Contemporary Mathematics Volume **174**, 1994

Fields of definition of abelian varieties with real multiplication

KENNETH A. RIBET

1. Introduction

Let K be a field, and let \overline{K} be a separable closure of K. Let C be an elliptic curve over \overline{K} . For each g in the Galois group $G := \operatorname{Gal}(\overline{K}/K)$, let ${}^{g}C$ be the elliptic curve obtained by conjugating C by g. One says that C is an elliptic K-curve if all the elliptic curves ${}^{g}C$ are \overline{K} -isogenous to C.

Recall that a subfield L of \overline{K} is said to be a $(2, \ldots, 2)$ -extension of K if L is a compositum of a finite number of quadratic extensions of K in \overline{K} . The extension L/K is then Galois, and $\operatorname{Gal}(L/K)$ is an elementary abelian 2-group. Recently, N. Elkies proved:

(1.1) THEOREM (Elkies, [2]). Let C be an elliptic K-curve over \overline{K} with no complex multiplication. Then C is \overline{K} -isogenous to an elliptic curve defined over a $(2, \ldots, 2)$ -extension of K.

In this article, we present an approach to (1.1) which seems different from that of Elkies. At the same time, we generalize (1.1) to include higher-dimensional analogues of elliptic K-curves with no complex multiplication. These are abelian varieties A over \overline{K} whose endomorphism algebras are totally real fields of dimension dim(A).

For lack of a better term, we borrow the phrase "Hilbert-Blumenthal abelian varieties" to refer to abelian varieties whose endomorphism algebras are totally real fields of maximal dimension. Our use of this expression is a bit unusual.

¹⁹⁹¹ AMS Subject Classification: 11F11, 11G10 (primary); 14K10, 14K15. This manuscript is in final form. It was written primarily during the program on L-functions at the Isaac Newton Institute for Mathematical Sciences. It is a pleasure to thank the INIMS for its hospitality. The author wishes to thank N. Elkies as well as W. Raskind and J.-L. Colliot-Thélène for helpful e-mail correspondence. This work was partially supported by NSF Grants DMS 88-06815 and DMS 93-06898.

Indeed, in standard parlance, a Hilbert-Blumenthal abelian variety relative to a totally real number field F is an abelian variety A over \overline{K} which is furnished with an action of the ring of integers \mathcal{O} of F. One requires that the Lie algebra $\operatorname{Lie}(A/\overline{K})$ be free of rank one over $\mathcal{O} \otimes \overline{K}$, which acts on $\operatorname{Lie}(A/\overline{K})$ by functoriality; in particular, this requirement forces the dimension of A and the degree of F to be equal. In this article, we insist that $\operatorname{End}(A) \otimes \mathbf{Q}$ be equal to (and not bigger than) a totally real field of dimension $\dim(A)$. On the other hand, we do not require the full ring of integers of this field to act on A.

Suppose that A is a Hilbert-Blumenthal abelian variety in our sense, and let F be the totally real number field $\operatorname{End}(A) \otimes \mathbf{Q}$. We say that A is a K-Hilbert-Blumenthal abelian variety (or "K-HBAV") if ${}^{g}A$ is F-equivariantly isogenous to A for all $g \in G$. The equivariance refers to the evident isomorphism $\varphi \mapsto {}^{g}\varphi$ between the endomorphism algebras of A and of ${}^{g}A$: we demand that there be for each $g \in \operatorname{Gal}(\overline{K}/K)$ an isogeny $\mu_{g} : {}^{g}A \to A$ which satisfies $\varphi \circ \mu_{g} = {}^{g}\varphi \circ \mu_{g}$ for all $\varphi \in F$.

(1.2) THEOREM. Suppose that A is a K-HBAV. Then A is F-equivariantly isogenous to a Hilbert-Blumenthal abelian variety over a finite $(2, \ldots, 2)$ extension of K.

One motivation for proving Theorem 1.2 is the study of Jacobians of modular curves. Indeed, let f be a weight-two newform on the group $\Gamma_1(N)$, and let X_f be the abelian variety associated to f by Shimura's construction [7, Th. 7.14]. Thus X_f is a Q-simple factor of the abelian variety $J_1(N)$. If f is a cusp form with complex multiplication, then X_f becomes isogenous to a power of a CM elliptic curve over **Q**. In the opposite case, Propositions 2.1–2.2 below show that the $\overline{\mathbf{Q}}$ -simple factors of X_f are then either \mathbf{Q} -HBAVs or quaterionic analogues of \mathbf{Q} -HBAVs. (It should be possible to prove a version of Theorem 1.2 in the quaternionic case as well.) The absolute decomposition of X_f is controlled by coincidences between the Galois conjugates of f and twists of f by Dirichlet characters (see [4]). From the point of view of [4], one sees that this absolute decomposition is achieved over the abelian extension of \mathbf{Q} cut out by the set of Dirichlet characters which intervene. This extension is a $(2, \ldots, 2)$ -extension of \mathbf{Q} if f has trivial Nebentypus character, but not in general. Nevertheless, Theorem 1.2 tells us that the absolute "building blocks" of X_f are defined over a $(2, \ldots, 2)$ -extension of **Q** in all cases.

