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Congruence Relations between Modular Forms

1. This article is concerned with the notion of congruence primes in the
theory of modular forms, as in the work of Doi and Hida [1], Doi and Ohta
[2], and Hida [3], [4], [6]. Our main aim is to point out how the explicit
caleulation of such primes, in a particular example involving forms of
weight 2, leads to a non-trivial problem concerning finite subgroups of
Jacobians of modular curves.

Let & = 2 and N = 1 be integers, and take § to be either the complex
vector space of holomorphic modular forms or the vector space of holo-
morphie eusp forms of weight % on one of the classical modular groups
ILy(N) or Iy (). We denote by S(Z) the lattice of forms in S with integral
g-expansion, and by T, (for n > 1) the »™ Hecke operator on S.

Suppose that we are given a direct sum decomposition

8 =X0Y (1.1)

in which X and XY are both stable under the 7', and both generated by
their intersections with S(Z). A prime number p is a congruence prime
relative to this decomposition if there is a non-trivial modp congruence
linking X to Y: there exist

feXnB(Z), geYnS(Z)
such that
f =g modpS(Z), [ =0 modpS(Z).
For example, taking S to be the space of weight-% modular forms
on SL(2,Z), we may choose X (resp. ¥) to be the space of Eisenstein

geries (resp. cusp forms) in 8. The congruence primes are those prime
numbers which divide the numerator of the constant term of the normali-
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zed Eisenstein series of weight %, i.e., the fraction B, /2k, where B, is the
k™ Bernoulli number. Thus congruence primes are irregular primes, and
the congruence link befween X and ¥ may be used in studying the arith-
metic of cyclotomic fields. Doi has asked whether, more generally, one
can characterize congruence primes and interpret the link between X
and ¥ in terms of arithmetic.

In his articles citied above, Hida discussed these questions of Doi,
the first quite generally, and the second in reference to cusp forms with
complex multiplication. Especially, the articles [3] and [4], together
with the author’s [10], give an interpretation of congruence primes in
terms of parabolic cohomology. Here we assume that § is a space of cusp
forms and use the well known Shimura isomorphism to realize § as a certain
parabolic cohomology group V constructed with real coefficients. Via
this isomorphism, § is endowed with a second integral lattice V(Z), the
image in V of the analogous cohomology group made with integral coeffi-
cients. Replacing 8(Z) by V(Z) in the definition of “congruence prime”,
we obtain the alternate notion of eohomology congruence prime.

TaEEOREM 1.2 ([4], [10]). Every cohomology congruence prime is a con-
gruence prime. Conversely, if p is a congruence prime not dividing (k —1)!N,
then p is a cohomology congruence prime.

This theorem shows that the two notions of congruence prime are
essentially equivalent. On the other hand, one feels that the set of cohomo-
logy congruence primes may be precisely calculated in certain contexts.
(For example, Hida showed in some cases how the cohomology congruence
primes are the prime divisors of a rational integer which may be inter-
preted as the ““algebraic part” of a determinant of periods of forms in X.)

2. To test this idea, we are going to work out an explicit example. Since
it is more pleasing to consider congruences between eigenforms for the
Hecke operators, rather than congruences between arbitrary forms, we
begin by reviewing the notion of primes of fusion. These will be maximal
ideals of the Hecke ring associated to § whose residue characteristics are
precisely the congruence primes.

We let T be the subring of End(S8) generated by the Hecke operators
T, acting on 8, and we similarly define Ty and Ty by replacing § by X
and Y. Then Ty and Ty are naturally quotients of T, which in turn is
a subring of the direct sum Ty @Ty. A prime of fusion is a prime ideal
of T containing the conductor of the ring extension

TeTy®Ty.
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If # is such a prime, its image in Ty (resp. Ty) is a prime ideal 25 (resp.
Py) of Tx (resp. Ty). We again refer to £ and £ as primes of fusion,
and we note the canonical isomorphisms

Especially, we view the isomorphism between extreme terms as a congru-
ence between eigenvalues of the 7, on X and on ¥ (ef. [3], Th. 7.1).

