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This article discusses many of the topics that I touched on during my Public Lecture
at the National University of Singapore and my Lecture to Schools at Victoria
Junior College. During the former lecture, I spoke in broad terms about the
history of Fermat’s Last Theorem and about the connection between Fermat’s Last
Theorem, and the conjecture— now a theorem! —to the effect that elliptic curves
are related to modular forms. In my Lecture to Schools, I discussed questions that
have been sent to me by students and amateur mathematicians.

1 Introduction

I have already written about Fermat’s Last Theorem on a number of occa-
sions. My article [25] with Brian Hayes in American Scientist focuses on
the connection between Fermat’s equation and elliptic curves. It was writ-
ten in 1994, when the proof that Andrew Wiles announced in 1993 was not
yet complete. My exposition [23] is intended for professional mathematicians
who are not necessarily specialists in number theory. The introduction [27]
by Simon Singh and me will be useful to readers who seek a summary of
Singh’s book [26] and to the documentary on Fermat’s Last Theorem that
Singh directed for the BBC [17].

I hope that the present article will offer a useful further look at some of
the mathematics associated with Fermat’s Last Theorem.

2 Background

Arguably the single most famous statement in mathematics is the assertion
that Fermat’s equation

an + bn = cn

has no solutions in positive integers a, b, and c when n is an integer greater
than 2. According to his son Samuel, Pierre de Fermat wrote this assertion
in the margin of his copy of Diophantus’s Arithmetic, roughly in 1637.

icfs: submitted to World Scientific on February 13, 2001 1



Although Fermat may have believed in the 1630’s that he had a proof of
what came to be known as “Fermat’s Last Theorem,” we can only speculate
as to what Fermat had in mind. It is widely believed that the argument that
Fermat had mapped out for himself ran into unexpected difficulties. Indeed,
when he was a mature mathematician, Fermat detailed a proof that

a4 + b4 = c2

has no solution in positive integers, thus proving in particular that a perfect
fourth power is not the sum of two others. Had Fermat been able to treat
an + bn = cn for all n, he probably would not have been interested in the
special case n = 4.

It is worth pointing out that Fermat made at least one other mathemat-
ical assertion that proved to be incorrect: Fermat believed that the “Fermat
numbers” Fn := 22n

+ 1 are all prime. The first few of them — 3, 5, 17,
257 and 65537— are indeed prime numbers. The next number in the series,
F5 = 232 + 1 = 4294967297, is not a prime: it’s the product of 641 and
6700417. Incidentally, there is no known n bigger than 4 for which Fn is
prime. On the other hand, the numbers F6, . . . , F24 are known currently to
be composite (i.e., non-prime).

3 Early History

Fermat’s Last Theorem has a long history, beginning with Fermat’s work on
the case n = 4 and Euler’s 18th century study of a3 + b3 = c3.

The techniques used in the 17th and 18th centuries are now included in
the curriculum of undergraduate courses in number theory. For example, the
work of Fermat and of Euler is discussed in the first two chapters of [11] and at
various junctures in [14]. (The latter book is one of my favorite introductions
to number theory. I recommend it enthusiastically to Berkeley students who
seek an introduction to modern methods in number theory.)

After thinking about the first cases n = 3 and n = 4 of Fermat’s equation,
one turns naturally to exponents larger than 4. In fact, a simple remark shows
that one need treat only the case where n is a prime number bigger than 2.
Indeed, it is clear that Fermat’s assertion, when true for a given exponent n,
is true for all exponents that are multiples of n. For example, knowing the
assertion for n = 3 allows us to conclude that here are no counterexamples to
Fermat’s assertion when n is 6, 9, 12, and so on. This remark follows from
the simple observation that any perfect sixth power is in particular a perfect
cube, and so forth.
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Now any integer n bigger than 2 is either a power of 2 (2t with t ≥ 2)
or else is a multiple of some prime number p > 2. Since integers of the
first kind are divisible by 4 —an exponent for which Fermat himself proved
Fermat’s Last Theorem — it suffices to consider exponents that are odd prime
numbers when one seeks to prove Fermat’s Last Theorem. In other words,
after verifying Fermat’s assertion for n = 4 and n = 3, mathematicians were
left with the problem of proving the assertion for the exponents 5, 7, 11, 13,
17, and so on.

Progress was slow at first. The case n = 5 was settled by Dirchlet and
Legendre around 1825, while the case n = 7 was treated by Lamé in 1832.

In the middle of the nineteenth century, E. Kummer made a tremendous
advance by proving Fermat’s Last Theorem for an apparently large class of
prime numbers, the regular primes. The definition of this class may be given
quickly, thanks to a numerical criterion that was established by Kummer.
Namely, one considers the expression

x

ex − 1
= 1−x

2
+

x2

12
− x4

720
+

x6

30240
− x8

1209600
+

x10

47900160
− 691 x12

1307674368000
+· · ·

and defines the ith Bernoulli number Bi to be the coefficient of
xi

i!
in this

expansion. Thus B12, for example is − 691
2730

; the denominator is 2 ·3 ·5 ·7 ·13,
the product of those primes p for which p−1 divides 12. A prime number p ≥ 7
is regular if p divides the numerator of none of the even-indexed Bernoulli
numbers B2, B4, . . . , Bp−3. The primes p < 37 turn out to be regular. On the
other hand, 37 is irregular (i.e., not regular) because it divides the numerator
of B32: the numerator is 7709321041217 = 37 · 683 · 305065927. (We may
conclude that 683 and 305065927 are irregular as well.)