We turn now to a discussion of the proof of Theorem 1.2 and some associated results. First of all, let us indicate how Theorem 1.2 follows immediately from a series of results in §3. As we will see, if A is a K-HBAV, then A defines a class γ in the cohomology group $H^2(G, F^*)$ made from locally constant cocycles $G \times G \longrightarrow$ F^* and the trivial action of G on F^* . Proposition 3.1 shows that the class γ represents the obstruction to finding a Hilbert-Blumenthal abelian variety over K which is isogenous over \overline{K} to the given one. Therefore, to prove (1.2) is to show that γ becomes trivial under the cohomological restriction map corresponding to a base extension $K \rightsquigarrow K'$, where K' is a $(2, \ldots, 2)$ -extension of K.

Now, by Proposition 3.2, γ lies in the subgroup $\mathrm{H}^2(G, F^*)[2]$ of $\mathrm{H}^2(G, F^*)$ consisting of classes of order at most two. On the other hand, Theorem 3.3 asserts that each element of $\mathrm{H}^2(G, F^*)[2]$ becomes trivial under the restriction map corresponding to a base extension $K \rightsquigarrow K'$ of the desired type. This completes our discussion of (1.2).

Secondly, we wish to highlight a technical point that arises in applying Theorem 3.3 to γ . Namely, let P be the quotient $F^*/\{\pm 1\}$ so that we have an exact sequence of abelian groups

$$0 \to \{\pm 1\} \to F^* \to P \to 0.$$

This sequence is *split*, since the abelian group P is free (Lemma 3.5). Consequently, $\mathrm{H}^2(G, F^*)[2]$ is a split extension of $\mathrm{H}^2(G, P)[2]$ by $\mathrm{H}^2(G, \{\pm 1\})$. As will be seen in §3, there is an elementary isomorphism $\mathrm{Hom}(G, P/P^2) \xrightarrow{\sim} \mathrm{H}^2(G, P)[2]$. Hence we have a split exact sequence

$$0 \to \mathrm{H}^{2}(G, \{\pm 1\}) \to \mathrm{H}^{2}(G, F^{*})[2] \to \mathrm{Hom}(G, P/P^{2}) \to 0.$$

Call $\overline{\gamma}$ the image of γ in Hom $(G, P/P^2)$. Then $\overline{\gamma}$ cuts out a $(2, \ldots, 2)$ -extension of K. This is the extension K_P of K in \overline{K} such that $\operatorname{Gal}(\overline{K}/K_P)$ is the kernel of $\overline{\gamma}$. Certainly, any extension of K in \overline{K} which trivializes γ must contain K_P .

In the case of elliptic curves (i.e., the case $F = \mathbf{Q}$), Elkies shows that γ is trivialized by the field K_P . This point, although admittedly technical, seems very striking to us. The present article may be viewed as an attempt to find a generalization of this phenomenon to the Hilbert-Blumenthal case.

Such a generalization is presented in §4, where we introduce the presumably superfluous requirement that K has characteristic zero. (This hypothesis does not intervene in [2].) We show (in Corollary 4.5 below) that γ is trivialized by K_P whenever $[F: \mathbf{Q}]$ is odd, and more generally whenever there is an embedding $F \hookrightarrow \overline{K}$ for which the degree [FK: K] is odd. It would be interesting to determine whether this hypothesis is necessary.

In the case where $[F: \mathbf{Q}]$ is odd, F^* is canonically a product $P \times \{\pm 1\}$. Indeed, P may be identified with the *subgroup* of F^* consisting of elements with positive norm to \mathbf{Q}^* . Hence we have canonically

$$H^{2}(G, F^{*})[2] = H^{2}(G, \{\pm 1\}) \times Hom(G, P/P^{2}).$$

This suggests a study of the image γ_{\pm} of γ in the first factor $\mathrm{H}^2(G, \{\pm 1\})$. One may be tempted to think that γ_{\pm} is trivial, which would certainly explain the vanishing of γ over K_P . Although γ_{\pm} is trivial for the **Q**-elliptic curves constructed by Shimura in [8], there seem to be examples where γ_{\pm} can be non-trivial. One such example was communicated to the author by E. Pyle of Berkeley, California; here, $K = \mathbf{Q}$ and A is a **Q**-elliptic curve.

KENNETH A. RIBET

2. K-Hilbert-Blumenthal abelian varieties

Let K, \overline{K} and G be as above, and let F be a totally real number field.

We consider pairs (A, ι) , where A is an abelian variety of dimension $[F: \mathbf{Q}]$ over \overline{K} , and where ι is an isomorphism $F \xrightarrow{\sim} \mathbf{Q} \otimes \operatorname{End}(A)$; such a pair will be called a Hilbert-Blumenthal abelian variety. As mentioned above, it would be more standard to allow ι to be an *injection* $F \hookrightarrow \mathbf{Q} \otimes \operatorname{End}(A)$; however, the more restrictive definition seems to be convenient in what follows. It should be stressed that our Hilbert-Blumenthal abelian varieties are, in particular, non-CM abelian varieties.

Abusing notation, we will generally write A for the pair (A, ι) . Moreover, we will frequently view A as an object in the category of abelian varieties upto isogeny over \overline{K} . In this category, isogenies of abelian varieties become isomorphisms, and the endomorphism algebra usually denoted $\mathbf{Q} \otimes \text{End}(A)$ can be written more simply as End(A).

