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A Modular Construction of Unramified p-Extensions

of Q(up)

Kenneth A. Ribet* (Princeton)

§ 1. Introduction

An odd prime p is called irregular if the class number of the field Q(u,) is divisible
by p (u, being, as usual, the group of p-th roots of unity). According to Kummer’s
criterion, p is irregular if and only if there exists an even integer k with2<k<p—3
such that p divides (the numerator of) the k-th Bernoulli number B,, given by the
expansion

tot B,
=Y 2o,
EETRE i ey

The purpose of this paper is to strengthen Kummer’s criterion.

Let A be the ideal class group of Q(u,), and let C be the F,-vector space A/AP.
The Galois group Gal(Q/Q) acts on C through its quotient 4=Gal(Q(u,)/Q).
Since all characters of 4 with values in F;f are powers of the standard character

x: Gal@Q/Q)— 4> F}
giving the action of Gal(Q/Q) on MUp, the vector space C has a canonical decom-
position
C= @® CW)
imod(p—1)

where

C(y)={ceCloc=y'(o)cforall ceA}.

(1.1) Main Theorem. Let k be even,2 <k <p—3. Then p|B, if and only if C(x* ~%)=0.

In fact, the statement that C(y' ~¥)#0 implies p|B, is well known [8, Th. 3].
Its converse is also familiar as a consequence of the conjecture that p is prime to
the class number of the real subfield Q(u,)* of Q(u,) [8, p.434]. Thus the con-

*  Sloan Fellow, and visitor at LH.E.S.



152 K.A. Ribet

tribution of this paper is to prove that p|B, implies C(y* ~*)%0 without making
a supplementary hypothesis.

By a “functoriality” formula for the Artin symbol [20, Th.11.5, p.199],
this implication is equivalent to

(1.2) Theorem. Suppose p|B,. Then there exists a Galois extension E/Q containing
Q(u,) with the following properties:

E

|
Q) |G

|

Q

(@) The extension E/Q(u,) is unramified.
(b) The group H is a non-zero abelian group of type (p, ..., p), i.e., killed by p.
(c) If 0eG and teH, then

1 k

oto l=y(o) *-1.

In fact, we shall prove (1.2) with Q(u,) replaced by the unique subfield
Q12" ) of Q(u,) whose degree over Q is (p—1)/(p— 1, k—1). This subfield is
the field corresponding to the kernel in Gal(Q/Q) of x' ~*.

(1.3) Theorem. Suppose p|B,. Then there exists a finite field F 2 ¥, and a continuous
representation

p: Gal(Q/Q)— GL(2, F)

with the properties:

(i) p is unramified at all primes 1% p.

(ii) The representation p is reducible (over F) in such a way that p is isomorphic
to a representation of the form

1 *
(0 x"“‘) '
That is, p is an extension of the 1-dimensional representation with character y*~
by the trivial 1-dimensional representation.
(iii) The image of p has order divisible by p. In other words, p is not diago-
nalizable.

(iv) Let D be a decomposition group for p in Gal(Q/Q). Then p(D) has order
prime to p, i.e., p|D is diagonalizable.

1

Notice that (1.3) implies (1.2). Indeed, if p satisfies the above properties, then
the image of p is the Galois group of an extension E/Q such that E is of type
(p, ..., p) over the field Q(u®“ ~¥). Now E/Q is unramified outside p by (i), and the
(p, ..., p)layer isa non-trivial extension by (iii). This (p, ..., p) extension is unramified
at (the unique prime over) p by (iv); hence it is everywhere unramified. Finally, the
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conjugation formula (c) of (1.2) follows from the matrix identity

(a b) (1 x) (a b)"‘_-(l ad"x)
o0 d\o t/\o 4/ "\o 1 )

