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Let p and q be distinct primes. The new part of Jo(pq) (defined,
according to one’s taste, as a quotient or subvariety of Jo(pq)) is known
to be isogenous to the Jacobian J of the Shimura curve derived from
the rational quaternion algebra of discriminant pq. We show that
J and the new subvariety of Jo(pq) differ in one significant respect.
Namely, certain kernels which are 2-dimensional for the latter variety
may be either 2- or 4-dimensional for the former. We give a simple
criterion to decide whether the dimension is 2 or 4, and exhibit a
procedure for constructing examples where the dimension is 4. We
illustrate this procedure by constructing a 4-dimensional kernel with
pq = 11 · 193.

To Professor I.I. Piatetski-Shapiro

Introduction

Let p and q be distinct primes. Consider the modular curve Xo(pq) over Q.
This curve is endowed with a Hecke correspondence T` for each prime number
`. (The operators Tp and Tq are often denoted Up and Uq, respectively.)
The correspondence T` induces an endomorphism of Jo(pq) = Pico(Xo(pq))
which is again denoted T`. Let T = Tpq be the (commutative) subring of
End(Jo(pq)) which is generated by the family of endomorphisms T`.
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Suppose that m is a maximal ideal of T, and let k = T/m be its residue
field. Let

ρm : Gal(Q/Q) → GL(2, k)

be the usual two-dimensional semisimple representation of Gal(Q/Q) at-
tached to m ([3], Th. 6.7 or [12], §5). This representation is characterized,
up to isomorphism, by the fact that it is unramified at each prime number
r different from p, q, and the characteristic of k, together with the condi-
tion that the matrix ρm(Frobr) have trace Tr mod m and determinant r mod
m, for each such r. (Here Frobr is a Frobenius element for the prime r in
Gal(Q/Q).)

Let Jo(pq)[m] be the kernel of m on Jo(pq)(Q), i.e., the intersection of the
kernels of all elements of m on Jo(pq)(Q). The following result is a special
case of Theorem 5.2(b) of [12].

Theorem 1 Assume that m is prime to 2pq and that the representation ρm

is irreducible. Then Jo(pq)[m] is two-dimensional over k, and the k-linear
action of Gal(Q/Q) on Jo(pq)[m] defines a representation equivalent to ρm.

Let Jnew be the new subvariety of Jo(pq). This abelian variety may be
defined as the connected component of the kernel of the natural “trace” map

Jo(pq) −→ Jo(p)× Jo(p)× Jo(q)× Jo(q)

([7], §2(b)) or, alternatively, as the dual of the new quotient of Jo(pq) as
in [16]. The variety Jnew is a T-stable subvariety of Jo(pq); the image T
of T in End(Jnew) is the new quotient of T. We say that m is new if it
arises from a maximal ideal of T by pullback, relative to the quotient map
T → T. Equivalently, m is new if and only if the kernel Jnew[m] of m on Jnew

is non-zero. Using the irreducibility of Jo(pq)[m], we deduce

Theorem 2 Suppose that m satisfies the hypothesis to Theorem 1, and that
m is new. Then the representation Jnew[m] is equivalent to ρm.

Now let O be a maximal order in a rational quaternion algebra of dis-
criminant pq. (Up to isomorphism, there is only one such order.) Let C be
the Shimura curve associated with the moduli problem of classifying abelian
surfaces with an action of O. Let J = Pico(C) be the Jacobian of C. As
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recalled in [12], §4, the curve C carries a family of Hecke correspondences T`,
which again lead to commuting endomorphisms T` ∈ End(J). The ring T
acts faithfully on J in such a way that each Hecke operator T` ∈ T acts on
J as the corresponding endomorphism T` ([12], Cor. 4.2). Using this action,
we define the kernel J [m] of m on J(Q) for each new maximal ideal m of T.
The group J [m] is non-zero because the action of T on J is faithful.

View J [m] as a k[Gal(Q/Q)]-module. If ρm is irreducible, a standard
argument of Mazur ([6], II, Prop. 14.2) shows that the semisimplification of
J [m] is a direct sum of copies of the simple k[Gal(Q/Q)]-module correspond-
ing to ρm. Call ν the number of summands. The k-dimension of J [m] is then
2ν. Our aim is to calculate the integer ν, which we call the multiplicity of
ρm in J [m].

