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Fields of definition of abelian
varieties with real multiplication

KENNETH A. RIBET

1. Introduction

Let K be a field, and let K be a separable closure of K. Let C be an elliptic
curve over K. For each g in the Galois group G := Gal(K/K), let gC be the
elliptic curve obtained by conjugating C by g. One says that C is an elliptic
K-curve if all the elliptic curves gC are K-isogenous to C.

Recall that a subfield L of K is said to be a (2, . . . , 2)-extension of K if L is a
compositum of a finite number of quadratic extensions of K in K. The extension
L/K is then Galois, and Gal(L/K) is an elementary abelian 2-group. Recently,
N. Elkies proved:

(1.1) Theorem (Elkies, [2]). Let C be an elliptic K-curve over K with no
complex multiplication. Then C is K-isogenous to an elliptic curve defined over
a (2, . . . , 2)-extension of K.

In this article, we present an approach to (1.1) which seems different from that
of Elkies. At the same time, we generalize (1.1) to include higher-dimensional
analogues of elliptic K-curves with no complex multiplication. These are abelian
varieties A over K whose endomorphism algebras are totally real fields of dimen-
sion dim(A).

For lack of a better term, we borrow the phrase “Hilbert-Blumenthal abelian
varieties” to refer to abelian varieties whose endomorphism algebras are totally
real fields of maximal dimension. Our use of this expression is a bit unusual.
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Indeed, in standard parlance, a Hilbert-Blumenthal abelian variety relative to
a totally real number field F is an abelian variety A over K which is furnished
with an action of the ring of integers O of F . One requires that the Lie algebra
Lie(A/K) be free of rank one over O ⊗K, which acts on Lie(A/K) by functo-
riality; in particular, this requirement forces the dimension of A and the degree
of F to be equal. In this article, we insist that End(A)⊗Q be equal to (and not
bigger than) a totally real field of dimension dim(A). On the other hand, we do
not require the full ring of integers of this field to act on A.

Suppose that A is a Hilbert-Blumenthal abelian variety in our sense, and let
F be the totally real number field End(A)⊗Q. We say that A is a K-Hilbert-
Blumenthal abelian variety (or “K-HBAV”) if gA is F -equivariantly isogenous
to A for all g ∈ G. The equivariance refers to the evident isomorphism ϕ 7→ gϕ

between the endomorphism algebras of A and of gA: we demand that there be
for each g ∈ Gal(K/K) an isogeny µg : gA→ A which satisfies ϕ◦µg = gϕ◦µg for
all ϕ ∈ F .

(1.2) Theorem. Suppose that A is a K-HBAV. Then A is F -equivariantly
isogenous to a Hilbert-Blumenthal abelian variety over a finite (2, . . . , 2) exten-
sion of K.

One motivation for proving Theorem 1.2 is the study of Jacobians of modular
curves. Indeed, let f be a weight-two newform on the group Γ1(N), and let Xf

be the abelian variety associated to f by Shimura’s construction [7, Th. 7.14].
Thus Xf is a Q-simple factor of the abelian variety J1(N). If f is a cusp form
with complex multiplication, then Xf becomes isogenous to a power of a CM
elliptic curve over Q. In the opposite case, Propositions 2.1–2.2 below show that
the Q-simple factors of Xf are then either Q-HBAVs or quaterionic analogues
of Q-HBAVs. (It should be possible to prove a version of Theorem 1.2 in the
quaternionic case as well.) The absolute decomposition of Xf is controlled by
coincidences between the Galois conjugates of f and twists of f by Dirichlet
characters (see [4]). From the point of view of [4], one sees that this absolute
decomposition is achieved over the abelian extension of Q cut out by the set
of Dirichlet characters which intervene. This extension is a (2, . . . , 2)-extension
of Q if f has trivial Nebentypus character, but not in general. Nevertheless,
Theorem 1.2 tells us that the absolute “building blocks” of Xf are defined over
a (2, . . . , 2)-extension of Q in all cases.

We turn now to a discussion of the proof of Theorem 1.2 and some associated
results. First of all, let us indicate how Theorem 1.2 follows immediately from a
series of results in §3. As we will see, if A is a K-HBAV, then A defines a class γ in
the cohomology group H2(G, F ∗) made from locally constant cocycles G×G −→
F ∗ and the trivial action of G on F ∗. Proposition 3.1 shows that the class γ

represents the obstruction to finding a Hilbert-Blumenthal abelian variety over
K which is isogenous over K to the given one. Therefore, to prove (1.2) is to show
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that γ becomes trivial under the cohomological restriction map corresponding
to a base extension K  K ′, where K ′ is a (2, . . . , 2)-extension of K.