In proving (1.3) we begin by “finding” p in the p-adic representation associated
with the modular variety J; (p) attached to forms of weight 2 on [ (p). Assuming

that p|B,, we construct a normalized eigenform f=3) a,q" in the space of such
cusp forms which satisfies

aq=1+F"'mod./

for all primes [ p, where .# is a certain fixed ideal over p in the field generated
by the coefficients a,. This leads to our p, and by the time we have constructed
p we know from the construction that (i), (ii), and (iii) of (1.3) are satisfied by p.
It then remains to prove (iv). We then use the theorem of Deligne-Rapoport
that the variety J; (p)/Jo(p) acquires everywhere good reduction over the real sub-
field Q(u,)* of Q(u,) [5]. This implies that, locally at p, ﬁlGal(Q/Q(u,,)*) is the
representation attached to a finite flat commutative group scheme of type (p, ..., p)
over the integer ring of the completion Q(u,)* ® Q,. We note especially that the
absolute ramification index of this completion is (p—1)/2 < p—1; this enables
us to prove (iv) by applying results of Raynaud [15] on group schemes of type
®,....p)

Our proof is motivated by two key ideas of Serre. The first idea (cf. [16]) is
that the divisibility of B, by p implies a congruence similar to the above one for
some cusp form of weight k on SL(2,Z); hence a representation such as our p
should be obtainable from the Deligne representation p, attached to forms of
weight k on SL(2, Z). Although our methods “find” in p, a representation p which
satisfies the first three properties of (1.3), a proof that this representation satisfies
(iv) would seem to require unknown Galois-theoretic properties of étale cohomo-
logy. This leads to the second idea of Serre, that (mod p) representations coming
from p, ought to be visible (at least up to twist) on the Jacobian variety J(p).
(A similar idea is the starting point in a recent paper of Koike [10].) This is what
led us to look at forms of weight 2.

We hope that our method will apply also to more general Kummer-like
criteria, such as that given by Greenberg [7]. Some relevant computations have
been made by Yamauchi [21].

The author wishes to acknowledge the invaluable assistance of N. Katz during the time this work
was carried out. He is further indebted to J. Coates, P. Deligne, B. Mazur, and J-P. Serre for many
helpful conversations.

§ 2. Reductions of Reducible Representations

Let K be a finite extension of Q,. Let ¢ be its integer ring, F the residue field,
and 7 a uniformizing parameter. Let V be a free module of rank 2 over K. A lattice
in Vis a free O-module of rank 2 in ¥V which generates V over K.
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We suppose given a representation
p: G— GL(V)

of a group in V such that G leaves stable some lattices of V. (This latter condition
is always satisfied if G is compact and p is continuous, for example.) If T< V is
stable by G; then G acts on T/nT, which is free of rank 2 over F. The associated map

5: G— GL(T/xT)

will be called the reduction of p attached to T. It is known that the semi-simpli-
fication of p (as an F-representation) is independent of the choice of T [4, 30.16],
so that p is unique if one reduction (and hence every reduction) is simple.

We consider, however, the opposite situation, where the reductions are all
reducible. Their semi-simplifications are then described by two characters ¢,
¢,: G— F* which do not depend on the choice of T. A given reduction may be
written matricially in one of the forms:

(‘Pl * ) ((Pl 0)
0 @)’ * 0
It is diagonalizable (i.e., semi-simple) if and only if its image has order prime to p.

(2.1) Proposition. Suppose that the K-representation p is simple but that its
reductions are reducible. Let ¢, and ¢, be the characters associated to the reductions
of p. Then G leaves stable some lattice L=V for which the associated reduction is of

the form (<P1 * ) but is not semi-simple.
0 o,

Proof. Choose a G-stable lattice of V' together with an (-basis of this lattice.
Then p may be viewed as a map G— GL(2, ). Any matrix M eGL(2, K) such
that M p(G) M ~! = GL(2, 0) then defines another G-stable lattice together with a
basis of it. The reduction attached to this new lattice is the map

G— Mp(G)M ' GL(2, 0) - GL(2, F).

To prove the proposition, we do some calculations based on the formula
a nb a b
P Pi= ( )
(C d ) ne d)’
. . (10

where P is the matrix ( 0 n) .

We first note that we may assume at the outset that the reduction of the given
map G — GL(2, 0) s of the form ("’1 * ) rather than the form ("" * ) , because

0 o, * 0,

if the latter occurs we can divide the upper-right corner entries by 7 and multiply
the lower-left corner entries by n using the formula above. Let us make this

assumption together with the following one: each reduction p of the form ( q())’ (; )
2
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is semi-simple. With these assumptions, we will show that p is itself reducible,
and thus prove (2.1) by contradiction.
Set My=1I (2 x2 identity matrix). Inductively, we will define a converging

. 1 ¢ .
sequence of matrices M;= ( 0 1) such that M;p(G)M;! consists of elements of

GL(2, 0) whose lower-left corner entries are divisible by n and whose upper-right
corner entries are divisible by n'. This will prove that p is reducible because the

1t . . :
matrix M = ( 0 1) with t=Limt; will then be such that Mp(G)M ~! consists of

matrices whose upper-right corner entries are 0.

