

∏
g

(
(1 + p)2 − ap(g)2

)2
,

where f and g run over the sets of weight-2 newforms on Γo(p) and Γo(q),
respectively. The notation aq(f), for instance, indicates the qth coefficient of
the Fourier expansion of f . Hence we have

card(Ω) =
∏
f

(
(1 + q)2 − aq(f)2

)2
·
∏
g

(
(1 + p)2 − ap(g)2

)2
.
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Meanwhile, we have determined that card(κ) is the product of an integer of
the form 2t (t ≥ 0) with the quantity

card(κo) = num
(

p−1
12

)
· num

(
q−1
12

)
· gcd

(
num

(
p−1
24

)
, num

(
q−1
24

))
.

Refer to card(κo) as P . Summing up the discussion, we have

Theorem 2 Let D = degree(λ) be the order of the kernel of the natural
map Jold → Jold. Then D, a priori a perfect square, divides the integer

∏
f ((1 + q)2 − aq(f)2)

2 ·∏g ((1 + p)2 − ap(g)2)
2

P 2
.

The ratio of this integer to D is a power of 2.

We prove Theorem 1 by arithmetic methods, combining the main the-
orem of [15] with an assortment of results from [5]. In particular, we rely
on the results of [5] concerning: pure admissible groups, Ogg’s Conjecture
(Conjecture 2 of [10]), and a “twisted version” of Ogg’s Conjecture (loc. cit.).
Since the statement of the theorem is purely transcendental, one imagines
that the theorem may be proved by transcendental methods. It would be of
considerable interest to find such a proof, which would presumably identify
all of A ∩B, as opposed to its odd part.

It is a pleasure to thank the organizers of the TEXel conference for their
kind invitation to an especially enjoyable and productive mathemati-
cal encounter. The results contained in this article were discovered in
large part at the Weizmann Institute, during a workshop on Iwasawa
Theory in May, 1989. The author wishes to thank this institution,
and especially Shai Haran, for the hospitality. Finally, thanks go to
Ling San for a careful reading of preliminary versions of this article,
and to the referee, for helpful comments.

1 Hecke operators on A ∩B

For each integer N ≥ 1, the modular curve Xo(N) carries a family of Hecke
correspondences Tn (n ≥ 1). Further, for each positive divisor D of N
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such that D and N/D are relatively prime, one has an Atkin-Lehner in-
volution wD on Xo(N). (See, for example, [7] for a discussion of these
operators in various guises.) These operators induce endomorphisms of
Jo(N) = Pico(Xo(N)) which are again denoted by the symbols Tn and wD.
The subring of End(Jo(N)) generated by the Tn is denoted TN . This ring is
already generated by the operators T` for ` prime. If ` is a divisor of N , the
operator T` is often denoted U` and referred to as an Atkin-Lehner operator.

The modular curves Xo(N) for varying N are connected by degeneracy
operators, which are discussed, for instance, in [6]. Recall that if N is a
product DM , then there is a degeneracy operator πd : Xo(N) → Xo(M) for
each positive divisor d of D. By pullback, we obtain homomorphisms

π∗d : Jo(M) → Jo(N)

for each d. Assembling together π∗1, π
∗
q : Jo(p) →→ Jo(pq), we define the map

α = π∗1 × π∗q : Jo(p)2 → Jo(pq).

The map β : Jo(q)
2 → Jo(pq) is defined similarly.

“Formulaire”

The compatibility of α and β with the various operators Tn and wD is well
known. Here is a summary of the behavior of these operators under α (for
β, permute the roles of p and q):

1. We have Tn(α(x, y)) = α(Tnx, Tny) for all n prime to q, and x, y ∈
Jo(p). In other words, for n prime to q we have Tn ◦ α = α ◦ Tn,
where the latter Tn is the Hecke operator labeled Tn in Tp, which is
understood to be acting diagonally on Jo(p)2.

2. We have α ◦ wp = wp ◦ α.

3. The qth Atkin-Lehner involution wq on Jo(pq) satisfies wq(α(x, y)) =
α(y, x) for x, y ∈ Jo(p). Equivalently, we have wq◦π∗q = π∗1 and wq◦π∗1 =
π∗q .