Now, by Proposition 3.2, γ lies in the subgroup H2(G, F ∗)[2] of H2(G, F ∗)
consisting of classes of order at most two. On the other hand, Theorem 3.3
asserts that each element of H2(G, F ∗)[2] becomes trivial under the restriction
map corresponding to a base extension K  K ′ of the desired type. This
completes our discussion of (1.2).

Secondly, we wish to highlight a technical point that arises in applying Theo-
rem 3.3 to γ. Namely, let P be the quotient F ∗/{±1} so that we have an exact
sequence of abelian groups

0→ {±1} → F ∗ → P → 0.

This sequence is split, since the abelian group P is free (Lemma 3.5). Conse-
quently, H2(G, F ∗)[2] is a split extension of H2(G, P )[2] by H2(G, {±1}). As will
be seen in §3, there is an elementary isomorphism Hom(G, P/P 2) ∼→ H2(G, P )[2].
Hence we have a split exact sequence

0→ H2(G, {±1})→ H2(G, F ∗)[2]→ Hom(G, P/P 2)→ 0.

Call γ the image of γ in Hom(G, P/P 2). Then γ cuts out a (2, . . . , 2)-extension
of K. This is the extension KP of K in K such that Gal(K/KP ) is the kernel
of γ. Certainly, any extension of K in K which trivializes γ must contain KP .

In the case of elliptic curves (i.e., the case F = Q), Elkies shows that γ is
trivialized by the field KP . This point, although admittedly technical, seems
very striking to us. The present article may be viewed as an attempt to find a
generalization of this phenomenon to the Hilbert-Blumenthal case.

Such a generalization is presented in §4, where we introduce the presumably
superfluous requirement that K has characteristic zero. (This hypothesis does
not intervene in [2].) We show (in Corollary 4.5 below) that γ is trivialized
by KP whenever [F : Q] is odd, and more generally whenever there is an embed-
ding F ↪→ K for which the degree [FK : K] is odd. It would be interesting to
determine whether this hypothesis is necessary.

In the case where [F : Q] is odd, F ∗ is canonically a product P×{±1}. Indeed,
P may be identified with the subgroup of F ∗ consisting of elements with positive
norm to Q∗. Hence we have canonically

H2(G, F ∗)[2] = H2(G, {±1})×Hom(G, P/P 2).

This suggests a study of the image γ± of γ in the first factor H2(G, {±1}).
One may be tempted to think that γ± is trivial, which would certainly explain
the vanishing of γ over KP . Although γ± is trivial for the Q-elliptic curves
constructed by Shimura in [8], there seem to be examples where γ± can be
non-trivial. One such example was communicated to the author by E. Pyle of
Berkeley, California; here, K = Q and A is a Q-elliptic curve.
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2. K-Hilbert-Blumenthal abelian varieties

Let K, K and G be as above, and let F be a totally real number field.
We consider pairs (A, ι), where A is an abelian variety of dimension [F : Q]

over K, and where ι is an isomorphism F
∼→ Q ⊗ End(A); such a pair will be

called a Hilbert-Blumenthal abelian variety. As mentioned above, it would be
more standard to allow ι to be an injection F ↪→ Q ⊗ End(A); however, the
more restrictive definition seems to be convenient in what follows. It should be
stressed that our Hilbert-Blumenthal abelian varieties are, in particular, non-CM
abelian varieties.

Abusing notation, we will generally write A for the pair (A, ι). Moreover,
we will frequently view A as an object in the category of abelian varieties up
to isogeny over K. In this category, isogenies of abelian varieties become iso-
morphisms, and the endomorphism algebra usually denoted Q⊗End(A) can be
written more simply as End(A).

Suppose that g is an element of G. Then gA admits a natural multiplication gι

by F , so that gA is again a Hilbert-Blumenthal abelian variety. As mentioned
in §1, we say that A is a K-HBAV if there is an F -equivariant isomorphism
µg : gA

∼→ A of abelian varieties up to isogeny for each g ∈ G. Notice that a K-
HBAV of dimension one is an elliptic K-curve with no complex multiplication.