Conversely, suppose that fe X and ge Y are eigenforms for the T,
with eigenvalues a, and b, (n = 1) respectively. Let ¢ be the ring of inte-
gers of the number field generated by all the a, and b,. Then there are
unique homomorphisms

qSX: TXA.P'@’ ¢Y: TY—)@

such that ¢x(T,) = a, and ¢5(T,) = b, for all n. Assume now that 2 is
a maximal ideal of O such that

a, = b, modi

for all ». Then one sees immediately that 5 = ¢3'(1) and £y = ¢7'(4)
are primes of fusion in Ty and Ty . The corresponding ideal Z of T is obtai-
ned by pulling back either Z5 or #; to T. ‘

If 25 is an ideal of Ty which one suspects to be a prime of fusion, one
can prove that #x is indeed such a prime by exhibiting a Tyx-module 2,
whose support contains #y, which satisfies the following condition: if
we view 2 as a T-module via the natural surjection T—Ty, the resulting
homomorphism

T—End(R)

factors through the surjection T—T as well. In Proposition 1.11 of [10],
the author showed that a certain T-module /L detects in this way all
primes of fusion which do not divide the level N of the space S. In other .
words, one can find essentially all primes of fusion by calculating the
support of this module.

We now come to the specific problem alluded to above. We will consider
only weight 2 cusp forms (and especially newforms) on groups of the form
I'y(N). We first take a newform

f = 2 a’nqn
on [ (N) and then consider a prime number M which is prime to N.

Suppose that A is & prime ideal in the ring of integers of a sufficiently
large finite extension of Q in Q whose residue characteristic 7 is prime to
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MN. Suppose that
g = anqn

is a weight 2 newform of level divisible by M and dividing N M for which
we have the congruence

a, =b, modi (2.1)

for all prime numbers p in a set of primes of density 1. Then the modA

representations of Gal(Q/Q) defined by f and ¢ have isomorphic semi-
gimplifications. By considering the restrictions of these representations

to the decomposition group Gal(Q,/Q,) for M in Gal(Q/Q), we obtain
the congruence

a,M = b_ru(l "I—M) modﬁ..
Since b, is either -+1 or —1, we find
al = (L+M)* modi. (2.2)

Our problem is to determine whether or not the converse holds: if the
congruence (2.2) is verified for a specific prime M+N, need there be a form
g satisfying (2.1)%

We can rephrase this problem in terms of primes of fusion by con-
sidering a suitable decomposition (1.1) of the space § of weight 2 cusp
forms on I \(NM). Namely, we take X to be the subspace of old forms
of § which is associated to Iy(X), so that X is naturally isomorphic to the
direct sum of two copies of the space of cusp forms of weight 2 on I'y(N).
‘We then take ¥ to be the orthogonal complement to X under the Petersson
inner product on §. Thus Y is the intersection of the kernels of the two
natural trace maps from 8§ to the space of weight 2 cusp forms on I'y(N).
Our problem will be to show, under hypothesis (2.2), that a certain ideal
Py of Ty is a prime of fusion.

To define #x, our inclination would be to proceed as before, using f
to define a homomorphism ¢y, and using ¢y to pull back 4 to Ty. A tech-
nical complication arigses, however: f is no longer an eigenform for the
Hecke operator T, acting on X. To surmount this, assuming that we
have

ay = +(1-+M) modi,
we introduce

b i ='2:aﬂ ”:FMZaon" eX.
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Then f’ is a modi eigenform for T, with eigenvalue -+1; it is also an
eigenform for the 7, such that (n, M) = 1, with eigenvalue @,. Thus [’
defines a homomorphism Ty—F, where F is the residue field of 4, such
that the image of T, for each n > 1 is the eigenvalue of T, acting on f’,
modulo A. Its kernel is a prime ideal Zx of Ty; pulling back to T we obtain
a prime ideal # of T.

The problem stated above now amounts to determining whether or
not & and &5 are primes of fusion. We will write » for the operator T3, —1,
viewed either as an element of T or an element of Ty. Then we wish to
study

ProBLEM 2.3. Suppose that 5 is a prime ideal of Ty which contains
1. Is P ¢ necessarily a prime of fusion?