A proof of Fermat’s Last Theorem for regular primes, along the lines
given by Kummer, may be found in [11, Ch. 5]. See also [19] and [2] for
alternative discussions. In these books, the reader will find a proof that there
are infinitely many irregular prime numbers; see, for example, [19, Ch. VI,
§4] or [2, Ch. 5, §7.2]. Although heuristic probabilistic arguments suggest
strongly that regular primes should predominate, the set of regular primes is
currently not known to be infinite.

Over the years, Kummer’s work was refined repeatedly. Aided by machine
calculation, mathematicians employed criteria such as those presented in [19]
to verify Fermat’s Last Theorem for all prime exponents that did not exceed
ever increasing bounds. Most notably, four mathematicians proved Fermat’s
Last Theorem for all prime exponents below four million in an article that
was published in 1993 [4]. It is striking that the calculations in that article
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were motivated by questions involving Bernoulli numbers and the arithmetic
of cyclotomic fields; the proof of Fermat’s Last Theorem for a large set of
prime numbers came almost as an afterthought.

Readers used to dealing with experimental sciences might well now ask
why a mathematician would insist on a rigorous proof of a statement, depend-
ing on a parameter n, that can be verified by calculation for all n ≤ 4, 000, 000.
A statement that is true in this range seems very likely to be true for all n.
To answer this question, it suffices to point out the logical possibility that an
assertion that is true experimentally may have one or more counterexamples
that happen to be very large.

In fact, assertions that realize this possibility are not hard to find in num-
ber theory. As Fermat himself knew, the first solution to x2−109y2 = 1 in pos-
itive integers x and y is given by x = 158070671986249, y = 15140424455100.
(See [30, Ch. II, §XII] for an illuminating discussion of Fermat’s study of
x2 −Ny2 = ±1.) If we set out to examine x2 − 109y2 = 1 with a computer,
we might look for solutions with x and y non-zero, find no such solutions, and
conclude incorrectly that this equation has only the trivial solutions (−1, 0)
and (1, 0).

Here’s another example: Euler conjectured in the eighteenth century that
a perfect fourth power cannot be the sum of three perfect fourth powers. Noam
Elkies [12] found the first counterexample to Euler’s conjecture in 1988:

26824404 + 153656394 + 187967604 = 206156734.

These examples illustrate the fact that numerical evidence in number theory
can be misleading.

4 Modern History

The proof of Fermat’s Last Theorem at the end of the last century hinges
on a connection between putative solutions of Fermat’s equation and cubic
equations with integer coefficients (elliptic curves). To have a solution to
Fermat’s equation is to have positive integers a and b for which an + bn is a
perfect nth power. (We shall suppose that n is at least 5 and that n is a prime
number. The results of Fermat and Euler imply that these assumptions are
harmless.) Given a and b, we consider the equation

E : y2 = x(x− an)(x + bn),

in which x and y are new variables. This equation defines an elliptic curve.
The connection between Fermat and elliptic curves was noticed by several

mathematicians, including Yves Hellegouarch and Gerhard Frey. In a recent
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book [13], Hellegouarch recounts the history of this connection. It was Frey
who had the decisive idea that E could not possibly satisfy the Shimura–
Taniyama conjecture, which states that elliptic curves are modular. (We shall
discuss this crucial property in §5 below.)

Frey’s suggestion became known to the mathematical community in the
mid 1980s. In 1986, I proved that elliptic curves associated solutions to Fer-
mat’s equation are non-modular, thereby showing that Fermat’s Last Theorem
is a consequence of the Shimura–Taniyama conjecture [21], [22]. Said differ-
ently: each solution to Fermat’s Last Theorem gives a counterexample to the
Shimura–Taniyama conjecture. Thus if that conjecture is true, so is Fermat’s
Last Theorem.

As the reader is no doubt aware, Andrew Wiles worked in his Princeton
attic from 1986 to 1993 with the goal of establishing the Shimura–Taniyama
conjecture. Although the conjecture per se was a central problem of number
theory, Wiles has stated that he was drawn to this problem because of the link
with Fermat’s Last Theorem. In June, 1993, Wiles announced that he could
prove the Shimura–Taniyama conjecture for a wide class of elliptic curves,
including those coming from Fermat solutions. This announcement implied
that the proof of Fermat’s Last Theorem was complete.

After a short period of celebration among mathematicians, Wiles’s col-
league Nicholas Katz at Princeton found a “gap” in Wiles’s proof. Because
the gap’s severity was not appreciated at first, it was months before the exis-
tence of the gap was known widely in the mathematical community. By the
end of 1993, however, the fact that Wiles’s proof was incomplete was reported
in the popular press.