To motivate the study of K-HBAVs, we record some facts concerning Q-
simple factors of abelian varieties over Q with many endomorphisms. We begin
with some terminology: an abelian variety A over Q is said to be a “fake”
Hilbert-Blumenthal abelian variety if its endomorphism algebra is a quaternion
division algebra over a totally real field F and if dim(A) = 2 · [F : Q]. Also,
an abelian variety C over Q is said to be of GL2-type if Q ⊗ EndQ(C) is a
number field of degree dim(C). One knows that the Q-simple factors of the
Jacobian of a modular curve X1(N) are of GL2-type. Moreover, it is reasonable
to conjecture that all abelian varieties of GL2-type over Q are Q-simple factors
of the Jacobian of some X1(N), cf. [5, 4.4]. (Such a conjecture may be viewed
as a higher-dimensional analogue of the conjecture of Taniyama and Shimura to
the effect that all elliptic curves over Q are modular.)

(2.1) Proposition. Suppose that C is an abelian variety over Q of GL2-
type. Then C/Q is “isotypical”: it is isogenous to a product A×· · ·×A, where A

is a simple abelian variety over Q. Further, A must be one of the following: (i)
an elliptic curve with complex multiplication; (ii) a Hilbert-Blumenthal abelian
variety (for some totally real field F ); (iii) a “fake” Hilbert-Blumenthal abelian
variety.

Proof. Proposition 2.1 is implicit in the discussion of §5 of [5] (which is
based principally on results of G. Shimura). For completeness, we shall deduce
the proposition from some results included in [5].
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First of all, if C/Q contains any non-zero abelian subvariety with complex
multiplication, then a result of Shimura (Proposition 1.5 of [8]) implies that
C/Q is a power of an elliptic curve with complex multiplication; thus, we are
in case (i). Assume instead that C/Q has no non-zero abelian subvariety with
complex multiplication. The number field E := Q ⊗ EndQ(C) is then its own
commutant in X , the algebra of all endomorphisms of C over Q. This implies
that the center of X is contained in E: it is therefore a subfield F of E. One
shows that F is in fact a totally real number field [5, 5.4]. Since the center of X
is a single field (as opposed to a product of several fields), C is isotypical, as we
claimed. In fact, if we write X as M(n, D), where D is a division algebra with
center F , then C/Q is isogenous to the nth power of a simple abelian variety A

over Q whose endomorphism algebra is D.
Let t be such that t2 is the rank of D over F . Then a short calculation, based

on the fact that E is a maximal commutative semisimple subalgebra of M(n, D),
establishes the formula dim(A) = t · [F : Q]. An argument exploiting the action
of D on H1(A(C),Q) shows that t is at most 2. (See the proof of Proposition 5.2
of [5] for these facts.) If t = 1, we are in case (ii), while if t = 2 we are in
case (iii). �

(2.2) Proposition. Suppose that C is an abelian variety over Q of GL2-
type. Let A be a simple Q-quotient of C whose endomorphism algebra is a totally
real field. Then A is a Q-HBAV.

Proof. From what we have seen, the abelian variety C/Q is isogenous to a
product A × · · · × A (with, say, n factors), and we are in case (ii). Using the
analysis of [5], §5 again, we see that the center of the endomorphism algebra X
of C/Q is a subalgebra of the algebra of Q-endomorphisms of C. If this center
is F , then X is isomorphic to M(n, F ), and the endomorphism algebra of A is F .
After fixing an isomorphism X ≈ M(n, F ), we may view A as the image of the
matrix whose upper left-hand corner entry is 1 and whose other entries are 0.
In this model, there is an obvious F -equivariant isogeny λ : CQ → An, given by
the n different matrices with a single 1 in the first column and 0’s elsewhere.

Let g be an element of G and take d ∈ F . Then we have a commutative
diagram

An λ← C = gC
gλ→ gAn

↓ d ↓ d ↓ gd ↓ gd

An λ← C = gC
gλ→ gAn

in which the central square expresses the fact that d is defined over Q. Con-
tracting it, we get a diagram

An ∼→ gAn

↓ d ↓ gd

An ∼→ gAn
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in which the isomorphism An ∼→ gAn is gλ◦λ−1.
For each pair of integers (i, j) with 1 ≤ i, j ≤ n, we get a map A → gA

by composing the following maps: the inclusion A ↪→ An which uses the ith
coordinate, the isomorphism An ≈ gAn, and the projection gAn → gA which uses
the jth coordinate. For some pair (i, j), this map is non-zero, hence an isogeny.
(Recall that A is simple.) Let κ be this isogeny. Then we have