4. The qth Hecke operators Tq on Jo(p) and Jo(pq) satisfy

Tq(α(x, y)) = α(Tqx + qy,−x).
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The last formula is probably clearer if we use the alternative notation Uq

for the qth Hecke operator on Jo(pq):

Uq(α(x, y)) = α(Tqx + qy,−x).

It is frequently advantageous for calculations to use the symbols Up and Uq

for the pth and qth Hecke operators on Jo(pq), reserving Tp and Tq for the pth

Hecke operator on Jo(q) and the qth Hecke operator on Jo(p), respectively. In
a similar vein, it is probably best to refer to the pth Hecke operator of Jo(p)
as Up, and to the qth Hecke operator of Jo(q) as Uq.

The formulas above show clearly that the subvariety A of Jo(pq) is stable
under the ring Tpq and under the involutions wp and wq. By symmetry,
the intersection A ∩B is Tpq-stable, so that it is naturally a module for the
algebra Tpq.

It is important to note that A ∩B carries, as well, natural actions of the
two rings Tp and Tq. To see this, it is enough, by symmetry, to exhibit a
natural action of Tp on A ∩ B. The ring Tp acts diagonally on Jo(p)2, and
Σp is Tp-stable in Jo(p)2. Therefore, there is a natural action of Tp on A,
and the claim is that A∩B is stable under this action. The only subtle point
is the stability of A∩B under the operator labeled Tq in Tp, which does not
coincide in general on A with the operator Uq coming from Tpq.

To treat this point, we use the last of the above formulas, plus the Cayley-
Hamilton Theorem, to establish the identity U2

q − UqTq + q = 0 on A. On
B, Uq is an involution: the negative of the involution wq. (This follows,
for instance, from the proof of Proposition 3.7 of [15]. The endomorphism
wq + Uq of Jo(q) factors through the degeneracy map π∗ : Jo(1) → Jo(q),
whose source is 0.) We therefore have

Tq = Uq(q + 1) = −wq(q + 1)

on A ∩B.

2 Galois action on A ∩B

In the above discussion, we have considered A∩B as a Tp-stable submodule
of A. A closely related module is the inverse image (A ∩ B)˜ of A ∩ B in
Jo(p)2. Thus (A∩B)˜ is an extension of A∩B by the Shimura subgroup Σp

7



of Jo(p), which we identify with its antidiagonal image in Jo(p)2. The group
(A ∩ B)˜ is a finite Tp-stable submodule of Jo(p)2. Until further notice, we
shall write simply T for the Hecke algebra Tp.

Up to now, we have tacitly regarded the curves Xo(p), Xo(q), and Xo(pq),
and their Jacobians, as being defined over C. However, one knows from
work of Shimura (see, e.g., [18]) that these curves exist over Q. (In fact,
by [1] there are even good models for these curves over Z. See also [4].)
One sees from their modular definitions that the various Hecke operators,
Atkin-Lehner involutions, and degeneracy operators we have considered are
all defined over Q. It follows from this that the abelian subvarieties A and
B of Jo(pq) are defined over Q, so that the intersection A∩B is defined over
Q. We view it as a finite Gal(Q/Q)-module with an equivariant action of
the ring T, or, equivalently, as a T[Gal(Q/Q)]-module. From the definition
of (A∩B)˜ as an inverse image, we see that this subgroup of Jo(p)2, with its
T-action, is defined over Q.

Theorem 3 The Gal(Q/Q)-modules A ∩ B and (A ∩ B)˜ extend to finite
flat commutative group schemes over Spec(Z).

Proof . The theorem means that there are groups schemes G1 and G2 over
Spec(Z) whose associated Galois modules Gi(Q) are isomorphic to A∩B and
(A ∩B)˜, respectively.