We achieve this goal whenever m satisfies the hypotheses to Theorem 2,
i.e., whenever m is new and prime to 2pq and the representation ρm is irre-
ducible. To explain our result, we remark that the representation ρ must be
ramified at at least one of the primes p, q. Indeed, were ρm unramified (or
“finite”) at both p and q, the main theorem of [12] would show that ρm is
modular of level 1. In particular, ρm would be realized as a module of division
points on the abelian variety Jo(1), which is zero. This, clearly, would be a
contradiction. Permuting p and q if necessary, we therefore may assume that
ρm is ramified at p. Let us do so. Also, we fix a Frobenius element Frobq for
q in Gal(Q/Q).

The following Theorem will be proved in §2:

Theorem 3 Assume that m satisfies the hypotheses of Theorem 2. Then the
multiplicity of ρm in J [m] is 1 unless ρm is unramified at q and the Frobenius
element Frobq acts in ρm as ±1. In this latter case, the multiplicity is 2.

By the main theorem of [12], the hypothesis that ρm is unramified at q
implies that ρm is modular of level p in the sense that it arises from a maximal
ideal of the Hecke algebra Tp associated to Jo(p). The maximal ideal m is
then old as well as new: it is an “ideal of fusion” between old and new at
level pq.

Conversely, we can make examples of m for which ρm occurs with mul-
tiplicity 2 via the following construction, in which p is considered as fixed,
but q is allowed to vary. Start with a representation ρ of Gal(Q/Q) which
is modular of level p. To fix ideas, assume that ρ is irreducible and that
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it is a representation over a finite field of characteristic prime to 2p. Using
the Cebotarev density theorem, find a prime q for which Frobq acts in ρ as
±1. Then there is a new maximal ideal m ⊂ Tpq for which ρm and ρ are
isomorphic. Indeed, the trace and determinant of Frobq are respectively ±2
and 1. Since the determinant of Frobq is q, we have q ≡ 1 mod m. Therefore,
the key congruence

tr ρ(Frobq) ≡ ±(q + 1) (mod m)

is satisfied. According to Theorem 1 of [15], ρ arises from a maximal ideal
m of Tpq which is “q-new.” Such a maximal ideal is genuinely new (and not
just q-new) unless the corresponding representation ρm of Gal(Q/Q) is finite
at p. In our situation, ρm ≈ ρ cannot be finite at p, since it would otherwise
be modular of level 1 as in the discussion above.

For a concrete example, take p = 11, and let

ρ : Gal(Q/Q) → GL(2,F3)

be the representation of Gal(Q/Q) given by the group of 3-division points on
the elliptic curve Jo(11). The image of ρ is all of GL(2,F3) (see [18]). The
Galois extension K of Q which is cut out by ρ contains the field Q(∆1/3, µ3),
where ∆ = −115 is the discriminant of Jo(11) ([17], p. 305). We seek a
criterion to determine whether a not a prime number q 6= 3, 11 satisfies the
condition ρ(Frobq) = ±1. This condition implies that det(ρ(Frobq)) = 1,
which means the congruence q ≡ 1 (mod 3) is satisfied. Similarly, the trace
of ρ(Frobq) must be ±2 (mod 3), which translates to the condition that the
coefficient cq of q in the expansion of X ·∏n≥1(1−Xn)2(1−X11n)2 must be
non-zero mod 3. (See [18], where the cq are tabulated for q ≤ 2000.)

Assume that these necessary conditions are satisfied. Then ρ(Frobq) is

either ±1, as desired, or else is of the form ±
(

1 x
0 1

)
with x 6= 0 in F3. Con-

sider the image of ρ(Frobq) in the Galois group Gal(Q(∆1/3, µ3)/Q), which
is isomorphic to the symmetric group S3. This image is trivial or of order 3

according as ρ(Frobq) = ±1 or ρ(Frobq) = ±
(

1 x
0 1

)
(with x 6= 0). Con-

cretely, this means that ρ(Frobq) = ±1 if 11 is a cube mod q. Calculation
shows that the prime q = 193 satisfies this condition, as well as the necessary
congruences q ≡ 1 and cq ≡ ±2 (mod 3). (We have c193 = 4.) Therefore,
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there is a new maximal ideal m in T11·193, of residue characteristic 3, such
that the multiplicity of ρm in J [m] is 2.