Suppose that g is an element of G. Then ${}^{g}A$ admits a natural multiplication ${}^{g}\iota$ by F, so that ${}^{g}A$ is again a Hilbert-Blumenthal abelian variety. As mentioned in §1, we say that A is a K-HBAV if there is an F-equivariant isomorphism $\mu_{g} : {}^{g}A \xrightarrow{\sim} A$ of abelian varieties up to isogeny for each $g \in G$. Notice that a K-HBAV of dimension one is an elliptic K-curve with no complex multiplication.

To motivate the study of K-HBAVs, we record some facts concerning $\overline{\mathbf{Q}}$ simple factors of abelian varieties over \mathbf{Q} with many endomorphisms. We begin with some terminology: an abelian variety A over $\overline{\mathbf{Q}}$ is said to be a "fake" Hilbert-Blumenthal abelian variety if its endomorphism algebra is a quaternion division algebra over a totally real field F and if dim $(A) = 2 \cdot [F: \mathbf{Q}]$. Also, an abelian variety C over \mathbf{Q} is said to be of \mathbf{GL}_2 -type if $\mathbf{Q} \otimes \operatorname{End}_{\mathbf{Q}}(C)$ is a number field of degree dim(C). One knows that the \mathbf{Q} -simple factors of the Jacobian of a modular curve $X_1(N)$ are of \mathbf{GL}_2 -type. Moreover, it is reasonable to conjecture that *all* abelian varieties of \mathbf{GL}_2 -type over \mathbf{Q} are \mathbf{Q} -simple factors of the Jacobian of some $X_1(N)$, cf. [5, 4.4]. (Such a conjecture may be viewed as a higher-dimensional analogue of the conjecture of Taniyama and Shimura to the effect that all elliptic curves over \mathbf{Q} are modular.)

(2.1) PROPOSITION. Suppose that C is an abelian variety over \mathbf{Q} of \mathbf{GL}_2 type. Then $C_{\overline{\mathbf{Q}}}$ is "isotypical": it is isogenous to a product $A \times \cdots \times A$, where A is a simple abelian variety over $\overline{\mathbf{Q}}$. Further, A must be one of the following: (i) an elliptic curve with complex multiplication; (ii) a Hilbert-Blumenthal abelian variety (for some totally real field F); (iii) a "fake" Hilbert-Blumenthal abelian variety.

PROOF. Proposition 2.1 is implicit in the discussion of $\S5$ of [5] (which is based principally on results of G. Shimura). For completeness, we shall deduce the proposition from some results included in [5].

First of all, if $C_{/\overline{\mathbf{Q}}}$ contains any non-zero abelian subvariety with complex multiplication, then a result of Shimura (Proposition 1.5 of [8]) implies that $C_{/\overline{\mathbf{Q}}}$ is a power of an elliptic curve with complex multiplication; thus, we are in case (i). Assume instead that $C_{/\overline{\mathbf{Q}}}$ has no non-zero abelian subvariety with complex multiplication. The number field $E := \mathbf{Q} \otimes \operatorname{End}_{\mathbf{Q}}(C)$ is then its own commutant in \mathcal{X} , the algebra of all endomorphisms of C over $\overline{\mathbf{Q}}$. This implies that the center of \mathcal{X} is contained in E: it is therefore a subfield F of E. One shows that F is in fact a *totally real* number field [5, 5.4]. Since the center of \mathcal{X} is a single field (as opposed to a product of several fields), C is isotypical, as we claimed. In fact, if we write \mathcal{X} as M(n, D), where D is a division algebra with center F, then $C_{/\overline{\mathbf{Q}}}$ is isogenous to the *n*th power of a simple abelian variety Aover $\overline{\mathbf{Q}}$ whose endomorphism algebra is D.

Let t be such that t^2 is the rank of D over F. Then a short calculation, based on the fact that E is a maximal commutative semisimple subalgebra of M(n, D), establishes the formula dim $(A) = t \cdot [F : \mathbf{Q}]$. An argument exploiting the action of D on $H^1(A(\mathbf{C}), \mathbf{Q})$ shows that t is at most 2. (See the proof of Proposition 5.2 of [5] for these facts.) If t = 1, we are in case (ii), while if t = 2 we are in case (iii).

(2.2) PROPOSITION. Suppose that C is an abelian variety over \mathbf{Q} of \mathbf{GL}_2 -type. Let A be a simple \mathbf{Q} -quotient of C whose endomorphism algebra is a totally real field. Then A is a \mathbf{Q} -HBAV.

PROOF. From what we have seen, the abelian variety $C_{/\overline{\mathbf{Q}}}$ is isogenous to a product $A \times \cdots \times A$ (with, say, *n* factors), and we are in case (ii). Using the analysis of [5], §5 again, we see that the center of the endomorphism algebra \mathcal{X} of $C_{/\overline{\mathbf{Q}}}$ is a subalgebra of the algebra of \mathbf{Q} -endomorphisms of C. If this center is F, then \mathcal{X} is isomorphic to $\mathbf{M}(n, F)$, and the endomorphism algebra of A is F. After fixing an isomorphism $\mathcal{X} \approx \mathbf{M}(n, F)$, we may view A as the image of the matrix whose upper left-hand corner entry is 1 and whose other entries are 0. In this model, there is an obvious F-equivariant isogeny $\lambda \colon C_{\overline{\mathbf{Q}}} \to A^n$, given by the *n* different matrices with a single 1 in the first column and 0's elsewhere.