The proof announced by Wiles remained in doubt until October, 1994,
when Richard Taylor and Andrew Wiles released a modified version of the
proof that circumvented the gap. The new proof was divided into two articles,
one by Wiles alone and one a collaboration by Taylor and Wiles [32], [29]. The
two articles were published together in 1995. The proof presented in those
articles was accepted quickly by the mathematical community.

As a result of his work, Wiles has been honored repeatedly. For ex-
ample, in December, 1999, he was knighted by the Queen: he received the
“KBE/DBE” along with Julie Andrews, Elizabeth Taylor and Duncan Robin
Carmichael Christopher, Her Majesty’s ambassador to Jakartaa.

After the manuscripts by Wiles and Taylor–Wiles were written in 1994,
the technology for establishing modularity became increasingly more sophis-
ticated and more general. The class of curves to which the technology can be

ahttp://files.fco.gov.uk/hons/honsdec99.shtml
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applied was enlarged in three stages [10], [5], [3]. In the last stage, four math-
ematicians — Christophe Breuil, Brian Conrad, Fred Diamond and Richard
Taylor—announced in June, 1999 that they had proved the full Shimura–
Taniyama conjecture, i.e., the modularity of all elliptic curves (that are de-
fined by equations with integer coefficients). Although their proof is not yet
published, it is available from http://www.math.harvard.edu/~rtaylor/,
Richard Taylor’s Web site at Harvard. In addition, the proof has been the
subject of a substantial number of oral presentations. In particular, the proof
was explained by the four authors in a series of lectures at a conference held
at the Mathematical Sciences Research Institute in Berkeley, California in
December, 1999.

5 The Shimura–Taniyama Conjecture

The conjecture hinges on the notion of “arithmetic mod p,” p being a prime
number. When working mod p, we ignore all integers that are multiples of p.
In other words, when we interact with an integer m, we care only about the
remainder when m is divided by p. This remainder is one of the numbers 0,
1, 2,. . . , p− 1. For example, the integers mod 5 are 0, 1, 2, 3 and 4.

Suppose that we are given an equation with integer coefficients. Then for
each prime number p, we can use the equation to define a relation mod p. As
an illustration, the simple equation x2 + y2 = 1 gives rise to a relation mod 2,
mod 3, mod 5, and so on.

This type of relation is best illustrated by a concrete example. Suppose
that we take p = 5, so that the numbers mod 5 are the five numbers that we
listed above. There are thus 25 pairs of numbers (x, y) mod 5. For each pair
(x, y), we can ask whether x2 + y2 is the same as 1 mod 5. For (0, 4), the
answer is “yes” because 16 and 1 are the same mod 5. For (2, 2), the answer
is “no” because 8 and 1 are not the same mod 5. After some calculation, one
finds that there are four pairs of numbers mod 5 for which the answer is in the
affirmative. These pairs are (0, 1), (0, 4), (1, 0) and (4, 0). After we recognize
that 4 is that same as −1 mod 5, we might notice that the four solutions
that we have listed have analogues for every prime number p > 2. There are
always the four systematic solutions (0, 1), (0,−1), (1, 0) and (−1, 0) for each
such prime.

We can make a similar calculation mod 7. It is fruitful to begin by listing
the squares of the seven numbers mod 7:

a 0 1 2 3 4 5 6

a2 0 1 4 2 2 4 1.

icfs: submitted to World Scientific on February 13, 2001 6



In which ways can we write 1 as the sum of two numbers in the bottom row
(possibly the sum of a number and itself)? We can write 1 as 0 + 1 = 1 + 0,
and we can also write 1 as 4 + 4 (since 8 is the same as 1 mod 7). We end
up with the four “new” solutions (±2,±2) in addition to the four systematic
solutions that we listed in connection with the case p = 5. As a consequence,
there are eight solutions to x2 + y2 = 1 mod 7.

After experimenting with other primes (p = 11, p = 13, etc.), you will
have little trouble guessing the general formula for the number of solutions to
x2 + y2 = 1 mod p. When p = 2, there are the two solutions (0, 1) and (1, 0).
When p is bigger than 2, there are either p+1 or p−1 solutions to x2 +y2 = 1
mod p, depending on whether p is 1 less than or 1 more than a multiple of 4.
This simple recipe was known centuries ago. It can be established in various
ways; perhaps I should leave its proof as an exercise for the interested reader.

The equation x2 + y2 = 1 was intended as a warm-up; we shall now
consider the superficially analogous equation x3 + y3 = 1. Here again we
study the number of solutions to x3 + y3 = 1 mod p and seek to understand
how this number varies with p. It turns out that the quantity p mod 3 plays
an important role here — just as the behavior of p mod 4 was significant for
x2 + y2 = 1. When p = 3, the quantity x3 mod p coincides with x mod 3; this
is a special case of what is called “Fermat’s Little Theorem” in textbooks.
Hence the solutions to x3 + y3 = 1 mod 3 are the same as the solutions to
x + y = 1; there are three solutions, because x can be taken arbitrarily, and
then y is 1− x mod 3. If p is 2 mod 3, i.e., if p is 1 less than a multiple of 3,
one shows by an elementary argument that there are again p solutions. (If p
is 2 mod 3, then every number mod p has a unique cube root.)