Our motivation in proving Theorem 3 is to “contrast and compare” the
two abelian varieties Jnew and J . According to a theorem of [10] (now easier
to prove using [4], Satz 4), Jnew and J are isogenous over Q. There has been
some speculation that a natural T-equivariant isogeny (in one direction or
the other) should link these two abelian varieties. Theorems 2 and 3 seem
to show that the support of the kernel of such an isogeny must, in general,
contain maximal ideals m for which ρm is irreducible. This suggests that any
construction of such an isogeny must be relatively elaborate.

Our proof of Theorem 3 is based on a number of the ideas of [12]. In
particular, it relies on the exact sequence (see [12], Th. 4.1) relating the
mod p bad reduction of J with the mod q bad reductions of Jo(q) and Jo(pq).

The author wishes to thank Nigel Boston, Ling San, and Jean-François
Mestre for helpful conversations and correspondence during the preparation
of this paper.

1 Multiplicity one for character groups

In this §, q is a prime number and M is a positive integer prime to q. Set
N = qM . Let J be the Néron model of Jo(N)/Qq , and write Jo(N)/Fq

for
the special fiber of J . As is well known, the connected component of 0 in
Jo(N)/Fq

, call it Jo(N)o
/Fq

, sits in an exact sequence

0 → T → Jo(N)o
/Fq

π→ Jo(M)/Fq
× Jo(M)/Fq

→ 0, (1)

where T is a torus over Fq. (This follows from results of Raynaud [8] and
Deligne-Rapoport [2], as explained in the appendix to [6].) The character
group

L = HomFq
(T,Gm)

of T may be described explicitly as the group of degree-0 divisors on the
supersingular points on Xo(M)/Fq

([6], Appendix).

Recall [7] that the two degeneracy maps δ1, δq : Xo(N) →→ Xo(M) induce
by functoriality a pair of maps Jo(M) →→ Jo(N). By composing their direct
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product with the sum map Jo(N)2 → Jo(N), we obtain the standard degen-
eracy map α : Jo(M)2 → Jo(N), cf. [7, 11, 15, 16]. Passing to characteristic q,
we find a map

α/Fq : Jo(M)2
/Fq

→ Jo(N)o
/Fq

.

The composition of π with α/Fq is then an endomorphism of Jo(M)2
/Fq

, which

we may represent as a 2× 2 matrix of endomorphisms of Jo(M)/Fq
.

Lemma 1 The matrix π ◦ α/Fq is the matrix
(

id Ver
Ver id

)
, where id is the

identity endomorphism of Jo(M) and Ver is the Verschiebung endomorphism
of Jo(M), i.e., the transpose of the Frobenius endomorphism of Jo(M).

Proof . The map α/Fq is obtained by functoriality from two degeneracy maps
Xo(N) →→ Xo(M), whereas the map π is deduced by functoriality from two
maps in the other direction, which are peculiar to characteristic q ([2], V, §1).
The four possible compositions are determined in [2], loc. cit. Two of them
are the identity map of Xo(M)/Fq

, while the other two are the Frobenius

of Xo(M)/Fq
. Passing to Jacobians (via the functor Pico), we obtain the

indicated formula.

Let T = TN be the subring of End(Jo(N)) generated by the Hecke oper-
ators T` for prime numbers `. The ring T acts by functoriality on T and on
L. These actions factor through faithful actions of the “q-new quotient” of
T, which is denoted T1 in [12], §3. (See [12], Theorem 3.10.) We say that a
maximal ideal m of T is q-new if it arises by pullback from this quotient.