A
κ→ gA

↓ d ↓ gd

A
κ→ gA

as desired. �

3. The class γ

Let A be a K-HBAV. For each g, let µg be an F -equivariant isomorphism up
to isogeny gA → A. We can, and do, assume that the collection (µg) has been
constructed from a model Ao of A over a finite extension L of K in such a way
that µg and µg′ are the same map gA→ A whenever g and g′ coincide on L. Thus
the association g 7→ µg is in an obvious sense locally constant. For each pair
σ, τ ∈ G, we note that µσ◦σµτ ◦µ−1

στ is an automorphism of A up to isogeny, and
consequently of the form ι(c(σ, τ)) with c(σ, τ) ∈ F ∗. The map (σ, τ) 7→ c(σ, τ)
is a continuous two-cocycle on G with values in F ∗, with F ∗ being regarded as
a trivial G-module. The image γ of c in H2(G, F ∗) is independent of the choices
of the µσ.

The following proposition is a mild generalization of [5, Th. 8.2].

(3.1) Proposition. Let E be an extension of K in K; let H = Gal(K/E)
be the corresponding closed subgroup of G. Then the Hilbert-Blumenthal abelian
variety A is F -equivariantly isogenous to a Hilbert-Blumenthal abelian vari-
ety over E if and only if the class γ lies in the kernel of the restriction map
H2(G, F ∗)→ H2(H,F ∗).

Proof. It suffices to prove the proposition in the case E = K, in which case
the assertion to be proved is that γ = 1 if and only if A is (F -equivariantly)
isogenous to a Hilbert-Blumenthal abelian variety over K.

Suppose first that there is a Hilbert-Blumenthal abelian variety B over K, to-
gether with an isomorphism λ : A

∼→ B/K of Hilbert-Blumenthal abelian varieties
up to isogeny over K. For each g ∈ G, we obtain an isomorphism gλ : gA

∼→ B.
After setting µg := λ−1◦gλ, we find that c is identically 1, so that γ is trivial.

Conversely, suppose that γ = 1. Let L and Ao be as above; to simplify
notation, we shall write A for Ao. After replacing L by a finite extension of L,
we can, and do, assume that the µσ are defined over L. Further, the hypothesis
that γ = 1 means that there is a locally constant function α : G → F ∗ so that
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c(σ, τ) = α(σ)α(τ)/α(στ); we enlarge L, if necessary so that α is defined modulo
Gal(K/L), and so that L is a Galois extension of K. We then replace µg by
(1/α(g)) · µg for each g ∈ G. The new µ’s satisfy µστ = µσ

σµτ , and µg depends
only on the image of g in the finite group ∆ = Gal(L/K). Finally, µg may be
viewed as an F -equivariant isomorphism up to isogeny gA

∼→ A which is defined
over L.

Let R be the abelian variety ResL/K A, where “Res” denotes Weil’s “Re-
striction of scalars” functor. In other words, R represents the functor C 7→
Hom(C/L, A) from the category of abelian varieties up to isogeny over K to the
category of Q-vector spaces. Thus R is an abelian variety over K which is fur-
nished with a structural homomorphism (up to isogeny) λ : R/L → A. Given C

over K and a homomorphism (of abelian varieties up to isogeny) ϕ : C/L → A,
there is a unique homomorphism θ : C → R over K such that λ◦θ = ϕ.

One constructs R by considering the product
∏

g∈Gal(L/K)
gA and using obvi-

ous patching data to descend this product to K. In particular, R has dimension
[L : K] ·dim(A). From this point of view, the map λ : R/L → A is the projection
of

∏
g∈Gal(L/K)

gA onto its factor A. Alternatively, given R with its structural
map λ, and an element g of Gal(L/K), we can view gλ as a map R/L → gA.
One shows that the map R/L →

∏
g∈Gal(L/K)

gA induced by the family of gλ is
an isomorphism.

By functoriality, F acts on R over K. Thus we have F ⊆ X , where X =
EndK(R). Further, the universal property satisfied by R makes it easy to com-
pute EndK(R) as a Q-vector space. Indeed, we have

EndK(R) = HomK(R,R) = HomL(R/L, A) = ⊕
g

HomL(gA,A) = ⊕
g

F · µg.