It is easy fo see that the answer to this problem is, in general, negative.
For example, taking &N =11 and M = 7, one can prove that the ideal
(T4 +1) of Ty is a prime ideal containing T3 —1 which is nof a prime
of fusion. In this case, the residue field of our ideal is the field with 5 ele-
ments. We will see, however, that Problem 2.3 hag an affirmative solution
if we impose on &£y a suitable additional condition, for example that Z+
be prime to the order of the Shimura subgroup S of J,(N) (as defined

N-—1
12 )
(cf. [7], Ch. II, §11); if N = 11, this group has order 5. Notice especially
that the Shimura subgroup of J,(¥N) depends only on ¥, and not on the
prime number 3.

in § 4 below). If N is a prime number, this group has order » = num (

3. Our result arises from the study of a certain Ty-module 2, which is
closely related to the group I /L mentioned above. Its support contains
only primes of fusion, and in fact contains all such primes which do not
divide the integer NM. We shall exhibit a Ty-module 4, whose support
consists precisely of the primes containing 7, which is furnished with
a filtration

A=Mo Mo M;,> M, =0

such that M, /M, is isomorphic to £ and such that the quotients M,y/M,
and M,/M, have the same cardinality as S. Any prime ideal of Ty which
contains n and which is prime to the cardinality of § is consequently in
the support of 2 and is therefore a prime of fusion.

Recall ([8], §2a) the two natural ‘“degeneracy” maps

Bl7 BM: Xo(N.M)—)'XU(.N)
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which correspond, respectively to the identity map and the map z—>M~
on the Poincaré upper half plane. By Pic functoriality they induce maps

B}, By: Jo(N)=do(NM)
from which we obtain a homomorphism
a: o o(N) XJ o (N)—=J o (NM)

by adding these two maps together. The kernel of « is a ceratin finite
subgroup X of J,{N)2, which we will study below. The image of a is an
abelian subvariety A of J,(N.M) which naturally corresponds to the
subspace X of 8. For example, when we view T as a subring of End (J, (N M)
in the usual way we find that T preserves A and that its action on A fac-
tors through Ty.

Similarly, we consider the transpose

o' Jo(NM)—dy(N) Xdo(N)

of a; it corresponds to the two degeneracy maps induced by B, and B,
using Albanese functoriality of the Jacobian. Its kernel is not necessarily
connected; in faect, it is an extension of a finite group, canonically iso-
morphic to the Cartier dual of Z, by an abelian subvariety B of J (N M).
The variety B analogously corresponds to ¥, so that the action of T
on B factors through T,. The intersection

2 =AnB

is a finite subgroup of J,(N M), stable under T, such that the action of T
on 2 factors through both rings Ty and Ty. Therefore any prime in the
support of 2 is a prime of fusion; and as mentioned above one can show
that all primes of fusion occur in the support of 2, with the possible excep-
tions of those whose residue fields are of characteristic dividing N M.

Now let L be the line bundle on A arising from the canonical “theta
divisor” on J,(N M) and the inclusion ¢ of 4 in J,(NM). Then L induces
an isogeny

g2 Ad”,

where A~ denotes the abelian variety dual to A. We will denote by K (L)
the kernel of this map. It is easy to check the equality

Q = K(L). (3.1)

Indeed, B is quickly seen to be the kernel of the composite ¢ 0@, where ¢
is the canonical autoduality of the Jacobian J (N M). This gives that 2
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is the kernel of
oo,

which is just another way of writing ¢;. From (3.1) we obtain a slightly
different way of viewing £, as follows. Let B denote the isogeny

Jo(N) XJo(N)—=A4
for which ¢ = 0. Pulling T back to J,(N)* via 8, we obtain a line bundle
B*L, whence a finite subgroup K (f*L) of Jy(N)%. This subgroup, which
we call A, contains X and is endowed with a eanonical non-degenerate

alternating G, -valued pairing. Let X+ be the orthogonal to X relative to
this pairing; this subgroup of 4 contains X, and we have the formula

0= N5, ‘ (3.2)

in view of [9], § 23, Lemma 2.

