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APPENDIX:
TORSION POINTS OF ABELIAN VARIETIES
IN CYCLOTOMIC EXTENSIONS

by Kenneth A. Rier!)

Let k be a number field, and let k be an algebraic closure for k. For each prime
p, let K, be the subfield of k obtained by adjoining to k all p-power roots of unity

in k. Let K be the compositum of all of the K ,, i.e., the field obtained by adjoining

to k all roots of unity in k.

Suppose that A4 is an abelian variety over k. Mazur has raised the question of -

whether the groups 4 (K ) are finitely generated [4]. In this connection, H. Imai
[1] and J.-P. Serre [5] proved (independently) that the torsion subgroup of

A (K,)isfinite for each p. The aim of this appendix is to prove that more precisely

one has the following theorem, cf. [3], §II, Remark 3.

THEOREM 1. The torsion subgroup A (K).. .of A(K) is finite.

Let G be the Galois group Gal (E/k) and let H be its subgroup Gal (%/K). For

each positive integer n, let A [n] be the kernel of multiplication by nin A (E). For
each prime p, let V, be the Q,-adic Tate module attached to A. If M is one of
these modules, we denote by M the set of elements of M left fixed by H. Since
H is normal in G, M* is stable under the action of G on M.

Because of the structure of the torsion subgroup of A (ﬁ), one sees easily that
Theorem 1 is equivalent to the conjunction of the following two statements:

THEOREM 2. For all but finitely many primes. p, we have A [p]? = 0.

THEOREM 3. For each prime p, we have VY = 0.

Indeed, Theorem 2 asserts the vanishing of the p-primary part of A (K)o,
while Theorem 3 asserts the finiteness of this ' p-primary part. )

1) Partially supported by National Science Foundation contract number MCS 80-
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In proving these statements, we visibly have the right to replace k by a finite
extension of k. Therefore, using ((SGA 71], IX, 3.6) we can (and will) assume that
A/k is semistable. Next, consider the largest subextension k' of K/k which is
unramified at all finite places of k.

LEMMA. For each prime p, let L, bethe largest extension of k in K
which is unramified at all places of k except for primes dividing p and the |
infinite places of k. Then L, is the compositum KK,

Proof. Let A be the Galois group Gal (K/k), viewed as a subgroup of Z*.

We consider Z* as the direct product of its two subgroups Z* and [1 ZF. Let1
l#p
(resp. J) be the subgroup of 4 generated by the inertia groups of A for primes of k

which divide p (resp. which do not divide p). Then I is a subgroup of Z}¥, while J is
a subgroup of H Z}. The product I x J is the subgroup of 4 generated by all

inertia. groups of A. We have J = Gal (E/Lp), I x J = Gal (;/k’), and
Gal (E/Kp) =An ( H Z;"). Now Gal (E/k’Kp) is the intersection of the two
I#p

Galois groups Gal (E/k’) and Gal (E/K o) Putting these facts together, we
prove the desired assertion.

We now replace k by its finite extension k. With this replacement made, K,
becomes equal to L,. Furthermore, for odd primes p, the largest extension of k in
K which is unramlﬁed outside p and infinity and which has degree prime to p is

the field obtained by adjoining to k the p-th roots of unity in k.

Proof of Theorem 2. We shall consider only primes p which are odd,
unramified in k, and such that A has good reduction at at least one prime of k
dividing p. Let p be such a prime and v a prime of k over p at which A4 has good
reduction. Suppose that the G-module 4 [p]¥ is non-zero, and let W be a simple
G-submodule of this module. The algebra EndgW is a finite field F, and the
action of G on W is given by a character

b: G - F*

since the action of G on A [p]¥ is abelian. (Here the point is simply that G/H is an
abelian group.) In particular, the image of G in Aut (4 [p]) has order prime to p.
On the other hand, the character ¢ is unramified at primes of k not dividing p
because A/k is semistable. By the discussion following the lemma, we know that
¢ factors through the quotient Gal (k (u,)/k) of G ; here, 1, denotes the group of
p-th roots of unity. In particular, ¢ must have order dividing p — 1, so that its
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values lie in the prime field F,. Since W was chosen to be simple, its dimension
over F, must be 1; ie, W is a group of order p.