Let [g] be the element of EndK(R) which corresponds to µg in the gth factor of
the direct sum. Then [g] is the unique element in EndK(R) such that λ◦[g] =
µg◦gλ. The unicity implies that each [g] commutes with the action of F on R.
A short computation, based on the unicity and the formula µστ = µσ

σµτ , shows
that [σ][τ ] = [στ ] for σ, τ ∈ ∆. Also, the [g] commute with F . Hence X is in the
end the group algebra F [∆].

The field F is a direct summand of the algebra X = F [∆] via the inclusion
a ∈ F 7→ a · [1] and the augmentation map [g] 7→ 1. Let B be the subvariety
of R corresponding to the direct summand F of X . Then B is an abelian variety
over K with an induced action of F . We claim that B is a Hilbert-Blumenthal
abelian variety over K, i.e., that dim(B) = dim(A), and that in fact A and B

are isomorphic Hilbert-Blumenthal abelian varieties up to isogeny over L. To
see this, we remark that R/L is isogenous to a product of copies of A (since the
gA are each isogenous to A), so that B/L is certainly isogenous to a product of
some number of copies of A. To determine the dimension of B, we remark that

F = EndK(B) = HomK(B,R) = HomL(B/L, A).
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Since F is the endomorphism algebra of A, B/L is isogenous to A. �

Suppose now that A is a K-HBAV over K. Fix a polarization θA : A → Aˇ
of A as an abelian variety. The associated Rosati involution of the endomorphism
algebra of A may be viewed as a positive involution of the totally real field F

and therefore is forced to be the identity.
Let B again be a Hilbert-Blumenthal abelian variety over K, and fix a po-

larization θB of B. Then for each F -equivariant map µ : B → A, we define the
“degree” deg(µ) by the formula

deg(µ) = µ◦θ−1
B

◦µˇ◦θA,

so that deg(µ) is an element of the endomorphism algebra of A. Identifying this
algebra with F , we consider that deg(µ) is an element of F . If K is a subfield of C,

then θA and θB identify
2∧
F

H1(A(C),Q) and
2∧
F

H1(B(C),Q) with F . The number

deg(µ) is the element of F describing the map
2∧
F

H1(B(C),Q)→
2∧
F

H1(A(C),Q)

induced by µ.
If µ : A→ A is given by an element c of F , then deg(µ) = c2. Also, it is easy

to check that deg is multiplicative in the following sense. Suppose that (C, θC)
is a third polarized Hilbert-Blumenthal abelian variety, and that λ : C → B

is F -equivariant. Then deg(µ◦λ) = deg(µ) deg(λ), provided of course that the
“degrees” are computed with respect to a fixed set of polarizations.

(3.2) Proposition. Let A be a K-HBAV over K. Then the order of the
associated cohomology class γ ∈ H2(G, F ∗) is at most two.

Proof. Fix a polarization θ : A→ Aˇ of A and for each g ∈ G let gθ denote
the associated polarization of gA. Choose a family (µg) as above, and let c be
the F ∗-valued two-cocycle on G defined by this family. For each g, let

dg := µg◦gθ−1◦µǧ◦θ

be the degree of µg, calculated with respect to the polarizations θ and gθ. This
element of F is canonical in the following sense: if we replace θ by another
polarization θ′ of A, then dg will remain unchanged provided that we replace gθ

by gθ′.
By construction,

c(σ, τ) = µσ◦σµτ ◦µ−1
στ

for σ, τ ∈ G. On taking degrees, we find the formula

c(σ, τ)2 =
dσdτ

dστ

which expresses the square of c as a coboundary. �
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(3.3) Theorem. Let γ be an element of order dividing two in H2(G, F ∗).
Then there is an open normal subgroup H of G such that G/H is an elementary
abelian two-group and such that the image of γ in H2(H,F ∗) is trivial. In other
words, γ becomes trivial after K is replaced by a finite (2, . . . , 2)-extension of K.

Proof. Let P = F ∗/{±1}, so that there is a tautological exact sequence

0→ {±1} → F ∗ → P → 0.(3.4)

In the case where [F : Q] is odd, there is a natural splitting of this exact sequence:
we may view P as the subgroup of F ∗ consisting of elements with positive norm
to Q∗. In the general case, (3.4) is still split, but apparently in no natural way.
This follows directly from:

(3.5) Lemma. The group P is a free abelian group, of countable rank.