Similarly, the q-old quotient To of T may be defined in any of several
equivalent ways. In ([12], §3), To is defined as the image of T in End(So),
where So is the direct sum of two copies of the space of weight-2 cusp forms
on Γo(M). (This direct sum is naturally a T-module because T preserves the
direct sum after it has been identified with a subspace of the space of weight-
2 cusp forms on Γo(N), as in the work of Atkin-Lehner [1].) An equivalent
geometric definition is the following one. There is a unique operation of T
which is compatible with α and the operation of T on Jo(N). The ring T acts
on Jo(M)2 through its quotient To, which acts faithfully. Finally, consider
the functorial action of T on Jo(N)o

/Fq
. Then, in the exact sequence (1),

there is a unique operation of T on Jo(M)2 which is compatible with π and
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the action of T on Jo(N)o
/Fq

. In this latter operation, T again acts through
To, which acts faithfully ([12], Th. 3.11). In analogy with the terminology
introduced for T1, we say that a maximal ideal m of T is q-old if it arises by
pullback from To.

Theorem 4 Let m be a maximal ideal of T which is prime to 2N and
such that the corresponding representation ρm of Gal(Q/Q) is irreducible.
Assume that ρm is unramified at q. Then m is q-old.

Proof . To prove this theorem, we review the proof given for Theorem 8.2
of [12]. First of all, m is either q-old or q-new (but might be both), so we
may assume that m is q-new. We do so. Pick an “auxiliary” prime number
Q: this is a prime number which is prime to 2N and the characteristic of
T/m, and which is such that a Frobenius element for Q in Gal(Q/Q) maps
under ρm to the image of a complex conjugation in Gal(Q/Q). Following the
proof of Theorem 8.2 of [12], we introduce the Hecke algebra TQN associated
with the space of weight-2 cusp forms on Γo(NQ). We then pick a maximal
ideal M of TNQ which is compatible with m. To explain this notion, we view
TN and the Q-old quotient of TNQ as subrings of the commutative ring R
which they generate together in the ring of endomorphisms of the direct sum
of two copies of the space of weight-2 cusp forms on Γo(N). (In this ring,
the operators T` coming from TN and from TNQ are equal for all primes `,
except for the case ` = Q. The ring R is generated by the shared Hecke
operators T` (with ` 6= Q), together with the Hecke operator TQ coming from
TN and the Qth Hecke operator UQ coming from TNQ.) The compatibility
means that m and the projection of M in the Q-old quotient of TNQ are
contained in a common maximal ideal.

Looking carefully at the proof of Theorem 8.2 of [12], one sees that the
following property of M is proved: the ideal M is “qQ-old” in the sense
that it arises from the “Qq-old quotient” of TNQ, defined (for example) as
a subring of End(Jo(M)4). For the convenience of the reader, §3 provides
more details concerning this point.

The indicated property of M becomes much simpler if we jettison (tem-
porarily) the two different Hecke operators TQ. Namely, consider the subring
R of T which is generated by all the T` with the exception of TQ. Let mR be
the intersection of m with R. What is proved about M gives, in particular,
that mR is q-old in the sense that it arises by pullback from the subring Ro
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of To which is generated by the T` with ` 6= Q. By the going-up theorem
of Cohen-Seidenberg, this shows that there is some maximal ideal m′ of T
which is q-old and which contains mR. To prove the theorem, it is enough to
verify that m and m′ coincide.

Let F be the residue field of mR, so that F is a subfield of each of T/m
and T/m′. By the Chinese Remainder Theorem, to prove that m = m′ is
to prove that the image of T in T/m × T/m′ is a field. The image of R in
T/m×T/m′ is F, embedded “diagonally” in the product. It thus suffices to
show that the image of TQ in the product lies inside the image of F in the
product. However, by applying the Cebotarev Density Theorem to ρm× ρm′ ,
we see that there are infinitely many primes `, ` 6= Q, so that T` and TQ have
the same image in T/m×T/m′.

In the following discussion, we assume that m is a maximal ideal of T
which is prime to 2N and such that the representation ρm of Gal(Q/Q) is
irreducible. According to [12], Theorem 5.2(b), the kernel Jo(N)[m] of m
on Jo(N) is multiplicity free in the sense that Jo(N)[m] is two-dimensional
(and therefore isomorphic to ρm as a representation of Gal(Q/Q)). We shall
calculate the dimension of L/mL. By the characterization of T1 which was
cited, L/mL is non-zero if and only if m is q-new. We say that L/mL is
multiplicity free if it is of dimension ≤ 1 over the residue field k = T/m.
With this definition, L/mL is automatically multiplicity free if m is not q-
new.