Let g be an element of G and take $d \in F$. Then we have a commutative diagram

$$\begin{array}{rcl} A^n & \stackrel{\lambda}{\leftarrow} & C & = & {}^{g}C & \stackrel{g_{\lambda}}{\rightarrow} & {}^{g}A^n \\ \downarrow d & & \downarrow d & & \downarrow {}^{g}d & & \downarrow {}^{g}d \\ A^n & \stackrel{\lambda}{\leftarrow} & C & = & {}^{g}C & \stackrel{g_{\lambda}}{\rightarrow} & {}^{g}A^n \end{array}$$

in which the central square expresses the fact that d is defined over \mathbf{Q} . Contracting it, we get a diagram

$$\begin{array}{cccc} A^n & \stackrel{\sim}{\longrightarrow} & gA^n \\ \downarrow d & & \downarrow gd \\ A^n & \stackrel{\sim}{\longrightarrow} & gA^n \end{array}$$

in which the isomorphism $A^n \xrightarrow{\sim} {}^g A^n$ is ${}^g \lambda \circ \lambda^{-1}$.

For each pair of integers (i, j) with $1 \leq i, j \leq n$, we get a map $A \to {}^{g}A$ by composing the following maps: the inclusion $A \hookrightarrow A^{n}$ which uses the *i*th coordinate, the isomorphism $A^{n} \approx {}^{g}A^{n}$, and the projection ${}^{g}A^{n} \to {}^{g}A$ which uses the *j*th coordinate. For some pair (i, j), this map is non-zero, hence an isogeny. (Recall that A is simple.) Let κ be this isogeny. Then we have

$$\begin{array}{cccc} A & \stackrel{\kappa}{\longrightarrow} & {}^{g}\!A \\ \downarrow d & & \downarrow {}^{g}\!d \\ A & \stackrel{\kappa}{\longrightarrow} & {}^{g}\!A \end{array}$$

as desired.

3. The class γ

Let A be a K-HBAV. For each g, let μ_g be an F-equivariant isomorphism up to isogeny ${}^{g}A \to A$. We can, and do, assume that the collection (μ_g) has been constructed from a model A_o of A over a finite extension L of K in such a way that μ_g and $\mu_{g'}$ are the same map ${}^{g}A \to A$ whenever g and g' coincide on L. Thus the association $g \mapsto \mu_g$ is in an obvious sense locally constant. For each pair $\sigma, \tau \in G$, we note that $\mu_{\sigma} \circ {}^{\sigma}\mu_{\tau} \circ \mu_{\sigma\tau}^{-1}$ is an automorphism of A up to isogeny, and consequently of the form $\iota(c(\sigma,\tau))$ with $c(\sigma,\tau) \in F^*$. The map $(\sigma,\tau) \mapsto c(\sigma,\tau)$ is a continuous two-cocycle on G with values in F^* , with F^* being regarded as a trivial G-module. The image γ of c in $\mathrm{H}^2(G, F^*)$ is independent of the choices of the μ_{σ} .

The following proposition is a mild generalization of [5, Th. 8.2].

(3.1) PROPOSITION. Let E be an extension of K in \overline{K} ; let $H = \operatorname{Gal}(\overline{K}/E)$ be the corresponding closed subgroup of G. Then the Hilbert-Blumenthal abelian variety A is F-equivariantly isogenous to a Hilbert-Blumenthal abelian variety over E if and only if the class γ lies in the kernel of the restriction map $\mathrm{H}^2(G, F^*) \to \mathrm{H}^2(H, F^*).$

PROOF. It suffices to prove the proposition in the case E = K, in which case the assertion to be proved is that $\gamma = 1$ if and only if A is (F-equivariantly) isogenous to a Hilbert-Blumenthal abelian variety over K.

Suppose first that there is a Hilbert-Blumenthal abelian variety B over K, together with an isomorphism $\lambda \colon A \xrightarrow{\sim} B_{/\overline{K}}$ of Hilbert-Blumenthal abelian varieties up to isogeny over \overline{K} . For each $g \in G$, we obtain an isomorphism ${}^{g}\lambda \colon {}^{g}A \xrightarrow{\sim} B$. After setting $\mu_{g} := \lambda^{-1} {}^{\circ}{}^{g}\lambda$, we find that c is identically 1, so that γ is trivial.

Conversely, suppose that $\gamma = 1$. Let L and A_o be as above; to simplify notation, we shall write A for A_o . After replacing L by a finite extension of L, we can, and do, assume that the μ_{σ} are defined over L. Further, the hypothesis that $\gamma = 1$ means that there is a locally constant function $\alpha: G \to F^*$ so that $c(\sigma,\tau) = \alpha(\sigma)\alpha(\tau)/\alpha(\sigma\tau)$; we enlarge L, if necessary so that α is defined modulo $\operatorname{Gal}(\overline{K}/L)$, and so that L is a Galois extension of K. We then replace μ_g by $(1/\alpha(g)) \cdot \mu_g$ for each $g \in G$. The new μ 's satisfy $\mu_{\sigma\tau} = \mu_{\sigma}{}^{\sigma}\mu_{\tau}$, and μ_g depends only on the image of g in the finite group $\Delta = \operatorname{Gal}(L/K)$. Finally, μ_g may be viewed as an F-equivariant isomorphism up to isogeny ${}^{g}A \xrightarrow{\sim} A$ which is defined over L.

