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Suppose that p, u, v, and w are integers, with p > 1. If up + vp + wp = 0, then
uvw = 0.

Professor Andrew Wiles of Princeton University deduced this form of Fermat’s
Last Theorem at the conclusion of a series of three lectures during the June, 1993
workshop on Iwasawa theory, autmorphic forms, and p-adic representations at the
Isaac Newton Institute for Mathematical Sciences in Cambridge, UK. Wiles had
given his series a suggestive, but ambiguous, title—“Elliptic curves, modular forms,
and Galois representations”—so that the audience had little inkling how the lec-
tures would conclude. Persistent rumors had been circulating for days; the tension
mounted as the series proceeded. The third lecture was attended by more than
sixty mathematicians, a fair number of them carrying cameras to record the event.

In this last lecture, Wiles announced that he had proved Taniyama’s conjecture—
an enormously important conjecture in arithmetical algebraic geometry—for a large
class of elliptic curves over Q. These are the so-called “semistable” elliptic curves,
those with square-free conductor. Most people in the audience knew that Fermat’s
Last Theorem would be a consequence of this result. Although Fermat’s Last
Theorem holds great fascination for amateurs and professionals alike, the Taniyama
conjecture is ultimately of much greater significance for modern mathematics.

Yutaka Taniyama’s conjecture, to the effect that every elliptic curve over Q is
modular, was first proposed in somewhat tentative form at the Tokyo-Nikko confer-
ence in the mid 1950s. Its statement was refined through the efforts of G. Shimura
and A. Weil; it has been known, variously, as Weil’s conjecture, the Shimura-
Taniyama conjecture, and so on. In its usual formulation, this conjecture associates
objects of representation theory (modular forms) to objects of algebraic geometry
(elliptic curves). It states that the L-series of an elliptic curve over Q, which mea-
sures the behavior of the curve mod p for all primes p, can be identified with an
integral transform of the Fourier series derived from a modular form. Taniyama’s
conjecture is a particular case of the “Langlands philosophy,” a web of interrelated
conjectures made by R. P. Langlands and his colleagues.

Although the Langlands conjectures require a substantial background in auto-
morphic forms, Taniyama’s conjecture has been rephrased in such a way that only
complex-analytic maps appear [7]. One considers elliptic curves over Q up to Q-
isomorphism: they are those compact Riemann surfaces of genus one which may be
defined by polynomial equations with rational coefficients. Taniyama’s conjecture
states that for each such surface S, there is a congruence subgroup Γ of SL(2,Z) and
a non-constant analytic map Γ\H → S, where H is the complex upper half-plane.
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The Fermat-Taniyama connection grew out of a 1985 Oberwolfach lecture by
G. Frey, who pointed out that a non-trivial solution to ap + bp = cp (with p an
odd prime) permits one to write down a semistable elliptic curve which does not
appear to satisfy Taniyama’s conjecture [2, 3]. Frey’s curve is the elliptic curve E
given by the deceptively simple cubic equation y2 = x(x − ap)(x + bp). (It might
be necessary to effect a preliminary adjustment of (a, b, c) before writing down the
curve.) In a manuscript which he distributed in Oberwolfach, Frey outlined an
incomplete proof that his curve was not modular, i.e., that one has the implication
“Taniyama ⇒ Fermat.” He expected that his proof would be completed by experts
in the theory of modular curves.

Frey begins with the observation that once E is modular, so is its group E[p] of p-
division points. This means that E[p], viewed as an algebraic group over Q, can be
embedded in the Jacobian of the algebraic curve over Q canonically associated with
an appropriate quotient Γ\H. A pair of conjectures, which Serre formulated after
learning of Frey’s construction, imply then that E[p] is associated with a specific
congruence subgroup Γ0(2) of SL(2,Z) (see [10, 11]). This is absurd because the
Jacobian of Γ0(2)\H is zero.

In Serre’s conjectures, I recognized a generalization of a problem that I had
formulated while reading B. Mazur’s article [5]. I succeeded in proving the con-
jectures in July, 1986, approximately one year after they were made [8, 9]. My
announcement that I had proved “Taniyama ⇒ Fermat” convinced the mathemat-
ical community that Fermat’s Last Theorem must be true: we all expected that
Taniyama’s conjecture would someday be a theorem. It was generally accepted,
however, that a proof of Taniyama’s conjecture was far from imminent.