The interesting case for this equation is the remaining case where p is 1
more than a multiple of 3. This case was resolved by Gauss in the nineteenth
century. To see what is going on, we should look at a few examples:

First off, we take p = 7. The cubes mod 7 are 0, 1 and 6 = −1. If two
cubes sum to 0, one is 1 and the other is 0. Also, 1 has three cube roots: 1, 2
and 4. Thus there are six solutions to x3 + y3 ≡ 1, namely (0, 1), (0, 2), (0, 4)
and the analogous pairs with x and y reversed.

When p = 13, the cubes are 0, 1, −1, 5 and 8. There are again only six
solutions because the only way to write 1 as a sum of two cubes is to take
0 + 1 as before.

Now try p = 19. It turns out that there are 24 solutions here—the six
that we knew about already, together with 18 unexpected ones arising from
the equation 1 = 8+(−7) and the fact that 8 and −7 are both cubes mod 19.
(Since 43 = 64 ≡ 7 mod 19, −7 is the cube of −4.) We get 18 solutions by
taking x to be one of the 3 cube roots of 8 and y to be one of the 3 cube roots
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of −7, or vice versa.
When p = 31, there are 33 solutions. (Note that 33 = 6 + 18 + 9.) There

are 6 solutions coming from 0 + 1 = 1, 18 coming from 2 + (−1) = 1 and 9
from 16 + 16 = 1. Summary:

p 7 13 19 31 · · ·
# solns. 6 6 24 33 · · · .

How does this table continue? What is the number of solutions that we get
when p is, say, 103? It is hard to imagine the rule that expresses the number
of solutions in terms of p.

Gauss found an expression for the number of solutions that we can view
as a “generalized formula” [14, p. 97]. Namely, when p ≡ 1 mod 3, Gauss
showed that one has

4p = A2 + 27B2

for some integers A and B. These integers are uniquely determined except
for their signs. We can and do choose A so that A ≡ 1 mod 3. Then Gauss’s
formula states:

# solns. = p− 2 + A.

For example, if p = 13, then 4p = 52 = 52 + 27 · 12. Thus A = −5. We
have p− 2 + A = 6.

When p = 31, 4p = 124 = 42 + 27 · 22. Thus A = 4 and p− 2 + A = 33.
When p = 103, 4p = 132 + 27 · 32, so A = 13 and the number of solutions

is 114.
The equation x3 + y3 = 1 defines one of the simplest possible elliptic

curves. Gauss’s explicit recipe shows in particular that x3 + y3 = 1 defines a
modular elliptic curve.

The Shimura–Taniyama conjecture states that there’s an analogous “for-
mula” for every elliptic curve. Because this formula involves modular forms,
the Shimura–Taniyama conjecture is usually paraphrased as the statement
that elliptic curves are modular.

For a random elliptic curve, the formula provided by the associated modu-
lar form is not as explicit as Gauss’s formula for x3 +y3 = 1. Here is a famous
example that begins to give the flavor of the general case: We consider first
the formal power series with integral coefficients

∑
anXn that is obtained by

expanding out the product

X
∞∏

m=1

(1−Xm)2(1−X11m)2.
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For all n ≥ 1, an is an integer. In fact, the numbers an are the coefficients of
the Fourier expansion of a well known modular form.

At the same time, we consider the elliptic curve defined by the equation
y2 + y = x3 − x2. Then a theorem of M. Eichler and G. Shimura states that,
for each prime p (different from 11), the number of solutions to this equation
mod p is p − ap. The connection between the number of solutions and the
pth coefficient of a modular form shows that the elliptic curve defined by
y2 + y = x3 − x2 is a modular elliptic curve. (A coffee mug that celebrates
this relation is currently available from the Mathematical Sciences Research
Institute. Go to http://www.msri.org/search.html and search for “coffee
cup.”)

6 Another Formula of Gauss

For a third example, we look at the elliptic curve defined by the equation
y2 = x3 − x. Although its equation recalls the equation y2 + y = x3 − x2 of
the second example, this third example is much more analogous to the first
example. To explain the analogy, it is important to recall a theorem of Fermat
about sums of squares. Namely, suppose that p is a prime number and that
we seek to write p is the form r2 + s2, where r and s are integers. If p is 2,
we can write p = 12 + 12. If p is congruent to 3 mod 4, then it is impossible
to write p as r2 + s2. Indeed, squares are congruent to either 0 or 1 mod 4; it
is therefore impossible that a sum of two squares be congruent to 3 mod 4.

The interesting case is that where p is congruent to 1 mod 4, i.e., where
p is 1 plus a multiple of 4. Fermat proved in that case that p may be written
as a sum of two squares: we have p = r2 + s2 with r and s whole numbers.
The pair (r, s) is clearly not unique because we can exchange r and s and we
can change the signs of either or both of these integers. However, there is
no more ambiguity than that: the integers r and s become unique up to sign
after we require that r be odd and that s be even. Accordingly, r and s are
determined completely if we require that r be odd, that s be even and that
both integers be positive.