The group A ∩ B extends to a finite flat group scheme over Spec(Z[1
p
])

because it is a rational subgroup of the abelian variety A, which has good
reduction outside p. Symmetrically, A ∩ B extends to a finite flat group
scheme over Spec(Z[1

q
]). From this, we may deduce that it extends to a finite

flat group scheme over Spec(Z). (For example, we can apply the discussion
of [5], Chapter I, §1 to the `-primary part of A ∩ B, for each prime number
`.)

We have an exact sequence

0 → Σp → (A ∩B)˜ → A ∩B → 0.

To show that (A ∩ B)˜ extends to Spec(Z), we may treat separately the
`-primary components of (A ∩ B)˜. The assertion to be proved is obvious

for those ` which are prime to the order np = num
(

p−1
12

)
of Σp, since the

`-primary components of A ∩ B and (A ∩ B)˜ are isomorphic in that case.
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It thus suffices to treat the prime-to-p part of (A ∩ B)˜, which is a finite
Gal(Q/Q)-stable submodule R ⊇ Σp of Jo(p)2(Q).

We are required to show that R is unramified at p. Fix a decomposition
group D = Gal(Qp/Qp) ⊂ Gal(Q/Q) for p in Gal(Q/Q), and let I be the
inertia subgroup of D. We wish to show that I acts trivially on R. More
generally:

Lemma 1 Let G ⊇ Σp be a finite I-stable subgroup of Jo(p)2(Qp), whose
order is prime to p. Assume that I acts trivially on G/Σp. Then I acts
trivially on G.

To prove the lemma, we first note the following facts, which are variants
for Jo(p)2 of results proved by Mazur [5] for Jo(p):

1. The group Σp extends to a finite flat subgroup of the Néron model J
of Jo(p)2 over Spec(Z). (Compare [5], p. 100.)

2. In characteristic p, Σp has trivial intersection with the connected com-
ponent J o

/Fp
of J . (Cf. [5], p. 101.)

In the latter statement, the group T = J o
/Fp

is a torus over Fp. The group

T (Fp), which is a torsion abelian group with trivial p-primary component,
may be canonically identified with a subgroup of Jo(p)2(Qp)

I (for example,

by [17], Lemma 2). The second assertion gives the equality Σp ∩ T (Fp) = 0
inside Jo(p)2(Qp).

With these preliminary facts recorded, we may now prove the lemma by a
variant of the argument given for Lemma 16.5 of [5], Chapter II. Take g ∈ G
and γ ∈ I. Since I acts trivially on G/Σp, we have (i − 1)g ∈ Σp. On the
other hand, (i− 1)g lies in the group T (Fp). This follows from the fact that
Jo(p)2 has purely toric reduction at p, as can be seen from the discussion in
Exposé IX, §7 of [3] or the exact sequence which is given as Lemma 3.3.1
of [13]. Hence (i − 1)g = 0, which gives the desired statement that i acts
trivially on g.
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3 Maximal ideals of the Hecke algebra Tp

The Eisenstein ideal of T = Tp is the ideal I generated by the elements
T` − ` − 1 for prime numbers ` 6= p, together with the difference Up − 1
([5], p. 95). The Eisenstein primes of T are the maximal ideals m of T
which contain I. These ideals are in 1-1 correspondence with the prime
numbers dividing np = num

(
p−1
12

)
, a prime number ` | np corresponding to

the maximal ideal m = (I, `).
For each maximal ideal m of T, let ρm be the usual semisimple two-

dimensional representation of Gal(Q/Q) over km = T/m which is associated
to m by the constructions of [2]. Thus, ρm is unramified outside the primes
p and `, where ` is the characteristic of the finite field km. For r a prime
other than ` or p, the characteristic polynomial of ρm(Frobr), where Frobr is
a Frobenius element for r in the Galois group Gal(Q/Q), is the polynomial
X2 − TrX + r ∈ km[X]. One knows ([5], Chap. II, §14) that ρm is reducible
over km if and only m is Eisenstein. In this case, km is the prime field F`, and
ρm is isomorphic to the direct sum of the trivial 1-dimensional representation
and the 1-dimensional representation µ` of Gal(Q/Q).