Proposition 1 Assume that m is q-new, prime to 2N , and such that ρm is
irreducible. Then L/mL is multiplicity free unless ρm is unramified at q and
a Frobenius element Frobq for q in Gal(Q/Q) acts in ρm as ±1. In this latter
case, L/mL is of dimension 2 over k.

Proof . Let D be the Galois group Gal(Qq/Qq), thought of as a decomposition

group for q in Gal(Q/Q). We consider that Frobq is a Frobenius element of
D. Let ` be the characteristic of k. As discussed in §6 of [12], the work of
Grothendieck in SGA7I [5] establishes a natural inclusion of k[D]-modules

Hom(L/mL, µ`) ↪→ Jo(N)[m]. (2)

The left-hand module is unramified, with Frobq acting as qTq ([12], Proposi-
tion 3.8). Further, the Hecke operator Tq is the negative of the Atkin-Lehner
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involution wq on the torus T ([12], Proposition 3.7). Therefore, Frobq acts
on Hom(L/mL, µ`) as +q or as −q.

In our situation, the dimension of Hom(L/mL, µ`) is at least 1, while
the dimension of Jo(N)[m] is exactly 2, as remarked above. Hence, if L/mL
is not multiplicity free, it has dimension 2, and Hom(L/mL, µ`) coincides
with Jo(N)[m]. Since the latter module is a model for the representation ρm,
this latter representation is unramified. (Here, we could say “unramified at
q,” but this qualification is somewhat superfluous since the coincidence of
Hom(L/mL, µ`) and Jo(N)[m] gives merely an equality of k[D]-modules.) It
follows also that Frobq acts in ρm as one of the two scalars ±q. To see that
q ≡ 1 (mod m), we note that the determinant of Frobq in ρm is q, while the
determinant of either scalar ±q is q2. Therefore, if L/mL is not multiplicity
free, then Frobq acts as ±1, as claimed.

Suppose, conversely, that ρm is unramified at q and that Frobq acts in
ρm as +1 or −1. By considering the determinant, we see again that q ≡ 1
(mod m). Also, m is q-old, by Theorem 4. This implies that the kernel
(Jo(M) × Jo(M))[m] of m on Jo(M)2 is non-zero. On the other hand, the
kernel of α : Jo(M)2 → Jo(N) has trivial intersection with Jo(M)2[m], since
the kernel of α is “Eisenstein,” whereas ρm is irreducible. (See Theorem 1 of
[13], Theorem 4.3 of [11], and Theorem 5.2(c) of [12].) By the irreducibility
of V = Jo(N)[m], α identifies Jo(M)2[m] with Jo(N)[m].

Since m is q-new, Tq mod m is ±1 and the Atkin-Lehner involution wq

acts on Jo(N)[m] as ∓1 (with the opposite sign). By comparing the actions
of Frobq on Jo(N)[m] and its submodule Hom(L/mL, µ`), we see that the sign
“±” for the action of Frobq on Jo(N)[m] is + if Tq (mod m) is +1, and is − if
Tq (mod m) is −1. Finally, the degeneracy map α is equivariant with respect
to the Atkin-Lehner involution wq on Jo(N) and the involution (x, y) 7→ (y, x)
on Jo(M)2. Putting all this together, we find that Jo(M)2[m] lies inside the
diagonal image of Jo(M) in Jo(M)2 if Frobq acts on Jo(N)[m] as −1, and in
the antidiagonal image of Jo(M) in Jo(M)2 if Frobq acts on Jo(N)[m] as +1.
(By the “antidiagonal image,” we mean the graph of multiplication by −1.)

To fix ideas, we will suppose from now on that Frobq acts as −1 on
Jo(N)[m], so that Jo(N)[m] lies in the image of Jo(M) in Jo(N) under the
composition of α with the diagonal embedding of Jo(M) in Jo(M)2. One,
extremely minor, advantage of this choice is that the composition is a map
Jo(M) → Jo(N) which has trivial kernel. In the antidiagonal situation, the
analogous composition has (in general) a non-trivial kernel. However, the
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kernel is finite; and, as remarked above, it is “Eisenstein.” This implies, as
already noted, that the kernel does not intersect the groups which interest
us.