According to the conjugation formula above, the induction assumption may
be rephrased as follows: P'M;p(G)M; ! P~ consists of integral matrices whose
lower-left corner entries are divisible by n'*!. With this assumption, the rep-
(41
0
o+ p(o) (mod =) is of this form. The representation in question is then by assump-
tion semi-simple, so we may choose an element u of @ such that the matrix

resentation g+ P'M;p(c) M; ! P~ (modn) is in the form ( *) because
2.

1 .
U= ( 0 I;) diagonalizes the (mod n) representation. That is, we can find a u in ¢

so that
UP'M;p(G)M;'P-iU!

consists of matrices whose upper-right corner entries are divisible by n (and
whose lower-left corner entries are still divisible by n'*!: conjugation by U leaves
unchanged the lower-left corner of any matrix). This gives that

(P='UP'M) p(G)(P~'UP'M,)~"

consists of integral matrices whose lower-left corner entries are divisible by =
and whose upper-right corner entries are divisible by n‘*'. Thus we may continue
the induction by setting

S 1 t,4+7
M,»+1=P"UP‘M,.=( '”“)

0 1

This formula makes visible the fact that {M,} converges.

§ 3. A Congruence between a Cusp Form and an Eisenstein Series

Let p be an odd prime and let 1, _, be the group of complex (p — 1)-st roots of unity.
We consider modular forms of weights 1 and 2 on I (p). For a character

& (Z/pZ)*— p,_,

(possibly the trivial one) we say that a form is of type ¢ if it satisfies the equation

e -




156 K.A. Ribet

for all (z Z) in Iy(p). (We lift ¢ as usual to a function on Z.) A form of type ¢ is
-1
a cusp form if its g-expansion and that of f (2 0) both commence with 0; if

the g-expansion of f commences with 0, then we say that f is a semi cusp form.
We will have need of the Eisenstein series. Let ¢ be a non-trivial even character.
Then the two series

Gy,=L(—1,92+ Y Y eddq",

nz1 din

S2..= ), ) e(m/d)ydq"
n=1 din
are each of weight 2 and type ¢. The space of modular forms of weight 2 and
type ¢ is generated by the cusp forms and these two series, while the space of semi
cusp forms of weight 2 and type ¢ is generated by s, , and the cusp forms. When ¢
is the trivial character, we still have an Eisenstein series G, , as above; it may be
written

In weight 1 we use the series

G...=LO0,92+ Y Yeldq"

n21 d|n

when ¢ is an odd character. The Eisenstein series are eigenforms for the Hecke
operators T (n), at least when n is prime to p.

Now fix a prime ideal p|p of the field Q(u, ;). Then let w: (Z/pZ)* > p,_,
be the unique character which satisfies

w(d)=d (mod p)
for all deZ.

(3.1) Lemma. Let k be even, 2<k<p—3. Then the modular forms G, ,-» and
Gy, k-1 have p-integral g-expansions in Q(u,_,) which are congruent modulo p
to the g-expansion

—B/2k+ Y Yd g

nx1 d|n

Proof. Aside from the constant terms of the series, the assertion follows immediately
from the choice of w. To prove the assertions about constant terms, we use the
expresssions

—1pz1
LO.8)=— X s()(n—p/2),
n=1

—1p-1
L(=1,8) = 5 % en)(w® = pn+p*/6)
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of the L-values as generalized Bernoulli numbers, valid for any character ¢ (mod p),
cf. [11]. Using the congruence w(n)=n” (mod p?), we find

p—-1
pLO, 0* 1= =Y n'*7*=D (mod p?),

n=1
—1p1
pL(—1, wk—z)ET Y. n?*P%=2 (mod p?).
n=1

On the other hand, if ¢ is a positive even integer we have

p—-1
pB,= Y n'(mod p?)
n=1
according to [1, (8.8), p. 385]. The desired result follows by combining these facts
with the Kummer congruence [1, Th. 5, p. 385].