Let x: G — F} be the mod p cyclotomic character, i.e., the character giving
the action of G on p,. Since ¢ factors through Gal (k (u,)/k), we may write ¢ in
the form ", where n is an integer mod (p— 1). We claim that ncan onlybeOor 1.

To verify this claim, it is enough to check that it is true after we replace G by
an inertia group I in G for the prime v, since y is totally ramified at v. We remark
that W is the I-module associated to a finite flat commutative group scheme #~
over the ring of integers of the completion of k at v, since v is such that 4 has good
reduction at v. Because %~ has order p, the classification of Tate-Oort ([8],
especially pp. 15-16) applies to #". Because v is absolutely unramified, the
classification shows immediately that # is either étale or the dual of an étale
group. In the former case, I acts trivially on W;in the latter case, I acts on W via
x. This completes the verification of the claim.

Thus, if Theorem 2 is false, there are infinitely many primes p for which 4 [p]
contains a G-submodule isomorphic to either Z/pZ or to p,. Of course, the
former case can occur only a finite number of times, since 4 (k) is finite. One way
to rule out the latter case is to argue that whenever p,,is a submodule of 4 [p], the
group Z/pZ is a quotient of the dual of 4 [p], which is the kernel of
multiplication by p on the abelian variety 4” dual to A. In- other words, if p,

oceurs as a submodule of A [p], then there is an abelian variety isogenous to 4"
(and therefore in fact to A) which has a rational point of order p over k. Therefore
pis a divisor of the order of a finite group that may be specified in advance, viz.
the group of rational points of any reduction of A ata good unramified prime of k
of residue characteristic different from 2. (See the appendix to Katz’s recent paper
[2] for a discussion of thic point.)

Proof of Theorem3. Suppose that pisa prime such that V% is non-zero. We
again choose W to be an irreducible G- submodule (i.c., Q, [G]-submodule) of
V8. Because the action of G on W is abelian, and because W is simple, each
element of G acts semisimply on W. Since A4/k is semistable, it follows that the
homomorphism

p: G - Aut (W)

giving the action of G on W is unramified at all primes of k not dividing p.
Therefore, p factors through Gal (K ,/k) in view of the lemma and the subsequent
replacement k — k. In other words, starting from the hypothesis that the p-
torsion subgroup of A (K) is infinite, we have deduced that the p-torsion
subgroup of A (K,) is infinite.
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Of course, this situation is ruled out by the theorem of Imai and Serre
mentioned above. Nevertheless, we will sketch for the reader’s convenience an
argument which leads to a contradiction. Let v be a place of k dividing p, and let
D < G be a decomposition group for v. By ([SGA 71], IX, Prop. 5.6), the D-
module V, is an extension of D-modules attached to p-divisible groups over the
integer ring of the completion of k at v. Because of Tate’s theory [7], the
semisimplification V5 of the D-module V, has a Hodge-Tate decomposition.
(Here we should remark that submodules and quotients of Hodge-Tate modules
are again Hodge-Tate.) Since W is semisimple as a D-module (because
semisimple and abelian as a G-module), W may be viewed as a submodule of V5.
Therefore, W is a Hodge-Tate module. '

By ([6], III, Appendix), we know that p is a locally algebraic abelian
representation of G. Using this information, plus the fact that p factors through
Gal (K, /k), we find that there is an open subgroup G, of G with the following
property: the restriction of p to G, is the direct sum of 1-dimensional
representations, each described by an integral power x; of the standard
cyclotomic character y,,: G — Z¥. After replacing k by a finite extension, we may
assume that G, is G. Take a prime w of k which is prime to p and such that 4 has
good reduction at w. Let g € G be a Frobenius element for w. The eigenvalues of
p (9) will be integral powers of x,, (g), i.¢., of the norm Nw of w. However, by a well
known theorem of Weil, these eigenvalues all have archimedian absolute values
equal to (Nw)'/%. This contradiction completes the proof of Theorem 3.
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