Pulling back Jo(N)[m] to Jo(M), we find a subgroup W of Jo(M)[`] such
that

Jo(N)[m] = {α(x, x) |x ∈ W }.

The Frobenius element Frobq of Gal(Q/Q) acts on W as −1. Viewing W
as a group of points on Jo(M)/Fq

, we see that the Frobenius endomorphism

of Jo(M)/Fq
acts on W as −1. Since q ≡ 1 (mod `), the Verschiebung

endomorphism of Jo(M)/Fq
acts, as well, as −1 on W . By Lemma 1, all

points (x, x) with x ∈ W lie in the kernel of π ◦ α. Thus Jo(N)[m] (viewed
as a group of points of Jo(N)/Fq

) lies in the kernel of π/Fq , which is the torus

T . Therefore, we have Jo(N)[m] ⊂ Hom(L/mL, µ`). It follows that L/mL
has dimension greater than 1.

2 Shimura Curves

The principal aim of this section is to prove Theorem 3. We return to the
notations introduced in the Introduction. Thus p and q are distinct primes,
J is the Jacobian of the Shimura curve introduced earlier, T = Tpq is the
Hecke algebra at level pq, and m is a maximal ideal of T. We assume that m
is new and prime to 2pq, and that the representation ρm is irreducible. We
suppose that p and q have been ordered so that ρm is ramified at p. Our goal
is to investigate the dimension of J [m] over k = T/m.

To achieve this goal, we will apply the discussion of §1 in the case where
M = p, i.e., N = pq. We shall give Jo(q)

2 the unique T-action which is
compatible with the action of T on Jo(pq) and the analogue β : Jo(q)

2 →
Jo(pq) of the degeneracy map α : Jo(p)2 → Jo(pq). Then T acts on each of
the abelian varieties J , Jo(pq) and Jo(q)

2.
Use the notation J , previously employed for the Néron model of Jo(N),

for the Néron model of J over Qp. Its special fiber J/Fp is an extension of a
finite group Ψ by its connected component Jo

/Fp
, which is a torus (cf. [12], §4).

Write Y for the character group of this torus (computed over an algebraic
closure Fp of Fp), so that the torus itself becomes Hom(Y,Gm). Let L be the
character group which is introduced in that §, and let X be the analogue of L
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for the abelian variety Jo(q)
2. Note that X and L are defined with reference

to an algebraic closure of Fq, while Y has just been defined with reference
to an algebraic closure of Fp. We suppose from now on that these algebraic
closures have in fact been selected as algebraic closures of the residue fields
Fq2 and Fp2 of the maximal order O which was used in the definition of J .
The ring T acts by functoriality on L, Y and X.

Theorem 5 There is a natural T-equivariant exact sequence

0 → Y → L
β∗
→ X → 0. (3)

This theorem is proved as Theorem 4.1 of [12], although the notations
there are somewhat different. In [12], the group X is called “X ⊕ X,” the
symbol X being reserved for the character group attached to Jo(q). Further,
Y is defined as the kernel of the map from L to X; the content of the theorem
is that the character group attached to J may be identified with this kernel.
Finally, the Hecke algebra appearing in [12], Th. 4.1 is of necessity the formal
polynomial ring T̃ on symbols representing Hecke operators, since it is only
after proving this theorem that one knows that T̃ operates on J through its
quotient T.

In [12], the map Y → L appears to depend on a certain number of choices.
This is not very surprising in view of the fact that the very definition of Y
depends on the choice of an algebraic closure of Fp, while L is defined in terms
of an algebraic closure of Fq. On the other hand, all characters in Y and L
are in fact defined over the quadratic subfields of Fp and Fq, respectively.
Thus, it is reasonable to hope that a canonical map Y → L can be defined
with these quadratic subfields as initial data. The main content of [14] is to
realize this hope. In particular, [14] shows that a canonical map Y → L can
be given when Fq2 and Fp2 are chosen as the residue fields of O. This is the
choice that we have made.

Proposition 2 We have 1 ≤ dimk Y/mY ≤ 2. The dimension is 2 if and
only if ρm is unramified at q and Frobq acts in ρm as ±1.