On the other hand, we can check that 4 is just the kernel of a'oa.
Viewing this endomorphism of J,(N)* as a 2 x2 matrix of endomorphisms
of Jy(N), we find the formula

g M1 v ]
i T M+1 ’
where 7 is the usual Hecke operator T'y; on J(N)2 In other words, we have
4 = {(@,y) e Jo(N)| w0 = —(M+1)y and vy = —(M+1)a}.

We now claim that Ty acts on J,(N)? as a subring of endomorphisms
of this abelian variety. By this we mean that, for each each # = 1, the
quantity ‘

T, =B 'oT,08,

a priori an endomorphism of J,(N)? up to isogeny, is in fact a genuine
endomorphism of J,(N)® This assertion is clear indeed if # is prime to M;
in that case, T, is nothing but the usual Hecke operator T, on J,(N),
acting “diagonally” on the product J,(N)2. Thus the general case follows

from the explicit formula
’ T
o -[ 1 %]

In what follows, we will omit the superseript ’ and write 7, for T,,.

ProrostTION 3.3. The group A is the Fkernel of the endomorphism u
= T3 —1 of J4(N)=
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This proposition is proved by a short calculation, which we omit;
the reader can verify that we have more precisely the identity

—1 ] .,
n:[ 0 __1]0(a0a).

Because of (3.3), we can view 4 as a Ty-module. Its support consists
of all prime ideals of Ty which contain the annihilator I of 4 in Ty. We
have

I ={TeTy| T = e for some & End(Jy(N)%},
i.e.,
where
R = (Tx®Q)NEnd (J,(N)?).

Now R is a finitely generated abelian group, so certainly finitely generated
as a Ty-module. Hence if 24 is a maximal ideal of Ty we have

'@X =MXGTX.

This formula shows that we have #y = I if and only if #y contains 7.
Hence we get:

ProrosITioN 3.4. The support of A consists precisely of those primes
of Tx which contain 7.

This proposition may be viewed as a partial solution to Problem 2.3,
It fails to be a complete solution because of the group X, which is the
obstruetion to the equality between 4 and 2. We will determine X in the
next section.

4. Our analysis of X is based on results contained in Thara's article [6].
We will find, in studying X, that the analogue of this group is 0 in the
situation where I'j(N) is replaced by either of its subgroups I,(X) or
I'(N). TFor definiteness in what follows, we shall regard these groups as
subgroups of PSL(2, Z), rather than SL(2,Z). We will let X,(N) and
X(N) be the modular curves associated with these groups and let J,(N)
and J (N) be, as usual, the Jacobians of these curves.

1 The author wishes to thank J.-P. Serre for bringing Ihara's results to his
attention.
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The inclusions I'(N) « Iy(N) and I'y(N) < I'y(N) correspond to
coverings of curves

o: X(N)-»X(N), m: X;(N)=X,(N).
From these maps we obtain, by Pic funetoriality, maps
w*: Jo(N)—J (N), o*: J(N)—>J(N).

The kernel of m* is a finite subgroup S of Jy(N) which is known as the
Shimura subgroup of Jy(N). It is isomorphie to the G,,-dual of the covering
group of the maximal abelian unramified covering of X (N) which is
intermediate to X,(N)—X,(N). The kernel of ¢* is trivial, because there
are no unramified coverings of X,(%) intermediate to X(N)—X,(N):
the standard cusp “oo” of X, (W) is totally ramified in this covering.

If I' is one of the three groups I'(N), I1(N), I'4(N), we will let I be
the intersection of I' with I'y(M). We use the symbol ’ in writing the
corresponding modular curves and their Jacobians. Thus J;(X), for
instance, 18 J (N M). We then have a pair of commutative diagrams

JNyPB g (N) T ST
5 i At S5
TS TN)  Ty(NPEI(N)

in which the horizontal maps are the obvious degeneracy maps. We shall
admit for the moment the following result:

THEOREM 4.1. The kernel of y is trivial.