Oblivious to the received idea that Taniyama’s conjecture was inaccessible, Wiles
began working on his proof as soon as he learned that Fermat was a consequence of
the conjecture. The proof would ultimately incorporate results and techniques from
his previous works (including joint articles with J. Coates and with Mazur), and
from the publications of G. Faltings, R. Greenberg, H. Hida, V. Kolyvagin, Mazur,
K. Ribet, K. Rubin, J. Tilouine, to cite just a few names. A major stumbling block
for Wiles was removed after he received a preprint by M. Flach (see [1]).

The following paragraphs outline the proof that Wiles sketched in his Cambridge
lectures. The details of the proof are contained in a 200-page manuscript, which
Wiles intends to release to the mathematical public in the coming weeks.

To show that a semisimple elliptic curve E/Q is modular, Wiles fixes an odd
prime `, which in practice is taken to be 3 or 5. Associated to E is the `-adic repre-
sentation ρ` : Gal(Q/Q) → GL(2,Z`) gotten by considering the action of Gal(Q/Q)
on the `-power division points of E. (For background, the reader may consult any
of the recent texts on elliptic curves, such as [12].) The elliptic curve E satisfies
Taniyama’s conjecture if and only if ρ` is “modular” in the sense that it is associ-
ated to a weight-two cuspidal eigenform in the usual way. The representation ρ`

“looks and feels” modular in that it has the right determinant and satisfies some
necessary local conditions at ` and other ramified primes.

Roughly speaking, Wiles proves that a representation like ρ` is modular if it
“looks and feels” modular and reduces mod ` to a representation ρ` : Gal(Q/Q) →
GL(2,F`) which is (1) surjective and (2) itself modular. Condition (2) means that
ρ` lifts to some representation which is modular; in other words, we want ρ` to
be congruent to some modular representation. (In many cases, we can replace
“surjective” by “irreducible” in studying ρ`.)



RIBET’S ARTICLE FOR THE AMS NOTICES 3

Wiles’s argument is couched in the language of Mazur’s deformation theory [6].
Wiles considers deformations of a representation ρ satisfying (1) and (2), restricting
his attention to those deformations that could plausibly be related to cusp forms of
weight two. (He requires the determinant of the deformation to be the cyclotomic
character, and imposes a local condition at the prime `. For example, if ρ is
supersingular, he demands that the deformation be associated with a Barsotti-Tate
group, locally at `.) Wiles shows that the universal such deformation is modular,
thereby verifying a conjecture of Mazur. To do this, he must show that a certain
structural map ϕ of local rings, a priori a surjection, is in fact an isomorphism. It
is here that Wiles uses the ideas of Mazur, Hida, Tilouine, Flach, Kolyvagin and
others. To prove the injectivity of ϕ, Wiles was led to study the analogue of the
classical Selmer group for the symmetric square of a modular lift ρ of ρ, bounding
it by techniques derived from those of Kolyvagin and Flach. (In many cases, Wiles
calculates precisely the order of this Selmer group.)

After proving this key theorem, Wiles shows that E is modular. He examines
first the case ` = 3. A theorem of J. Tunnell [13], which incorporates results of
H. Saito-T. Shintani and Langlands [4], shows that ρ3 satisfies (2) whenever it
satisfies (1). It follows that E is modular whenever ρ3 is surjective.

A tantalizing problem, raised by Wiles at the close of his second lecture, is posed
by the case where ρ3 is not surjective. Suppose, for example, that ρ3 is reducible:
can we still win the endgame? Wiles explained his amazing solution to this problem
in the third lecture. Using the Hilbert irreducibility theorem and the Cebotarev
density theorem, he constructs an auxiliary semistable elliptic curve E′ whose mod 3
representation satisfies (1) and whose mod 5 representation is isomorphic to ρ5. The
construction succeeds because the modular curve X(5) has genus zero. Applying
his key theorem once, Wiles shows that E′ is modular. Therefore ρ5 is modular,
since it may be viewed as coming from E′. After a second application of the key
theorem, this time to ρ5, Wiles deduces that E is modular!

Wiles’s proof of Taniyama’s conjecture represents an enormous milestone for
modern mathematics. On the one hand, it illustrates dramatically the power of
the abstract “machinery” we have amassed for dealing with concrete Diophantine
problems. On the other, it brings us significantly closer to the goal of tying together
automorphic representations and algebraic varieties.
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