(3.2) Corollary. Let k be as above, and let n and m be even integers,2<n,m<p—3,
satisfying n+m=k mod(p — 1). Then the product

Gy on-1 Gy -1

is a modular form of weight 2 and type w"~? whose g-expansion coefficients are
4 q-exp

p-integers in Q(u,_,). Its constant term is a p-unit provided that neither B, nor B,
is divisible by p.

Proof. Clear.

(3.3) Theorem. Let k be as above. Then there exists a modular form g of weight 2
and type w*~* whose g-expansion coefficients are p-integers in Q(u,_,) and whose
constant term is 1.

Proof. It suffices to construct a g whose constant term is a p-unit. We first try the
Eisenstein series G, ,x-2. By (3.1), this form will commence with a unit coefficient
unless p|B,. If this happens, we then try the products Gy ,n-1 Gy ,m-1 as in (3.2).
If none of these products works, then for every pair n, m as in (3.2) at least one of
the two numbers B,, B,, is divisible by p. Now let ¢ be the number of even integers n,
2<n<p-3, such that p divides B,. Then elementary reasoning shows that
t=(p—1)/4 if the theorem is false. However, we have p‘|h}, where the integer hj
is the so-called first factor of the class number of Q(u,) (see below). Hence to prove
the theorem it will suffice to prove that

—-1)/4
h;‘ < p(p ) .

According to Carlitz and Olson [3], we may write h* in the form +D/p®~*'2,
where D is a certain determinant of dimension (p— 1)/2 whose entries are integers
between 1 and p—1. As Carlitz has pointed out [2], Hadamard’s inequality
then immediately gives

h: < p(p+3)/42—(p—1)/4'

This implies the desired inequality because h¥=1 for p<19 and p<2?~1* for
p>19.
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To prove that p’ divides h} we use the expression

p—1

h* =ap [TLO o),
k=2
keven

where o is a certain power of 2 [7, p. 250]. It will be enough to show that p’ divides
h} since p is unramified. Now, by the L(0, ¢) formula given above, the quantity
p-L(0, w?~2) is an algebraic integer. Thus what we want follows from (3.1): if

p|B, with 2<k<p— 3, then p divides L(0, w*?).
Remarks. 1. Masley and Montgomery [13] give the bounds

(2n)~P/2p(P—25)/4 < hp* < (2n)_p/2p(p+31)/4

for primes p bigger than 200. This shows that the elementary upper bound for h}
that we use is in fact reasonably sharp.

2. Theorem (3.3) may be proved more conceptually by methods of Mazur [14],
using the Deligne-Rapoport study of the modular curve X, (p) at the prime p
[S, p. DeRa-108]. One sees by Mazur’s technique that g may be chosen so as to
vanish at the cusp 0 of X, (p).

From this point on, we fix an even integer k (2<k=<p—3) and make the
assumption that p|B,. We put e=w*~2 Since B,=1/6, k is in fact at least 4;
hence ¢ is a non-trivial even character. All modular forms will now be of weight 2
and type e.

(3.4) Proposition. There exists a semi cusp form f=Y. a,q" such that the a, are
p-integers in Q(u, _,) and such that nzl

f=Gy=G,,,modp
in g-expansions.

Proof. Take f=G, ,—c-g, where c is the constant term of G, ,. Then f is a semi
cusp form by construction, and we have f=G, , because p|c by (3.1) and the
assumption p|B,. Also G, ,=G, by (3.1).

(3.5) Proposition. There exists a non-zero cusp form f' of type ¢ which is an eigen-
form for all Hecke operators T, with (n, p)=1 and which has the property that for
each prime 1= p the eigenvalue A(l) of T (I) acting on ' satisfies

AD=1+F"1=1+¢(l)mod.#,

where 4 is a certain prime (independent of 1) lying over p in the field Q(u,_, ; A(n))
generated by the eigenvalues over Q(u,_,).