To prove the lemma, we consider the map φ : a 7→ (a) which takes an element
a of P to the fractional ideal of F generated by a lift of a to F ∗. The image of φ

is a subgroup (of finite index) of the group of all fractional ideals of F ; this latter
group is the free abelian group on the set of non-Archimedean places of F . Hence
the image of φ is a free abelian group, so that P is abstractly isomorphic to the
direct sum of the image of φ and the kernel of φ. On the other hand, ker(φ) is
the group U/{±1}, where U is the group of units of F . According to Dirichlet’s
theorem, ker(φ) is a free abelian group of rank n−1, where n = [F : Q]. It follows
that P is the direct sum of two free abelian groups, one finitely generated and
one countably generated. This proves the lemma.

Returning to the proof of (3.3), we fix a splitting of (3.4). We shall assume
that this is the indicated natural splitting if [F : Q] is odd. The splitting fixes
an isomorphism of abelian groups F ∗ ≈ {±1}×P . This isomorphism induces in
turn a decomposition

H2(G, F ∗)[2] ≈ H2(G, {±1})×H2(G, P )[2],

where the notation “[2]” indicates the kernel of multiplication by 2. The element
γ of H2(G, F ∗) is then the product of its two projections γ± ∈ H2(G, {±1}) and
γ ∈ H2(G, P )[2]. The factor γ is independent of the chosen splitting of (3.4):
it is the image of γ under the map on cohomology induced by the quotient
map F ∗ → P . On the other hand, the “sign” component γ± of γ depends on
the splitting. We thus consider that γ± is defined intrinsically only in the case
where [F : Q] is odd.

To prove (3.3), we must show that both γ± and γ become trivial when K is
replaced by a (2, . . . , 2)-extension of K.

To treat γ, we consider the exact sequence

1→ P
x7→x2

−−→ P → P/P 2 → 1;
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note that P is torsion free. The associated long exact cohomology sequence then
gives an isomorphism

Hom(G, P/P 2) ∼→ H2(G, P )[2].

Suppose that γ corresponds to the homomorphism ϕ : G→ P/P 2. Then ker(ϕ)
is a subgroup of G which corresponds to a (2, . . . , 2)-extension KP of K. It is
clear that γ becomes trivial over this extension.

It remains to split γ±. It is known that H2(G, {±1}) = 0 if K has charac-
teristic 2, cf. [6, p. II-5]. Assume, then, that the characteristic of K is different
from 2. The group H2(G, {±1}) may then be identified with Br(K)[2], where
Br(K) is the Brauer group of K. A theorem of S.A. Merkur’ev [3] states that
Br(K)[2] is generated by the classes of quaternion algebras over K. Since each
quaternion algebra over K is split by a quadratic extension of K, it follows that
γ± is split by a (2, . . . , 2)-extension of K, as required. �

4. The odd-dimensional situation

In this section, we assume that K has characteristic 0. (An assumption con-
cerning the parity of [F : Q] will be made later.)

We begin with some preliminary comments concerning the class γ defined
by a K-HBAV. First, we note that the tensor product F ⊗Q K decomposes as
some direct sum of fields ⊕ω∈Ω Kω, where the Kω are finite extensions of K.
The index set Ω is the set Hom(F,K) of field embeddings F ↪→ K, modulo the
action of G on Hom(F,K).

Next, suppose that L is a finite extension of K, and consider M := L⊗KK as a
G-module, with G acting trivially on the first factor. Choose an embedding σ of L

into K, and let H = Gal(K/σ(L)). Then L⊗K K is the induced representation
IndG

H K. Indeed, M may be written as the group of functions f : Σ→ K, where Σ
is the set of embeddings L ↪→ K. In this optic, G acts via (g ·f)(τ) = g(f(g−1τ))
for g ∈ G and τ ∈ Σ. It is clear that M = ⊕τ∈ΣMτ , where Mτ consists of
those functions which vanish outside of τ . Further, the subgroups Mτ of M

are permuted transitively by G, since G acts transitively on Σ. The formula
M = IndG

H K then follows by a well known criterion (see, e.g., [1, Ch. III, 5.4]).
Finally, we consider F ⊗Q K as a G-module, with G acting trivially on the

first factor and in the natural way on the second. Then

F ⊗Q K = (F ⊗Q K)⊗K K = ⊕
ω
(Kω ⊗K K).

Therefore,
F ⊗Q K = ⊕

ω
IndG

Hω
K.