Then, by the above discussion, we certainly have:

CoROLLARY 4.2, The kernel of § is trivial. The kernel X of o is a subgroup
of S x8.

More precisely, we will prove
THEOREM 4.3. The group X is the subgroup
T = {(w,y) eSxS|at+y =0}
of S x8S.

To prove Theorem 4.3 we first will show that X contains 7', Let

B: Jo(N)— Jo(N M)



512 Section 3: K. A. Ribet

be the degeneracy map B}. Then the degeneracy map Bj, is the compo-
sition Wy0B, where W,, is the indicated Atkin-Lehner involution of
Jo(NM). The inclusion X = T thus means that Wy, acts on the group
B(8) by multiplication by +1. Now the Atkin-Lehner involution W,
on Jy(N) acts on 8 by multiplication by —1 (ef. [7], Chapter II, Proposi-
tion 11.7), which gives that the Atkin—Lehner involution Wy of (N M)
acts on B(8) by multiplication by —1. But since B(S) is a subgroup of
the Shimura subgroup of J,(NM), we find that Wy, acts on B(S) by
multiplication by —1. Since Wy, = Wy, 0 Wy, we get that X contains 7',

In view of this inclusion, the assertion X = T amounts to the injecti-
vity of B on S. In fact, B has kernel 0 because the covering B;: X (NM)
—Xo(N) is ramified and such that there is no non-trivial covering of X, (&),
other than B,, which is intermediate to B,.

Proof of Theorem 4.I. We must show, for all prime numbers I, the
injectivity of the map

H'(X(N),Z[lZ) DH' (X (N), Z)\Z)~H' (X'(N), ZIZ)

resulting from the two degeneracy coverings X'(N)=ZX(N). We may
view H' (X (N), Z[IZ) as classifying unramified Galois coverings of X ()
with structural group Z/IZ, and the problem is to show that there is no
non-trivial pair of such coverings which become equal after pullback to
X'(N) by the two different degeneracy maps. However, this is just a special
case of Lemma 3.2 of Thara [6], which asserts that the system

X'(N)
£ N
X(N) X(N)

is “simply connected”. (See also the remarks at the beginning of § 3.4
of [6].)

Alternatively, we may obtain a slightly more direct proof of Theorem
4.1 from the ingredients used in the proof of Thara’s Lemma 3.2. Here
we view Theorem 4.1 as asserting the surjectivity of the natural map

H,(X'(N), Z)-H,(X(N), Z)® H(X(N), Z).

In terms of subgroups of PSL(2, Q), we have corresponding inclusions
of the group :

A = I'(N)nI,(N)
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in the two groups

M 07! M0
@& — I(), Gg=[0 1] P(N)[O 1],

we wish to prove the surjectivity of
H,(4,Z)~H,(Gy, Z)[Pb(G;) DH, (G, Z)[Pb(G-). (4.4)

(Here Pb(@,) denctes the subgroup of H,(G;, Z) generated by the set of
parabolic elements of the group &, for i =1, 2.)

Let I' be the prinecipal congruence subgroup of level N (i.e., the ana-
logue of I'(N)) in PSL(2,Z[1/M]). Then the inclusions of &, and G,
in I' are well known to induce an isomorphism of the amalgamated produet
G,*,G, with I" (see, e.g., [11], Ch. II, § 1.4). Accordingly, by the exact
sequence of Lyndon (see, e.g., [loc. ¢it.], page 169), the cokernel of the
map

H,(A,Z)-~H,(Gy, Z)DH,(G,, Z)

may be identified with H,(I', Z). Let 4 be the subgroup of I" generated
by the commutator subgroup of I" and by the parabolic elements of G,
and G,. Then the cokernel of the map (4.4) may be identified with the
quotient I'[A.

Sinee I' is generated by its parabolic elements, the surjectivity of (4.4)
thus means that all parabolic elements of I' lie in 4. As on page 178 of
[6], we now note that if y is a parabolic element of .I', then ™" lies in @,
for some positive integer n. It is easy to deduce from this that y lies in 4
(loc. cit.).
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