Proof (cf. Koike [9]). The semi cusp form f of (3.4) is a mod p-eigenform for the
Hecke operators, because it is congruent to the eigenform G, ,. Its mod p-eigen-
values are congruent to those desired of f'. Hence we can apply the Deligne-Serre
lemma [6, 6.11] to get a semi cusp form f” as in the statement of the proposition.
We then must show that this f” is in fact a cusp form. But as remarked above,
the space of semi cusp forms is generated by the space of cusp forms and the
eigenform s, ,. Hence it suffices to show that f’ cannot be s, .. However the eigen-
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value of T'(]) acting on s, , is &(/)+ [, and it is clear that we cannot have
e()+1=1+1le()mod p
unless (/)= 1. Since ¢ is a non-trivial character, this gives what is wanted.

(3.6) Proposition. Any form f' as in (3.5) is an eigenform for all Hecke operators
T (n) (including those for which p\n). Hence, after replacing f' by a multiple of f”,
we have

1= 3 e

with f'|T(n)=A(n) f.

Proof. This follows directly from (3.5) and the theory of newforms (see, e.g., [12,
Th. 3]) since there are no non-zero forms of weight 2 on SL(2, Z).
We restate what we have concluded from the hypothesis p|B,:

(3.7) Theorem. There exists a cusp form f= Y a,q" of weight 2 and some type &
nx1

which is a normalized (a, =1) eigenform for all Hecke operators T (n) and which

satisfies

a=1+0F"'=1+¢()lmodp

for all primes 1= p, where p is a certain prime ideal over p in the field K generated
by the coefficients of f, which does not depend on l.

Note that we may view ¢ as a (non-trivial) character with values in K*, since
formulas for the Hecke operators show that the values of ¢ lie in the field gen-
erated by the coefficients of f.

§ 4. Construction and Study of the (mod p) Representation

We retain the notations f, p, K of (3.7). In addition, we let ¢ be the integer ring
of K, 0, its completion at p, K, the completion of K at p, F the residue field of ¢,
nel, a uniformizing parameter.

We let 4/Q be the abelian variety attached to f by Shimura’s construction
[18, Th. 7.14]. We recall the following properties of A:

(i) The dimension of A4 is equal to the integer [K:Q], and K is included as a
subring of the Q-algebra (EndyA)®Q of endomorphisms of A defined over Q.
Thus the p-adic Tate module

V,=V,(4) ® K,
K®Q,

is a free K ,-module of rank 2 on which Gal(Q/Q) acts.

(i) The variety A is a factor (over Q) of the quotient of the modular variety
J,(p) by the image in J; (p) of the variety J,(p). In particular, 4 has good reduction
at all primes /4 p so that ¥, is unramified at all such primes. Furthermore, by a
theorem of Deligne-Rapoport [5, Ex. 3.7 (i), p. DeRa-113], 4 acquires everywhere
good reduction over the real cyclotomic field Q(u,)*.
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(iii) (Eichler-Shimura relation [19, Th. 1.4]). If FeGal(Q/Q) is a Frobenius
element for a prime /< p, then the trace (resp., determinant) of its action on the
K,-vector space V,, is q, (resp., [ - £(])), regarded as an element of K.

Now we let p: Gal(Q/Q)—»AutK V, be the map arising from the action of
Gal(Q/Q) on V,. From (iii) we deduce that the determinant of p is the product ye,
where we now regard ¢ as a character of Gal(Q/Q) and where  is the standard
cyclotomic character

x: Gal(Q/Q)— Z} =K}
(4.1) Proposition. The K, representation p is irreducible.

Proof. Suppose otherwise. Then the semi-simplification of p, which is abelian,
is described by two characters p;, p,: Gal(Q/Q)— K. It is locally algebraic by
[17, p. III-20] (or else because it comes from an abelian variety), so that each p;
may be written as an integral power x™ of y on an open subgroup of an inertia
group for p in Gal(Q/Q). This implies that p,=x™¢;, where ¢; is a character of
finite order ramified only at p. Regarding the ¢; as Dirichlet characters, we have
(for I+ p) the equations

mrrg (1) ey () =1e(l),
a=g () I"+e() 1"

because of (iii). From the first equation we get n, +n,=1, so that one of the n;,
say n,, is at least 1. Therefore n, <0. Looking at the second equation, we now
see that |@,|=1—1 for all I+ p. When [= 7, however, this contradicts the “Riemann
hypothesis” |q| §2]/Z

From now on, we use y to denote the character
composition

3 ”

‘Y mod p,” namely the

Gal(Q/Q) - Z* — F} - F*.!