In this latter formula, we have chosen for each ω a K-embedding Kω ↪→ K and
have put Hω := Gal(K/Kω).
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In a similar vein, one proves

(F ⊗Q K)∗ = ⊕
ω

IndG
Hω

K
∗
.

Shapiro’s lemma [1, Ch. III, 6.2] provides an identification

Hi(G, IndG
Hω

K
∗
) = Hi(Hω,K

∗
)

for each i ≥ 0. (The induced module IndG
Hω

K
∗

may be regarded as a co-induced
module because the index of Hω in G is finite.) Thus

Hi(G, (F ⊗Q K)∗) = ⊕
ω

Hi(Hω,K
∗
)

for each i. Consequently,

H1(G, F ⊗Q K)∗) = 0

by Hilbert’s Theorem 90. Similarly,

H2(G, (F ⊗Q K)∗) = ⊕
ω

Br(Kω)(4.1)

because H2(Hω,K
∗
) is the Brauer group of Kω.

Now consider the exact sequence of G-modules

0→ F ∗ → (F ⊗K)∗ → (F ⊗K)∗/F ∗ → 0,(4.2)

where G acts in the usual way on K and the indicated tensor products are taken
over Q. Exploiting the vanishing of H1(G, (F ⊗K)∗), we obtain

0→ H1(G, (F ⊗K)∗/F ∗) δ→ H2(G, F ∗)→ H2(G, (F ⊗K)∗)→ · · · .

Here, δ is the indicated connecting homomorphism in the long cohomology se-
quence arising from (4.2).

(4.3) Lemma. Let A be a K-HBAV. Then the element γ of H2(G, F ∗) defined
by A lies in the image of δ. Equivalently, the image of γ in H2(G, (F ⊗ K)∗)
is zero.

Proof. We must exhibit an element β of H1(G, (F ⊗ K)∗/F ∗) such that
γ = δ(β). Let V = Lie(A/K). For each g ∈ G, the map µg : gA → A induces a
(F ⊗ K)-linear homomorphism Lie(gA/K) → Lie(A/K), or equivalently an F -
linear homomorphism λg : V → V which is g-linear in the sense that it satisfies
λ(a · v) = g(a)λ(v) for a ∈ K and v ∈ V . Now it is well known, and easy to
verify, that the Lie algebra Lie(A/K) is free of rank one over F ⊗ K. Let v

be a basis of V , considered as a free rank-one F ⊗ K-module. Then one has
λg(v) = ag · v for some element ag in (F ⊗ K)∗. The relations among the µg

provide the formula c(σ, τ)aστ = aσ
σaτ for σ, τ ∈ G. It follows that the function

G→ (F ⊗K)∗/F ∗ induced by g 7→ ag is a 1-cocycle, and that the corresponding
class β in H1(G, (F ⊗K)∗) maps to γ under δ. �
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(4.4) Proposition. Suppose that γ is the element of H2(G, F ∗) arising from
a K-HBAV and that γ = 0. Then γ = 0 provided that no element of order two
in the Brauer group of K is split by all extensions of K of the form Kω.

Proof. In view of the hypothesis γ = 0, we have γ = γ± ∈ H2(G, {±1}).
According to (4.3), γ lies in the kernel of the map

j : H2(G, {±1})→ H2(G, (F ⊗K)∗)

induced by the inclusion of {±1} in (F ⊗K)∗. This map may be viewed as the
natural map

Br(K)[2]→ ⊕
ω

Br(Kω),

which is injective by hypothesis. Thus γ is indeed 0. �

(4.5) Corollary. Suppose that γ ∈ H2(G, F ∗) arises from a K-HBAV.
Suppose that [F : Q] is odd. Then the class γ becomes zero after K is replaced
by the extension KP of K defined by γ. In particular, if γ = 0, then γ = 0.

Proof. The two assertions of the corollary are equivalent, since γ becomes
trivial after K is replaced by KP . Because of (4.4), to prove the second assertion
it is enough to prove that the map j which occurs in the proof of (4.4) is injective
whenever [F : Q] is odd.

However, [F : Q] =
∑

ω[Kω : K]. Thus, if [F : Q] is odd, then there is at
least one index ω for which [Kω : K] is odd. Further, if [Kω : K] is odd, then it is
evident that the map Br(K)[2]→ Br(Kω) is injective since there is a corestriction
map cor : Br(Kω)→ Br(K) whose composition with the natural map Br(K)→
Br(Kω) is multiplication by [Kω : K]. �
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