Recall that ρm is finite at p (cf. [16]) if and only if: the restriction of ρm to
a decomposition group Gal(Qp/Qp) for p in Gal(Q/Q) is isomorphic to the
representation arising from a km-vector space scheme of rank 2 (in the sense
of [12]) over Zp. For ` 6= p, ρm is finite at p if and only if it is unramified at
p.

Theorem 4 Assume that ` 6= 2. Suppose that ρm is finite at p. Then m is
Eisenstein.

Proof . Assume that ρm is finite at p, but not Eisenstein. Then, by the main
theorem (Theorem 1.1) of [15], the representation ρm is “modular of level 1.”
In particular, ρm may be realized by a group of `-torsion points of the abelian
variety Jo(1). This is absurd, since Jo(1) is 0.

4 Proof of the main theorem

Let M be the “odd part” of (A ∩ B)˜, i.e., the direct sum of the `-primary
subgroups of (A∩B)˜, for ` odd. Our aim is to show that M is “small.” To
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do this, we first control the set of prime ideals of T which are in the support
of M :

Proposition 1 If m is a maximal ideal of T in the support of M , then m
is an Eisenstein prime.

Proof . Let m be in the support of M . Then, by the definition of M , m is
prime to 2. Let M [m] be the kernel of m on M , i.e., the set of m ∈ M which
are killed by all elements of m. Since M is finite, and m lies in the support
of M , M [m] is non-zero. Assume that m is in the support of M and that
m is non-Eisenstein. Then a well known argument of Mazur ([5], proof of
Proposition 14.2 of Chapter II) shows that the km[Gal(Q/Q)]-module M [m]
is a successive extension of copies of the representation ρm. In other words, let
V be a km[Gal(Q/Q)]-module which affords ρm. Then the semisimplification
of M [m] is some (non-zero) power of V .

In particular, we can find an embedding V ↪→ M . By Theorem 3, M
extends to a finite flat group scheme M over Spec(Z). The Zariski closure
of V in M is then a finite flat group scheme V over Spec(Z) which prolongs
V . Thus ρm is finite at p, which contradicts Theorem 4.

Corollary For each prime `, let M` be the `-primary part of the abelian
group M . Then M` is trivial unless ` is an odd prime dividing np, in which
case the semisimplification of M` is a direct sum of modules of the form µ`

and Z/`Z.

Proof . By construction, the order of M is odd. By the Proposition, only
primes ` dividing np can divide the order of M . Moreover, for ` | np, only
the Eisenstein prime m = (I, `) can intervene in the support of M`. Hence
M` is annihilated by some power of m, which means that M` ⊆ Jo(p)2[mν ]
for some integer ν ≥ 0. All Jordan-Hölder constituents of the latter module
are of the form µ` and Z/`Z ([5], Chapter II, Proposition 14.1).

Theorem 5 The module M ⊂ Jo(p)× Jo(p) is contained in the direct sum
N ⊕N , where N is the submodule Σp + Cp of Jo(p).
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Proof . The Gal(Q/Q)-module M extends to a finite flat group scheme M
over Spec(Z) (Theorem 3). In the language of [5], Chapter I, §1(f), the above
Corollary states that the `-primary parts of M are “admissible.” Proposi-
tion 4.5 of [5], Chapter I then tells us that M is pure in the sense that it is
the direct product of a constant group by a group whose dual is constant.
(A group whose dual is constant is called a “µ-type group” in [5].)

The largest constant subgroup of Jo(p) is Cp ([5], Chapter III, Theo-
rem 1.2), while the largest µ-type subgroup of Jo(p) is Σp ([5], Chapter III,
Theorem 1.3.)

Note that the sum Σp + Cp inside Jo(p) is very nearly a direct sum. The
intersection Σp ∩ Cp is the group of elements of order dividing 2 in Cp ([5],
Chapter II, Proposition 11.11). This group has order 2 if p ≡ 1 (mod 8) and
is trivial otherwise.

The Theorem implies that M is contained in the direct sum Jo(p)[I] ⊕
Jo(p)[I], where I is again the Eisenstein ideal.