(4.2) Proposition. There exists an O,-lattice L<V, invariant by Gal(Q/Q) for
which the action of Gal(Q/Q) on L/nL may be descrlbed matricially by

1 *
(0 x"‘l)

and is furthermore not semi-simple.

Proof. In view of (4.1) and (2.1) it suffices to show that there exists a lattice T< ¥,
stable by Gal(Q/Q) for which the action of Gal(Q/Q) on T/nT is reducible in
such a way that its semi-simplification is given by the two characters 1 and y* .
In fact, let T be any 0,-lattice stable by Gal(Q/Q). By the Eichler-Shimura relation,
if [$p then a Frobenius element for [ acts on T/nT with trace a;(mod ) and
determinant /¢(]) (mod n). Because of (3.7) these numbers are respectively congruent
to I*~* 41 and /*~! (mod 7). By the Cebotarev Density Theorem, the trace and
determinant of the action of Gal(Q/Q) on T/nT are respectively 1+ y*~* and y*~!.

! Thus we return to the notation used in the Introduction
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According to the Brauer-Nesbitt Theorem [4, Th. 30.16], this implies the desired
assertion about T/nT.

Let us set M =L/nL. This will be the representation space for the p of (1.3).
In fact, property (ii) of this § together with (4.2) shows that the first three conditions
of (1.3) are satisfied by the representation. It remains only to verify the fourth
condition.

We consider the subgroup Gal(Q/Q(up)+) of Gal(Q/Q) corresponding to the
real cyclotomic field Q(u,)*. In this subgroup we consider a decomposition
group D for the unique prime of Q(u,)* lying over p. Since p4[Q(u,)*:Q], to
verify the last condition of (1.3) it suffices to prove that the action of D on M is
semi-simple, i.e. that the image of D in AutM has order prime to p. It will be
convenient to let E be the completion of the real cyclotomic field at p and to
identify D with Gal(E/E).

(4.3) Proposition. The Gal(E/E)-module M is the Galois module attached to a
finite flat commutative group scheme of type (p, ..., p) over the integer ring X of E.

Proof. After changing A by a Q-isogeny we may assume that ¢ operates on 4
and that M is isomorphic to the “kernel of p” on 4. This makes M isomorphic
to a submodule of the module of p-division points of 4. By the Deligne-Rapoport
theorem mentioned above, A acquires good reduction over E. Hence the module
of p-division points has the property asserted of M: it is the Galois module
attached to the scheme-theoretic kernel .«/, of the map “multiplication by p” on
the Neron model for 4 over #. Then M for its part is the Galois module attached
to the Zariski closure .# of M in o/, cf. [15,§2].

Before completing the proof that M is semi-simple as a D-module, we summarize
the properties of M that we will use:

(a) It is free of rank 2 over F,

(b) D acts trivially on a 1-dimensional subspace X of M and via the character
x (=x*') on the quotient Y=M/X.

(c) M is the module attached to a finite flat group scheme .# of type (p, ..., p)
over 4.

(4.4) Theorem. The image of D in Aut M has prime-to-p order.

Proof. Let & be the Zariski closure of X in .#. The D-module attached to & is the
trivial module X, and the absolute ramification index of E is (p—1)/2 < p—1.
Hence & is a non-zero constant group scheme over £ by the classification theorem
of Raynaud [15, Th. (3.3.3)]. Hence .# cannot be connected, since it has the étale
subgroup Z.

Take the canonical exact sequence of D-modules

0->M°>M— M0,

where M? is associated with the largest connected subgroup of .# and M* with
the largest étale quotient. Because M has a Galois-compatible F-vector space
structure, ./ is a “group scheme in F-vector spaces” by the theorem of Raynaud
mentioned above. In particular, the above exact sequence is a sequence of F-vector
spaces.
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Now M is not all of M because .# is not connected. And M° 40 because M*'
is unramified but M is not (since it has the quotient Y). Thus M° is 1-dimensional.
Further the fact that M is unramified and Y isn’t shows that the image of M°
in M is distinct from X. Hence D leaves stable both X and a line in M which is
distinct from X. Since any element of order p in Aut M leaves stable a unique line,
this proves what is wanted.
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