This theorem of Fermat is proved in most elementary number theory
books; see, e.g., [14, Ch. 8] for one proof. (The uniqueness is left as an
exercise at the end of the chapter.) A beautiful proof of the existence of r
and s, due to D. Zagier, is presented in “Proofs from the Book” [1], a volume
celebrating Paul Erdös’s idea that there is frequently an optimally beautiful
proof of a given proposition in mathematics.

Following Gauss, we will now adjust the sign of r (if necessary) to ensure
that the sum r + s is congruent to 1 mod 4. For example, suppose that p = 5,
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so that (r, s) = (1, 2) under the initial choice that has both r and s positive.
With this choice, r + s = 3 is not 1 mod 4. Accordingly, we change the sign
of r and put r = −1. The sum r + s is then 1, which of course is 1 mod 4.
For another example, we take p = 13, so that (r, s) = (3, 2) with the initial
choice. Here r + s = 3 + 2 = 5, which is already 1 mod 4. We therefore leave
r positive in this case. It is perhaps enlightening to tabulate the values of r
and s for the first primes that are 1 mod 4. In doing so, we write “rp” instead
of “r” and “sp” instead of “s” to stress that r and s depend on p:

p 5 13 17 29 37 41 53 61 73 89 · · ·
rp −1 3 1 −5 −1 5 7 −5 −3 5 · · ·
sp 2 2 4 2 6 4 2 6 8 8 · · · .

We return now to y2 = x3 − x with the idea of calculating the number of
solutions to the mod p congruence defined by this equation. If p = 2, there
are two solutions: (0, 0) and (1, 0). If p is congruent to 3 mod 4, it turns out
that there are exactly p solutions. More precisely, if x is 0, 1 or −1 (i.e., p−1)
mod p, then y = 0 is the one value of y for which (x, y) is a solution. For
each value of x different from 0 and ±1, there are either two values of y or no
values of y for which (x, y) is a solution mod p. (If a non-zero number mod p
has a square root, it has exactly two square roots, which are negatives of each
other.) An elementary argument shows that if there are two y for a given x,
then there are no y for −x, and vice versa. The point here is that a non-zero
number mod p has a square root mod p if and only if its negative does not;
this observation is valid when p is 3 mod 4 but fails to be true when p is 1
mod 4. The end result is that, on average, there is one value of y that works
for each x. Thus the number of solutions is p, as was stated.

The interesting case for y2 = x3 − x is that where p is congruent to 1
mod 4. We assume now that this is the case. To get a feel for the situation,
we can calculate the number of solutions mod 5 and mod 13; these are the
first two primes that are 1 mod 4.

Suppose that p = 5. The values x = 0, x = 1 and x = 4 make x3 − x
congruent to 0, so that they give rise to exactly one solution each; y must
be 0. If x = 2, then x3 − x is congruent to 1, a number that has two square
roots mod 5, namely ±1. Thus x = 2 gives rise to two solutions. Similarly, if
x = 3, then x3−x is congruent to 4 mod 5, and 4 has two square roots. Thus
x = 2 also gives rise to two solutions. As a result, there are seven solutions
to y2 = x3 − x mod 5.

Suppose now that p = 13. The three values x = 0, 1,−1 give rise to a
single solution each as before; in each case, y is again 0. The ten remaining

icfs: submitted to World Scientific on February 13, 2001 10



values of x (namely, x = 2, 3, . . . , 11) each give rise either to two or to no
solutions: the quantity x3 − x is non-zero mod p and we have to decide in
each case whether or not it is a square (i.e., a number with square roots
mod p). The quantities are respectively 6, 11, 8, 3, 2, 11, 10, 5, 2 and 7
mod 13. On the other hand, the non-zero squares mod 13 are 1, 3, 4, 9, 10
and 12. It happens, then, that only two of the numbers x between 2 and 11
are such that x3 − x is a square. Thus we find— one again— that there are
seven solutions to y2 = x3 − x mod p.

One could easily guess from these two examples that there are always
seven solutions to y2 = x3 − x mod p when p is 1 mod 4, but these two
examples are misleading.
Theorem 1 (Gauss) Suppose that p is a prime that is 1 mod 4. Then the
number of solutions to y2 = x3 − x mod p is p − 2rp, where rp is chosen as
above.
The theorem is compatible with the two examples that we presented. When
p = 5, we have rp = −1, so that p − 2rp = 7. When p = 13, rp is 3, and
13 − 2 · 3 = 7. Since r73 = −3, the number of solutions to y2 = x3 − x
mod 73 is 73 + 6 = 79. Here is an example with a p that is considerably
larger than the primes that have appeared thus far: Suppose that p is the
prime number 144169. We can write p as the sum 3152 + 2122. It follows
that rp = ±315. Since 315 + 212 = 527 is 3 mod 4, we must take rp = −315.
Gauss’s formula then asserts that the number of solutions to y2 = x3 − x
mod p is 144169 + 2 · 315 = 144799.

A variant of Gauss’s formula is proved in [14, Ch. 11, §8]. The connection
between the variant given there and the formula of Theorem 1 is made in
Exercise 13 at the end of [14, Ch. 11].