We now prove the main result (Theorem 1), whose statement we refor-
mulate as follows:

The odd part of A∩B is contained in the intersection of the two
groups C̄p = α(C−

p ) and C̄q = β(C−
q ), the exponent − indicating

that Cp and Cq have been embedded antidiagonally in Jo(p)2 and
Jo(q)

2, respectively.

Proof . By symmetry, it suffices to show that the odd part of A ∩ B is
contained in C̄p. We know by Theorem 5 that the odd part of A ∩ B is
contained in α(N⊕N). Since α kills the antidiagonal Σ−

p , the group α(N⊕N)
is, neglecting 2-abelian groups, the sum

α(C+
p ) + α(C−

p ) + α(Σ+
p ),

where the exponent + is now used for the diagonal embedding. The prime-
to-2 part of this sum is direct. By the formulaire presented above, the
Atkin-Lehner involution wq operates as +1 on the groups with exponent +

and as −1 on the group with exponent −. However, wp acts on Jo(p)[I] as
−1. Therefore, wp acts on the displayed sum as −1, so that wp is −1 on the
odd part of A ∩B.

By symmetry, wq must act as −1 on the odd part of A ∩ B. Therefore,
this odd part is contained in α(C−

p ), as was claimed.

12



5 Computations with cusps

The aim of this § is to justify the claim, made in the introduction, that
the subgroup C̄p = α(C−

p ) of Jo(pq) lies in the cyclic subgroup of Jo(pq)
generated by the class of the divisor P1 − Pp − Pq + Ppq. This divisor is
formed from the four cusps of the curve Xo(pq), which are in natural 1-1
correspondence with the positive divisors of pq. We have used the notation
of Ogg [9], who writes Pd for the cusp corresponding to the divisor d. This
notation will apply also for the modular curve Xo(p); thus we will consider
that Cp is the cyclic subgroup of Jo(p) generated by the class of the divisor
P1−Pp on Xo(p). We recall also that the the map α is constructed from the
two degeneracy coverings

π1, πq : Xo(pq) →→ Xo(p)

and that the − in C−
p indicates the antidiagonal embedding. Therefore, C̄p

is the cyclic group generated by (π∗1 − π∗q )(P1 − Pp); the “bar” over P1 − Pp

is used here in denote the class of the indicated divisor.
To study this divisor, we will consider the maps π∗1 and π∗q which are

induced by the degeneracy maps on the level of divisors. The only points of
Xo(pq) lying over the cusp P1 of Xo(p) are the cusps P1 and Pq of Xo(pq).
Hence we have π∗1(P1) = aP1 + bPq for some integers a, b ≥ 0; these integers
sum to q+1, the degree of the covering π1. [The actual values of a and b, which
are not needed here, are the ramification indices of P1 and Pq in the covering
π1 : Xo(pq) → Xo(p). They are 1 and q, up to permutation. The author
computed them by calculating the divisors of the function ∆(z)/∆(pz) on the
two curves Xo(p) and Xo(pq), employing the techniques presented in [11]. An
alternative approach, suggested by the referee, is to identify a and b with the
ramification indices of P1 and Pq in the covering π1 : Xo(q) → Xo(1), and to
compute these latter indices by techniques involving fundamental domains.]

The covering π1 : Xo(pq) → Xo(p) is equivariant with respect to the
Atkin-Lehner involutions wp on Xo(p) and Xo(pq). Further, on both of these
curves, wp permutes the cusp labeled P1 with the cusp labeled Pp. Finally,
the involution wp on Xo(pq) permutes the cusps Pq and Ppq. Therefore,
π∗1(Pp) = aPp + bPpq. On the other hand, we have π1wq = πq, and the
involution wq of Xo(pq) permutes P1 with Pq and Pp with Ppq. Therefore, we
have:

π∗q (P1) = aPq + bP1, π∗q (Pp) = aPpq + bPp.
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Combining everything together gives

(π∗1 − π∗p)(P1 − Pp) = (a− b)(P1 − Pp − Pq + Ppq).

By passing to the level of divisor classes, we obtain the desired result.
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