Let R be the abelian variety $\operatorname{Res}_{L/K} A$, where "Res" denotes Weil's "Restriction of scalars" functor. In other words, R represents the functor $C \mapsto$ $\operatorname{Hom}(C_{/L}, A)$ from the category of abelian varieties up to isogeny over K to the category of **Q**-vector spaces. Thus R is an abelian variety over K which is furnished with a structural homomorphism (up to isogeny) $\lambda : R_{/L} \to A$. Given Cover K and a homomorphism (of abelian varieties up to isogeny) $\varphi : C_{/L} \to A$, there is a unique homomorphism $\theta : C \to R$ over K such that $\lambda \circ \theta = \varphi$.

One constructs R by considering the product $\prod_{g\in \operatorname{Gal}(L/K)} {}^{g}A$ and using obvious patching data to descend this product to K. In particular, R has dimension $[L: K] \cdot \dim(A)$. From this point of view, the map $\lambda \colon R_{/L} \to A$ is the projection of $\prod_{g\in \operatorname{Gal}(L/K)} {}^{g}A$ onto its factor A. Alternatively, given R with its structural map λ , and an element g of $\operatorname{Gal}(L/K)$, we can view ${}^{g}\lambda$ as a map $R_{/L} \to {}^{g}A$. One shows that the map $R_{/L} \to \prod_{g\in \operatorname{Gal}(L/K)} {}^{g}A$ induced by the family of ${}^{g}\lambda$ is an isomorphism.

By functoriality, F acts on R over K. Thus we have $F \subseteq \mathcal{X}$, where $\mathcal{X} = \operatorname{End}_K(R)$. Further, the universal property satisfied by R makes it easy to compute $\operatorname{End}_K(R)$ as a **Q**-vector space. Indeed, we have

$$\operatorname{End}_{K}(R) = \operatorname{Hom}_{K}(R, R) = \operatorname{Hom}_{L}(R_{/L}, A) = \bigoplus_{g} \operatorname{Hom}_{L}({}^{g}\!A, A) = \bigoplus_{g} F \cdot \mu_{g}.$$

Let [g] be the element of $\operatorname{End}_{K}(R)$ which corresponds to μ_{g} in the gth factor of the direct sum. Then [g] is the unique element in $\operatorname{End}_{K}(R)$ such that $\lambda \circ [g] = \mu_{g} \circ^{g} \lambda$. The unicity implies that each [g] commutes with the action of F on R. A short computation, based on the unicity and the formula $\mu_{\sigma\tau} = \mu_{\sigma} \sigma \mu_{\tau}$, shows that $[\sigma][\tau] = [\sigma\tau]$ for $\sigma, \tau \in \Delta$. Also, the [g] commute with F. Hence \mathcal{X} is in the end the group algebra $F[\Delta]$.

The field F is a direct summand of the algebra $\mathcal{X} = F[\Delta]$ via the inclusion $a \in F \mapsto a \cdot [1]$ and the augmentation map $[g] \mapsto 1$. Let B be the subvariety of R corresponding to the direct summand F of \mathcal{X} . Then B is an abelian variety over K with an induced action of F. We claim that B is a Hilbert-Blumenthal abelian variety over K, i.e., that $\dim(B) = \dim(A)$, and that in fact A and B are isomorphic Hilbert-Blumenthal abelian varieties up to isogeny over L. To see this, we remark that $R_{/L}$ is isogenous to a product of copies of A (since the ${}^{g}A$ are each isogenous to A), so that $B_{/L}$ is certainly isogenous to a product of some number of copies of A. To determine the dimension of B, we remark that

$$F = \operatorname{End}_K(B) = \operatorname{Hom}_K(B, R) = \operatorname{Hom}_L(B_{/L}, A).$$

Since F is the endomorphism algebra of A, $B_{/L}$ is isogenous to A.

Suppose now that A is a K-HBAV over \overline{K} . Fix a polarization $\theta_A \colon A \to A^*$ of A as an abelian variety. The associated Rosati involution of the endomorphism algebra of A may be viewed as a positive involution of the totally real field F and therefore is forced to be the identity.

Let *B* again be a Hilbert-Blumenthal abelian variety over \overline{K} , and fix a polarization θ_B of *B*. Then for each *F*-equivariant map $\mu: B \to A$, we define the "degree" deg(μ) by the formula

$$\deg(\mu) = \mu \circ \theta_B^{-1} \circ \mu \check{} \circ \theta_A,$$

so that deg(μ) is an element of the endomorphism algebra of A. Identifying this algebra with F, we consider that deg(μ) is an element of F. If \overline{K} is a subfield of \mathbf{C} , then θ_A and θ_B identify $\bigwedge_F^2 \mathrm{H}_1(A(\mathbf{C}), \mathbf{Q})$ and $\bigwedge_F^2 \mathrm{H}_1(B(\mathbf{C}), \mathbf{Q})$ with F. The number deg(μ) is the element of F describing the map $\bigwedge_F^2 \mathrm{H}_1(B(\mathbf{C}), \mathbf{Q}) \to \bigwedge_F^2 \mathrm{H}_1(A(\mathbf{C}), \mathbf{Q})$ induced by μ .