7 Binomial Coefficients

Because I have written extensively about Fermat’s Last Theorem, I have re-
ceived a number of letters about number theory from amateur mathemati-
cians. Several years ago, I received a letter about binomial coefficients. These
are the numbers that appear in the expansion of (x+y)n when n is a positive
integer. Recall, for example, that

(x + y)2 = x2 + 2xy + y2,

(x + y)3 = x3 + 3x2y + 3xy2 + y3,

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,
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. . . .

The coefficient of xn−iyi in the expansion of (x + y)n is usually denoted
(
n
i

)
.

It may be expressed as the fraction
n!

(n− i)!i!
, where k! is used to denote the

product of the first k positive integers. (By convention, 0! = 1.) Looking at
the expansion for (x + y)4, say, we see that

(
4
2

)
= 6 and that

(
4
3

)
= 4.

The letter that I received concerned the central coefficient in the expansion
of (x + y)n when n = (p − 1)/2 and p is a prime congruent to 1 mod 4. If p
is 5, for example, this coefficient is 2. In general, it is the binomial coefficient(
(p−1)/2
(p−1)/4

)
, a number that we can call bp for short:

p 5 13 17 29 37 · · ·
bp 2 20 70 3432 48620 · · · .

These numbers grow large very quickly, but my correspondent was considering
them modulo p in order to keep their size manageable. For reasons that I no
longer recall, he hit upon the scheme of representing them modulo p as even
numbers between −(p−1) and +(p−1). In the table that follows, I’ve written
cp for the unique even number in this range that is congruent to bp modulo p:

p 5 13 17 29 37 41 53 · · ·
cp 2 −6 2 10 2 10 −14 · · · .

He noticed that the residues cp were related to the integers rp that we intro-
duced above in connection with Gauss’s formula. Because he did not have
Gauss’s formula in mind, he tabulated the rp as positive numbers:

p 5 13 17 29 37 41 53 61 73 89 · · ·
cp 2 −6 2 10 2 10 −14 10 −6 10 · · ·
rp 1 3 1 5 1 5 7 5 3 5 · · · .

It was clear to him empirically from his calculations that cp = ±2rp, but the
sign in this equation seemed completely opaque. He asked me to determine
the sign and to explain to him why the identity is true.

Although the identity cp = ±2rp has been known at least since the nine-
teenth century, it was new to me. However, I realized that the sign that
appears in this identity becomes significantly less mysterious once we again
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endow rp with the sign that we introduced in connection with Gauss’s formula:

p 5 13 17 29 37 41 53 61 73 89 · · ·
cp 2 −6 2 10 2 10 −14 10 −6 10 · · ·
rp −1 3 1 −5 −1 5 7 −5 −3 5 · · · .

The rule relating cp and rp in this latter table is as follows:{
cp = +2rp if p is 1 plus a multiple of 8
cp = −2rp if p is 5 plus a multiple of 8.

Notice here that p is assumed going in to be of the form 1 + 4t. If t is even,
p is congruent to 1 mod8; if t is odd, p is congruent to 5 mod 8.

It is not too hard to establish this rule if one takes Gauss’s formula as a
starting point. Indeed, suppose that we seek to calculate the number of mod p
solutions to y2 = x3 − x. We can let x run over the set { 0, 1, 2, . . . , p− 1 } of
numbers mod p. For each x, the number of y satisfying y2 = x3 − x is: 1 if x3 − x is 0 mod p

2 if x3 − x is a non-zero square mod p
0 if x3 − x is not a square mod p.

This number may be written 1+
(
x3−x

p

)
, where

(
p

)
is the traditional Legendre

symbol whose values are 0, +1, −1 according as the argument is 0, a non-zero
square, or a non-square mod p. The number of solutions to y2 = x3−x mod p
is then

p−1∑
x=0

(
1 +

(
x3 − x

p

))
.

Thus

2rp = −
p−1∑
x=0

(
x3 − x

p

)
by Theorem 1. A standard congruence for

(
p

)
states that

(
a
p

)
is congruent

mod p to a(p−1)/2 for each integer a. Using this congruence, we get

2rp ≡ −
p−1∑
x=0

(x3 − x)(p−1)/2,

where “≡” denotes congruence mod p. The expression (x3 − x)(p−1)/2 can
be expanded out as a sum that involves the binomial coefficients

(
(p−1)/2

i

)
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(i = 0, . . . , (p − 1)/2). After changing the order of summation, we get from
this expansion

2rp ≡ −
(p−1)/2∑

i=0

(−1)i

{
p−1∑
x=0

(
(p− 1)/2

i

)
x3((p−1)/2)−2i

}
.

Now an elementary fact about sums of powers states that we have
p−1∑
x=0

xj ≡
{

0 if p− 1 does not divide j
−1 if p− 1 does divide j.

It follows that only one of the inner sums is non-zero mod p: this is the sum
corresponding to the choice i = (p− 1)/4. We thus get

2rp ≡ −(−1)(p−1)/4

(
(p− 1)/2
(p− 1)/4

)
(−1),

so that

2rp ≡ (−1)(p−1)/4bp.

Since the sign in this expression is 1 if and only if p is congruent to 1 mod 8,
we find that cp is either 2rp or −2rp, with the choice of sign as stated above.