Proof . The localization Xm of X at m is 0. Indeed, suppose that Xm is non-
zero. Then m is p-old in the sense that it arises by pullback from the p-old
quotient of T (which can be defined as the image of T in the endomorphism
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ring of Jo(q)
2). This shows that ρm is modular of level q, which implies that

ρm is unramified at p. However, according to our ordering of p and q, ρm is
ramified at p.

The sequence (3) thus shows that Lm and Ym are isomorphic. In partic-
ular, we have L/mL ≈ Y/mY . Our proposition thus follows from Proposi-
tion 1.

We next recall the interpretation of Ψ in terms of the monodromy pairing
on Y [5]. As recalled in [12], §1, there is an interpretation of Ψ as the cokernel
of an injection µ : Y ′ → Hom(Y,Z), where Y ′ is the analogue of the group Y
for the abelian variety dual to J . Since J = Pico(C) is naturally isomorphic
to the dual of J (i.e., to the Albanese variety of C), we have an isomorphism
Y ≈ Y ′. This isomorphism is compatible with the functorial actions of T on
Y and Y ′. Indeed, to check this one must show that all Hecke operators Tr

(with r prime) are fixed under the Rosati involution on End(J) coming from
the usual principal polarization on the Jacobian J . This is a standard fact
for the generators Tr of T with r prime different from p and q. For r = p
and r = q, we use the interpretation of Tr as −wr, plus the fact that the
involution wr is its own transpose.

We thus have an exact sequence of T-modules

0 → Y
µ→ Hom(Y,Z) → Ψ → 0. (4)

To say that µ is T-equivariant amounts to the statement that the bilinear
pairing ( , ) associated with µ satisfies (Ty1, y2) = (y1, T y2) for T ∈ T and
y1, y2 ∈ Y .

We recall that ` is the characteristic of k = T/m.

Proposition 3 The k-dimensions of Y/mY and (Y/`Y )[m] are equal.

Proof . Consider the map “multiplication by `” on the terms of the exact
sequence (4). Using the Snake Lemma, we get a four-term sequence

0 → Ψ[`] → Y/`Y → Hom(Y/`Y,Z/`Z) → Ψ/`Ψ → 0. (5)

Further, the localization of Ψ at m is 0. Indeed, the exact sequence of [12],
Theorem 4.3 gives after localization a sequence

Xm → Ψm → Em → 0, (6)
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where E is a quotient of the component group attached to the Néron model
of Jo(pq) at q. Since this component group is Eisenstein ([12], Th. 3.12), we
have Em = 0. Also, Xm = 0, as was already noted.

It follows that localization of (5) gives an isomorphism of the localizations
at m of the two middle terms. Now take kernels of m (i.e., “[m]”) on both
sides, and use the easily verified fact that these kernels may be identified
with the kernels on the two middle terms before localization. This gives an
isomorphism between (Y/`Y )[m] and Hom(Y/mY,Z/`Z), which implies, in
particular, the desired dimension equality.

Let ν again be the multiplicity of ρm in J [m], so that dimk J [m] = 2ν.
In view of Proposition 2, the following result will complete the proof of
Theorem 3.

Proposition 4 We have ν = dimk Y/mY ; i.e., dimk J [m] = 2 dimk Y/mY .

Proof . Because J is purely toric at p, there is an exact sequence of T-modules

0 → Hom(Y/`Y, µ`) → J(Qp)[`] → Y/`Y → 0. (7)

This sequence is noted in [9], (3.3.1), and can certainly be deduced easily
from [5]. In particular, the inclusion of Hom(Y/`Y, µ`) in J(Qp)[`] is an
analogue for J of the inclusion (2) for Jo(N). The sequence (7) is compatible
with the natural action of Gal(Qp/Qp) on all terms; in particular, the action

of Gal(Qp/Qp) on Hom(Y/`Y, µ`) is unramified. Taking kernels of m yields

0 → Hom(Y/mY, µ`) → J [m] → (Y/`Y )[m]. (8)

By Propositions 2 and 3, the dimensions of Hom(Y/mY, µ`) and (Y/`Y )[m]
are equal, with the common value being 1 or 2. Clearly, if ν > 1, then
ν = 2 and the common dimension is 2. Assume that ν = 1, so that the
dimension of J [m] is 2. If Y/mY does not have dimension 1, then (8) shows
that Hom(Y/mY, µ`) and J [m] are equal inside Hom(Y/`Y, µ`). In particular,
this gives J [m] ⊆ Hom(Y/`Y, µ`), which forces the action of Gal(Qp/Qp) to
be unramified. Since p and q were ordered so that this action is ramified, we
may conclude that dim Y/mY = 1.
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3 Appendix