If $\mu: A \to A$ is given by an element c of F, then $\deg(\mu) = c^2$. Also, it is easy to check that deg is multiplicative in the following sense. Suppose that (C, θ_C) is a third polarized Hilbert-Blumenthal abelian variety, and that $\lambda: C \to B$ is F-equivariant. Then $\deg(\mu \circ \lambda) = \deg(\mu) \deg(\lambda)$, provided of course that the "degrees" are computed with respect to a fixed set of polarizations.

(3.2) PROPOSITION. Let A be a K-HBAV over \overline{K} . Then the order of the associated cohomology class $\gamma \in \mathrm{H}^2(G, F^*)$ is at most two.

PROOF. Fix a polarization $\theta: A \to A^{*}$ of A and for each $g \in G$ let \mathcal{P} denote the associated polarization of ${}^{g}A$. Choose a family (μ_{g}) as above, and let c be the F^{*} -valued two-cocycle on G defined by this family. For each g, let

$$d_q := \mu_q \circ^g \theta^{-1} \circ \mu_q \circ \theta$$

be the degree of μ_g , calculated with respect to the polarizations θ and \mathcal{P} . This element of F is canonical in the following sense: if we replace θ by another polarization θ' of A, then d_g will remain unchanged provided that we replace \mathcal{P} by \mathcal{P}' .

By construction,

$$c(\sigma,\tau) = \mu_{\sigma} \circ^{\sigma} \mu_{\tau} \circ \mu_{\sigma\tau}^{-1}$$

for $\sigma, \tau \in G$. On taking degrees, we find the formula

$$c(\sigma,\tau)^2 = \frac{d_\sigma d_\tau}{d_{\sigma\tau}}$$

which expresses the square of c as a coboundary.

(3.3) THEOREM. Let γ be an element of order dividing two in $\mathrm{H}^2(G, F^*)$. Then there is an open normal subgroup H of G such that G/H is an elementary abelian two-group and such that the image of γ in $\mathrm{H}^2(H, F^*)$ is trivial. In other words, γ becomes trivial after K is replaced by a finite $(2, \ldots, 2)$ -extension of K.

PROOF. Let $P = F^*/\{\pm 1\}$, so that there is a tautological exact sequence

$$(3.4) 0 \to \{\pm 1\} \to F^* \to P \to 0.$$

In the case where $[F: \mathbf{Q}]$ is odd, there is a natural splitting of this exact sequence: we may view P as the *subgroup* of F^* consisting of elements with positive norm to \mathbf{Q}^* . In the general case, (3.4) is still split, but apparently in no natural way. This follows directly from:

(3.5) LEMMA. The group P is a free abelian group, of countable rank.

To prove the lemma, we consider the map $\phi: a \mapsto (a)$ which takes an element a of P to the fractional ideal of F generated by a lift of a to F^* . The image of ϕ is a subgroup (of finite index) of the group of all fractional ideals of F; this latter group is the free abelian group on the set of non-Archimedean places of F. Hence the image of ϕ is a free abelian group, so that P is abstractly isomorphic to the direct sum of the image of ϕ and the kernel of ϕ . On the other hand, ker(ϕ) is the group $U/\{\pm 1\}$, where U is the group of units of F. According to Dirichlet's theorem, ker(ϕ) is a free abelian group of rank n-1, where $n = [F: \mathbf{Q}]$. It follows that P is the direct sum of two free abelian groups, one finitely generated and one countably generated. This proves the lemma.

Returning to the proof of (3.3), we fix a splitting of (3.4). We shall assume that this is the indicated natural splitting if $[F: \mathbf{Q}]$ is odd. The splitting fixes an isomorphism of abelian groups $F^* \approx \{\pm 1\} \times P$. This isomorphism induces in turn a decomposition

 $\mathrm{H}^{2}(G, F^{*})[2] \approx \mathrm{H}^{2}(G, \{\pm 1\}) \times \mathrm{H}^{2}(G, P)[2],$

where the notation "[2]" indicates the kernel of multiplication by 2. The element γ of $\mathrm{H}^2(G, F^*)$ is then the product of its two projections $\gamma_{\pm} \in \mathrm{H}^2(G, \{\pm 1\})$ and $\overline{\gamma} \in \mathrm{H}^2(G, P)[2]$. The factor $\overline{\gamma}$ is independent of the chosen splitting of (3.4): it is the image of γ under the map on cohomology induced by the quotient map $F^* \to P$. On the other hand, the "sign" component γ_{\pm} of γ depends on the splitting. We thus consider that γ_{\pm} is defined intrinsically only in the case where $[F: \mathbf{Q}]$ is odd.

To prove (3.3), we must show that both γ_{\pm} and $\overline{\gamma}$ become trivial when K is replaced by a $(2, \ldots, 2)$ -extension of K.

To treat $\overline{\gamma}$, we consider the exact sequence

$$1 \to P \xrightarrow{x \mapsto x^2} P \to P/P^2 \to 1;$$

note that P is torsion free. The associated long exact cohomology sequence then gives an isomorphism

$$\operatorname{Hom}(G, P/P^2) \xrightarrow{\sim} \operatorname{H}^2(G, P)[2].$$

Suppose that $\overline{\gamma}$ corresponds to the homomorphism $\varphi \colon G \to P/P^2$. Then ker (φ) is a subgroup of G which corresponds to a $(2, \ldots, 2)$ -extension K_P of K. It is clear that $\overline{\gamma}$ becomes trivial over this extension.