8 Sums of Squares mod p

During my “lecture to schools” at Victoria Junior College, I discussed several
issues that were brought up by undergraduate students and amateur math-
ematicians. One was the binomial coefficient identity that is treated in the
previous section— it turned out to be a corollary of a formula of Gauss that
a number of mathematicians had been featuring in their lectures on Fermat’s
Last Theorem.

A second question involves squares mod p; it was posed by a freshman
(i.e., first-year student) at Yale University. Recall from our discussion before
that the non-zero squares mod 13 are 1, 3, 4, 9, 10 and 12. The sum of these
six numbers, considered as positive integers, is 1 + 3 + 4 + 9 + 10 + 12 = 39,
which is 13 · 3. Suppose, more generally, that p is a prime different from 2.
It is a standard fact from elementary number theory that there are precisely
(p − 1)/2 different non-zero squares mod p. (It’s easy to see that there are
at most this number because (−x)2 is the same as x2 for each x mod p. The
point is that if x2 = y2, then x ≡ ±y mod p.) Regarding the squares as
integers between 1 and p−1, we form their sum and call the resulting positive
integer S(p). Then S(3) = 1, S(5) = 1 + 4 = 5, S(7) = 1 + 2 + 4 = 7,
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S(11) = 1 + 3 + 4 + 5 + 9 = 22, etc. We can guess from these examples that
S(p) is divisible by p for p ≥ 5, and indeed this divisibility is relatively easy
to establish. Let’s assume then that p is at least 5 and set L(p) = S(p)/p.
Thus L(5) = L(7) = 1, L(11) = 2, and so on.

The question concerns L(p): can we find a formula for it?

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 · · ·
L(p) 1 1 2 3 4 4 4 7 6 9 10 10 9 13 13 15 16 14 · · ·

After looking at this table (or perhaps an extension of it), one comes to the
realization that

L(p) =
p− 1

4
when p is congruent to 1 mod 4. This formula is given frequently as an exercise
in number theory classes, and the proof is not difficult. The key fact in this
case is that if a is a square mod p, then so is −a. (The analogous statement for
p congruent to 3 mod 4 is that −a is never a square mod p if a is a non-zero
square!) Eqivalently, if a is a square between 1 and p− 1, then p− a is again
such a number. Notice also that a and p − a are distinct numbers since p is
odd. Thus the squares mod p between 1 and p − 1 can be partitioned into
pairs {a, p − a}. The sum of the numbers in each pair is p. Since there are
(p − 1)/2 squares mod p, there are (p − 1)/4 pairs. It follows that the sum

of all the squares is p
p− 1

4
, as was claimed. For example, if p = 17, then the

squares are 1, 2, 4, 8, 9, 13, 15 and 16. We re-write the sum of these eight
numbers as (1 + 16) + (2 + 15) + (4 + 13) + (8 + 9) = 4 · 17.

Knowing the formula for L(p) when p ≡ 1 mod 4, one might anticipate a
similar formula in the complementary case p ≡ 3 mod 4. The values of L(p)
for p = 7, 11 and 19 suggest that one has

L(p) ?=
p− 3

4
.

I was asked whether this formula was true in general.
In fact, I saw quickly that the formula is false by continuing the compu-

tation. Indeed, we have L(23) = 4 when the formula predicts L(23) ?= 5. On
the other hand, the formula seemed perhaps to be not so far from the truth:
in the table, the formula is correct for p = 43 and p = 67, as well as for the
small values 7, 11 and 19. This behavior is somewhat striking, since false
formulas tend to fail in a much more spectacular way.

Although I was initially puzzled by what was going on, I realized after
orienting myself that I already knew how to write down a correct version of
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the formula. In fact, the information needed is available in a classic text on al-
gebraic number theory, Hermann Weyl’s “Algebraic Theory of Numbers” [31].
The corrected formula reads

L(p) =
p− 1− 2h(p)

4
,

where h(p) is a certain odd positive integer that depends on p. The fraction
(p− 3)/4 coincides with (p− 1− 2h(p))/4 if and only h(p) = 1.

The term h(p) is a class number that has been studied extensively at
least since the time of Gauss. One way to introduce the class number is to
return to the proof of Fermat’s Last Theorem for exponents 3 and 4. In
the seventeenth century, Fermat proved that the equation a4 + b4 = c4 has no
solution in positive integers by proving a stronger statement involving squares
and fourth powers. As recapitulated by Ireland and Rosen [14, p. 272], the
idea is to show that there are no solutions to a4 + b4 = c2 by a method
of descent: one assumes that there is a solution to this equation in positive
integers, chooses a (“minimal”) solution for which the number c is as small
as possible, and then parlays the chosen solution into a new solution whose
c-value is even smaller than that for the minimal solution. The method hinges
on properties of unique factorization of positive integers; unique factorization
is the statement that an integer bigger than 1 can be written as a product of
prime numbers in essentially only one way.

To exploit unique factorizaton, one re-writes the equation a4 + b4 = c2

as the statement that c2 − a4 = (c − a2)(c + a2) is a perfect fourth power
(namely, b4). One then recalls the principle that if a product of two positive
integers A · B is a fourth power, then A and B must each be perfect fourth
powers — provided that A and B have no common factor. The (c − a2) and
(c + a2) may share a common factor, so that the principle cannot be used
without modification. However, one can exchange a and b in the minimal
solution (if necessary) so as to make 2 the only divisor > 1 that is common
to the two factors (c− a2) and (c + a2). After using unique factorization in a
judicious way, one emerges with a new solution whose c-value is smaller than
the c-value of the minimal solution.