The purpose of this Appendix is to justify the assertion about M which is
made in the course of the proof of Theorem 4. The justification was post-
poned until now because it is relatively technical. Also, it uses material which
is close in spirit to that of §2. For example, it makes use of a generalization of
the exact sequence (3) to the case of the Jacobian of a Shimura curve made
with level structure.

To be more precise, let M , q, and Q be the positive integers occurring
during the course of the proof of Theorem 4. Then Q and q are distinct
primes, and they are prime to M . Let O be a maximal order in a rational
quaternion algebra of discriminant qQ, and let C now be the Shimura curve
associated with the moduli problem of classifying abelian surfaces A which
are furnished with an action of O and an O-stable subgroup of A which is
isomorphic to (Z/MZ)2 as an abelian group. The Hecke ring TMqQ acts on
J = Pico(C), and this action cuts out the “qQ-new quotient” of TMqQ ([12],
4.2).

Now the maximal ideal M which was constructed in the proof of Theo-
rem 4 is qQ-new by Theorem 7.3 of [12]. This implies that the kernel J [m]
is non-zero. The residue field k of m coincides with the residue field of M;
therefore J [M] is naturally a k[Gal(Q/Q)]-module. By the Eichler-Shimura
relations for J , and the argument of Mazur which was repeatedly cited, the
semisimplification of J [M] is a direct sum of copies of the representation V
giving ρm. In particular, we may realize V as a submodule of J [M]. Be-
cause V is by assumption unramified at q, we may identify V with a group
of division points on the fiber J/Fq at q for the Néron model for J .

This fiber is an extension of a component group Ψ by a torus Hom(Y,Gm).
Let L be the character group of the toric part of Jo(MqQ)/FQ

, and let X
be the character group of the toric part of Jo(MQ)2

/FQ
. Then the exact

sequence (3) again may be constructed with these new definitions of Y , X,
and L. Further, the group Ψ fits into an exact sequence which gives after
localization at M the following analogue of (6):

XM → ΨM → EM → 0.

As in the proof of Proposition 3, the group EM vanishes.
These considerations imply that XM is non-zero. Indeed, suppose that

XM is 0. Then Ψ[M] = 0, so that the kernel of M on the fiber J/Fq coincides
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with Hom(Y/MY,Gm). This kernel is of k-dimension at least 2 because it
contains the group V . Hence dim Y/MY ≥ 2. From (3) and the vanishing
of XM, we then get dim L/ML ≥ 2. As in the proof of Proposition 1, this
inequality implies that FrobQ acts in ρm as a scalar ±1. However, we chose
Q so that FrobQ acts in ρm as a complex conjugation; in particular, it does
not act as a scalar.

Knowing that XM is non-zero gives us the information that M arises
by pullback from the image of TMqQ in End(Jo(MQ)2). (We term this
image the “q-old quotient” of TMqQ.) In particular, we may realize the
TMqQ[Gal(Q/Q)]-module V as a group of division points of Jo(MQ)2. Since
this group is unramified at Q, we may identify it with a group of divi-
sion points on Jo(MQ)2

/FQ
. The group of division points in fact lives in

the connected component of 0 in Jo(MQ)2
/FQ

, since the component group of

Jo(MQ)2
/FQ

is Eisenstein ([12], Theorem 3.12). It clearly cannot lie in the

toric part Hom(X,Gm) of Jo(MQ)2
/FQ

, since FrobQ does not act on V as a

scalar. Hence it maps non-trivially to the abelian variety quotient Jo(M)4
/FQ

of Jo(MQ)2
/FQ

. Therefore M arises by pullback from the quotient of TMqQ

which is cut out by Jo(M)4
/FQ

. As in [12], Theorem 3.11, this quotient is

the same quotient which acts faithfully on Jo(M)4, considered in the usual
way as an abelian subvariety of Jo(MqQ); in other words, it is the “qQ-old
quotient” of TMqQ.
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