It remains to split γ_{\pm} . It is known that $H^2(G, \{\pm 1\}) = 0$ if K has characteristic 2, cf. [6, p. II-5]. Assume, then, that the characteristic of K is different from 2. The group $H^2(G, \{\pm 1\})$ may then be identified with Br(K)[2], where Br(K) is the Brauer group of K. A theorem of S. A. Merkur'ev [3] states that Br(K)[2] is generated by the classes of quaternion algebras over K. Since each quaternion algebra over K is split by a quadratic extension of K, it follows that γ_{\pm} is split by a $(2, \ldots, 2)$ -extension of K, as required.

4. The odd-dimensional situation

In this section, we assume that K has characteristic 0. (An assumption concerning the parity of $[F: \mathbf{Q}]$ will be made later.)

We begin with some preliminary comments concerning the class γ defined by a K-HBAV. First, we note that the tensor product $F \otimes_{\mathbf{Q}} K$ decomposes as some direct sum of fields $\bigoplus_{\omega \in \Omega} K_{\omega}$, where the K_{ω} are finite extensions of K. The index set Ω is the set $\operatorname{Hom}(F,\overline{K})$ of field embeddings $F \hookrightarrow \overline{K}$, modulo the action of G on $\operatorname{Hom}(F,\overline{K})$.

Next, suppose that L is a finite extension of K, and consider $M := L \otimes_K \overline{K}$ as a G-module, with G acting trivially on the first factor. Choose an embedding σ of L into \overline{K} , and let $H = \operatorname{Gal}(\overline{K}/\sigma(L))$. Then $L \otimes_K \overline{K}$ is the induced representation $\operatorname{Ind}_H^G \overline{K}$. Indeed, M may be written as the group of functions $f \colon \Sigma \to \overline{K}$, where Σ is the set of embeddings $L \to \overline{K}$. In this optic, G acts via $(g \cdot f)(\tau) = g(f(g^{-1}\tau))$ for $g \in G$ and $\tau \in \Sigma$. It is clear that $M = \bigoplus_{\tau \in \Sigma} M_{\tau}$, where M_{τ} consists of those functions which vanish outside of τ . Further, the subgroups M_{τ} of M are permuted transitively by G, since G acts transitively on Σ . The formula $M = \operatorname{Ind}_H^G \overline{K}$ then follows by a well known criterion (see, e.g., [1, Ch. III, 5.4]).

Finally, we consider $F \otimes_{\mathbf{Q}} \overline{K}$ as a *G*-module, with *G* acting trivially on the first factor and in the natural way on the second. Then

$$F \otimes_{\mathbf{Q}} \overline{K} = (F \otimes_{\mathbf{Q}} K) \otimes_K \overline{K} = \bigoplus_{\omega} (K_{\omega} \otimes_K \overline{K}).$$

Therefore,

$$F \otimes_{\mathbf{Q}} \overline{K} = \bigoplus_{\omega} \operatorname{Ind}_{H_{\omega}}^{G} \overline{K}.$$

In this latter formula, we have chosen for each ω a K-embedding $K_{\omega} \hookrightarrow \overline{K}$ and have put $H_{\omega} := \operatorname{Gal}(\overline{K}/K_{\omega})$.

In a similar vein, one proves

$$(F \otimes_{\mathbf{Q}} \overline{K})^* = \oplus \operatorname{Ind}_{H_{\omega}}^G \overline{K}^*.$$

Shapiro's lemma [1, Ch. III, 6.2] provides an identification

$$\mathrm{H}^{i}(G, \mathrm{Ind}_{H_{\omega}}^{G}\overline{K}^{*}) = \mathrm{H}^{i}(H_{\omega}, \overline{K}^{*})$$

for each $i \geq 0$. (The induced module $\operatorname{Ind}_{H_{\omega}}^{G} \overline{K}^{*}$ may be regarded as a co-induced module because the index of H_{ω} in G is finite.) Thus

$$\mathrm{H}^{i}(G, (F \otimes_{\mathbf{Q}} \overline{K})^{*}) = \oplus \mathrm{H}^{i}(H_{\omega}, \overline{K}^{*})$$

for each i. Consequently,

$$\mathrm{H}^1(G, F \otimes_{\mathbf{Q}} \overline{K})^*) = 0$$

by Hilbert's Theorem 90. Similarly,

(4.1)
$$\mathrm{H}^{2}(G, (F \otimes_{\mathbf{Q}} \overline{K})^{*}) = \bigoplus_{\omega} \mathrm{Br}(K_{\omega})$$

because $\mathrm{H}^2(H_\omega, \overline{K}^*)$ is the Brauer group of K_ω .

Now consider the exact sequence of G-modules

(4.2)
$$0 \to F^* \to (F \otimes \overline{K})^* \to (F \otimes \overline{K})^* / F^* \to 0,$$

where G acts in the usual way on \overline{K} and the indicated tensor products are taken over **Q**. Exploiting the vanishing of $\mathrm{H}^1(G, (F \otimes \overline{K})^*)$, we obtain

$$0 \to \mathrm{H}^{1}(G, (F \otimes \overline{K})^{*}/F^{*}) \xrightarrow{\delta} \mathrm{H}^{2}(G, F^{*}) \to \mathrm{H}^{2}(G, (F \otimes \overline{K})^{*}) \to \cdots$$

Here, δ is the indicated connecting homomorphism in the long cohomology sequence arising from (4.2).