Euler treated the equation a3 + b3 = c3 by a method that is similar to
Fermat’s. However, he needed to work with quantities that involve a complex
cube root of 1 [14, Ch. 17, §8]. The key idea is to introduce quantities involving√
−3 that act as generalized integers and to establish for these quantities an

analogue of the unique factorization theorem for positive integers. These

icfs: submitted to World Scientific on February 13, 2001 16



quantities are expressions of the form

n + m
−1 +

√
−3

2
,

where n and m are usual integers. These expressions can be added, subtracted
and multipled to form an arithmetical system like the system of ordinary
integers.

Suppose now more generally that p is a prime number that is congruent
to 3 mod 4. Then one considers in an analogous way the system of quantities

n + m
−1 +

√
−p

2
,

where n and m are again integers. The class number h(p) measures the extent
to which unique factorization fails for this system; h(p) = 1 if and only if
unique factorization can be established. Gauss proved that h(p) is always an
odd number and examined the behavior of h(p) numerically. He conjectured
that h(p) = 1 if and only if p is one of the prime numbers 3, 7, 11, 19, 43, 67,
163. This conjecture was established only in the twentieth century! See [28]
for a discussion of work by A. Baker, K. Heegner and H. Stark that resolved
this question. Thus the proposed formula is correct precisely for the values
of p that we listed above — namely, 7, 11, 19, 43 and 67 — plus the larger
prime p = 163.

9 Fermat-like Equations

At Victoria Junior College, I discussed a third question that was sent to me
by an amateur mathematician: he asked whether the methods that proved
Fermat’s Last Theorem would shed any light on the Fermat-like equation
an + bn = 2cn, where n is a positive integer. In this equation, we can suppose
first that a, b and c are positive integers. We observe immediately that this
equation, in contrast to Fermat’s equation, does have solutions. Indeed, we
can take a to be an arbitrary positive integer and set b and c equal to a! We
can call these solutions trivial and ask whether there are non-trivial solutions
to the equation. If n = 1, then the equation states simply that c = a +
b, so of course there is no obstacle to having solutions. As with Fermat’s
equation, there are non-trivial solutions if n = 2; for example, we can take
(a, b, c) = (1, 7, 5). It is an interesting exercise to find a description of the non-
trivial solutions that is analogous to the familiar description of all Pythagorean
triples — the solutions to a2 + b2 = c2.

The special appeal of an + bn = 2cn stems from its reformulation as the
statement that cn is the average of an and bn. In other words, if an+bn = 2cn,
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then an, cn and bn form an arithmetic progression. In the example (1, 7, 5)
with n = 2, 25 is the average of 1 and 49; equivalently, the differences 25− 1
and 49− 25 are equal.

As I gradually learned while researching this equation, its history is par-
allel to that of Fermat’s equation. As with Fermat’s equation, the discussion
for exponents n > 2 may be reduced to the two cases n = 4 and n = p,
where p is a prime greater than 2. Fermat proved that four distinct perfect
squares cannot form an arithmetic progression, and he showed that there are
no non-trivial solutions to a4 + b4 = 2c4. Accordingly, it sufficed to consider
the case n = p with p ≥ 3. Euler and Lengendre treated the case p = 3.
In 1952, P. Dénes showed that there are no non-trivial solutions for p ≤ 29
and conjectured that there are no non-trivial solutions for all prime exponents
bigger than 2.

In an article that was published in 1997 [24], I adapted the technology
that was used in proving Fermat’s Last Theorem to establish Dénes’s conjec-
ture for primes p that are congruent to 1 mod 4. Subequently, H. Darmon
and L. Merel settled Dénes’s conjecture completely (in the affirmative) by
introducing new techniques to deal with the case p ≡ 3 mod 4 [9]. There
has been a substantial literature about Fermat-like equations ever since the
connection between Fermat solutions and elliptic curves was uncovered in the
1980s. See [8] for information in this direction.

10 Further Reading

During the course of this article, I have mentioned some of my favorite articles
and books about number theory, especially those that touch on Fermat’s Last
Theorem. Here are a few more references that I have not yet had occasion
to cite. First, a summary of “elementary” approaches to Fermat’s Last The-
orem is provided by P. Ribenboim in his book [20]. Secondly, an interesting
discussion of elliptic curves and modular forms is contained in A. van der
Poorten’s book [16]. Next, the recent “diary” by C. J. Mozzochi [15] contains
photos of the mathematicians who participated in the proof of Fermat’s Last
Theorem, along with detailed descriptions of lectures and other events that
are associated strongly with the proof. Finally, several accounts of the de-
tails of the proof of Fermat’s Last Theorem have been written for professional
mathematicians [7], [18], [6]. What is missing from the literature, at least so
far, is an extended account of the proof that is accessible to a scientifically
literate lay reader and does justice to the mathematics behind the proof.
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