(4.3) LEMMA. Let A be a K-HBAV. Then the element γ of $\mathrm{H}^2(G, F^*)$ defined by A lies in the image of δ . Equivalently, the image of γ in $\mathrm{H}^2(G, (F \otimes \overline{K})^*)$ is zero.

PROOF. We must exhibit an element β of $\mathrm{H}^1(G, (F \otimes \overline{K})^*/F^*)$ such that $\gamma = \delta(\beta)$. Let $V = \mathrm{Lie}(A/\overline{K})$. For each $g \in G$, the map $\mu_g \colon {}^{g}A \to A$ induces a $(F \otimes \overline{K})$ -linear homomorphism $\mathrm{Lie}({}^{g}A/\overline{K}) \to \mathrm{Lie}(A/\overline{K})$, or equivalently an F-linear homomorphism $\lambda_g \colon V \to V$ which is g-linear in the sense that it satisfies $\lambda(a \cdot v) = g(a)\lambda(v)$ for $a \in \overline{K}$ and $v \in V$. Now it is well known, and easy to verify, that the Lie algebra $\mathrm{Lie}(A/\overline{K})$ is free of rank one over $F \otimes \overline{K}$. Let v be a basis of V, considered as a free rank-one $F \otimes \overline{K}$ -module. Then one has $\lambda_g(v) = a_g \cdot v$ for some element a_g in $(F \otimes \overline{K})^*$. The relations among the μ_g provide the formula $c(\sigma, \tau)a_{\sigma\tau} = a_{\sigma}{}^{\sigma}a_{\tau}$ for $\sigma, \tau \in G$. It follows that the function $G \to (F \otimes \overline{K})^*/F^*$ induced by $g \mapsto a_g$ is a 1-cocycle, and that the corresponding class β in $\mathrm{H}^1(G, (F \otimes \overline{K})^*)$ maps to γ under δ .

(4.4) PROPOSITION. Suppose that γ is the element of $\mathrm{H}^2(G, F^*)$ arising from a K-HBAV and that $\overline{\gamma} = 0$. Then $\gamma = 0$ provided that no element of order two in the Brauer group of K is split by all extensions of K of the form K_{ω} .

PROOF. In view of the hypothesis $\overline{\gamma} = 0$, we have $\gamma = \gamma_{\pm} \in \mathrm{H}^2(G, \{\pm 1\})$. According to (4.3), γ lies in the kernel of the map

$$j: \mathrm{H}^2(G, \{\pm 1\}) \to \mathrm{H}^2(G, (F \otimes \overline{K})^*)$$

induced by the inclusion of $\{\pm 1\}$ in $(F \otimes \overline{K})^*$. This map may be viewed as the natural map

$$\operatorname{Br}(K)[2] \to \oplus \operatorname{Br}(K_{\omega})$$

which is injective by hypothesis. Thus γ is indeed 0.

(4.5) COROLLARY. Suppose that $\gamma \in H^2(G, F^*)$ arises from a K-HBAV. Suppose that $[F: \mathbf{Q}]$ is odd. Then the class γ becomes zero after K is replaced by the extension K_P of K defined by $\overline{\gamma}$. In particular, if $\overline{\gamma} = 0$, then $\gamma = 0$.

PROOF. The two assertions of the corollary are equivalent, since $\overline{\gamma}$ becomes trivial after K is replaced by K_P . Because of (4.4), to prove the second assertion it is enough to prove that the map j which occurs in the proof of (4.4) is injective whenever $[F: \mathbf{Q}]$ is odd.

However, $[F: \mathbf{Q}] = \sum_{\omega} [K_{\omega}: K]$. Thus, if $[F: \mathbf{Q}]$ is odd, then there is at least one index ω for which $[K_{\omega}: K]$ is odd. Further, if $[K_{\omega}: K]$ is odd, then it is evident that the map $\operatorname{Br}(K)[2] \to \operatorname{Br}(K_{\omega})$ is injective since there is a corestriction map cor: $\operatorname{Br}(K_{\omega}) \to \operatorname{Br}(K)$ whose composition with the natural map $\operatorname{Br}(K) \to \operatorname{Br}(K_{\omega})$ is multiplication by $[K_{\omega}: K]$.

References

- K.S. Brown, Cohomology of groups, Graduate Texts in Math., vol. 87, Springer-Verlag, New York, Heidelberg and Berlin, 1982.
- 2. N. Elkies, Remarks on elliptic K-curves, Preprint, 1993.
- A.S. Merkur'ev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk. SSSR 261 (1981), 542–547; Soviet Math. Dokl. 24 (1981), 546–551.
- K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), 43–62.
- _____, Abelian varieties over Q and modular forms, 1992 Proceedings of KAIST Mathematics Workshop, Korea Advanced Institute of Science and Technology, Taejon, 1992, pp. 53–79.
- J-P. Serre, *Cohomologie galoisienne*, Lecture Notes in Math., vol. 5, 4^e édition, Springer-Verlag, Berlin and New York, 1973.
- 7. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, 1971.
- Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 131–190.

UC MATHEMATICS DEPARTMENT, BERKELEY, CA 94720 USA *E-mail address*: ribet@math.berkeley.edu