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Fields of definition of abelian

varieties with real multiplication

KENNETH A. RIBET

1. Introduction

Let K be a field, and let K be a separable closure of K. Let C' be an elliptic
curve over K. For each g in the Galois group G := Gal(K/K), let 9C be the
elliptic curve obtained by conjugating C' by g. One says that C is an elliptic
K-curve if all the elliptic curves 9C are K-isogenous to C.

Recall that a subfield L of K is said to be a (2, ... , 2)-extension of K if L is a
compositum of a finite number of quadratic extensions of K in K. The extension
L/K is then Galois, and Gal(L/K) is an elementary abelian 2-group. Recently,
N. Elkies proved:

(1.1) THEOREM (Elkies, [2]). Let C be an elliptic K-curve over K with no
complex multiplication. Then C is K-isogenous to an elliptic curve defined over
a(2,...,2)-extension of K.

In this article, we present an approach to (1.1) which seems different from that
of Elkies. At the same time, we generalize (1.1) to include higher-dimensional
analogues of elliptic K-curves with no complex multiplication. These are abelian
varieties A over K whose endomorphism algebras are totally real fields of dimen-
sion dim(A).

For lack of a better term, we borrow the phrase “Hilbert-Blumenthal abelian
varieties” to refer to abelian varieties whose endomorphism algebras are totally
real fields of maximal dimension. Our use of this expression is a bit unusual.
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Indeed, in standard parlance, a Hilbert-Blumenthal abelian variety relative to
a totally real number field F is an abelian variety A over K which is furnished
with an action of the ring of integers O of F'. One requires that the Lie algebra
Lie(A/K) be free of rank one over O ® K, which acts on Lie(A/K) by functo-
riality; in particular, this requirement forces the dimension of A and the degree
of F to be equal. In this article, we insist that End(A) ® Q be equal to (and not
bigger than) a totally real field of dimension dim(A). On the other hand, we do
not require the full ring of integers of this field to act on A.

Suppose that A is a Hilbert-Blumenthal abelian variety in our sense, and let
F' be the totally real number field End(A) ® Q. We say that A is a K-Hilbert-
Blumenthal abelian variety (or “K-HBAV”) if 94 is F-equivariantly isogenous
to A for all g € G. The equivariance refers to the evident isomorphism ¢ — %
between the endomorphism algebras of A and of 94: we demand that there be
for each g € Gal(K/K) an isogeny pi5: 9A — A which satisfies @op, = %popu, for
all p € F.

(1.2) THEOREM. Suppose that A is a K-HBAV. Then A is F-equivariantly
isogenous to a Hilbert-Blumenthal abelian variety over a finite (2,...,2) exten-

sion of K.

One motivation for proving Theorem 1.2 is the study of Jacobians of modular
curves. Indeed, let f be a weight-two newform on the group I'y(IV), and let X
be the abelian variety associated to f by Shimura’s construction [7, Th. 7.14].
Thus Xy is a Q-simple factor of the abelian variety Ji(N). If f is a cusp form
with complex multiplication, then X; becomes isogenous to a power of a CM
elliptic curve over Q. In the opposite case, Propositions 2.1-2.2 below show that
the Q-simple factors of X; are then either Q-HBAVs or quaterionic analogues
of Q-HBAVs. (It should be possible to prove a version of Theorem 1.2 in the
quaternionic case as well.) The absolute decomposition of X is controlled by
coincidences between the Galois conjugates of f and twists of f by Dirichlet
characters (see [4]). From the point of view of [4], one sees that this absolute
decomposition is achieved over the abelian extension of Q cut out by the set
of Dirichlet characters which intervene. This extension is a (2,... ,2)-extension
of Q if f has trivial Nebentypus character, but not in general. Nevertheless,
Theorem 1.2 tells us that the absolute “building blocks” of Xy are defined over
a (2,...,2)-extension of Q in all cases.

We turn now to a discussion of the proof of Theorem 1.2 and some associated
results. First of all, let us indicate how Theorem 1.2 follows immediately from a
series of results in §3. As we will see, if A isa K-HBAV, then A defines a class v in
the cohomology group H?(G, F*) made from locally constant cocycles G x G —
F* and the trivial action of G on F*. Proposition 3.1 shows that the class
represents the obstruction to finding a Hilbert-Blumenthal abelian variety over
K which is isogenous over K to the given one. Therefore, to prove (1.2) is to show
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that v becomes trivial under the cohomological restriction map corresponding
to a base extension K ~» K', where K’ is a (2,... ,2)-extension of K.

Now, by Proposition 3.2, v lies in the subgroup H?(G, F*)[2] of H?(G, F*)
consisting of classes of order at most two. On the other hand, Theorem 3.3
asserts that each element of H?(G, F'*)[2] becomes trivial under the restriction
map corresponding to a base extension K ~» K’ of the desired type. This
completes our discussion of (1.2).

Secondly, we wish to highlight a technical point that arises in applying Theo-
rem 3.3 to . Namely, let P be the quotient F*/{+1} so that we have an exact
sequence of abelian groups

0—-{xl} - F*— P —0.

This sequence is split, since the abelian group P is free (Lemma 3.5). Conse-
quently, H?(G, F*)[2] is a split extension of H2(G, P)[2] by H?(G, {£1}). As will
be seen in §3, there is an elementary isomorphism Hom(G, P/P?) = H%(G, P)[2].
Hence we have a split exact sequence

0 — H*(G, {+1}) — H*(G, F*)[2] — Hom(G, P/P?) — 0.

Call 4 the image of v in Hom(G, P/P?). Then ¥ cuts out a (2, ... ,2)-extension
of K. This is the extension Kp of K in K such that Gal(K/Kp) is the kernel
of 7. Certainly, any extension of K in K which trivializes v must contain Kp.

In the case of elliptic curves (i.e., the case FF = Q), Elkies shows that ~ is
trivialized by the field Kp. This point, although admittedly technical, seems
very striking to us. The present article may be viewed as an attempt to find a
generalization of this phenomenon to the Hilbert-Blumenthal case.

Such a generalization is presented in §4, where we introduce the presumably
superfluous requirement that K has characteristic zero. (This hypothesis does
not intervene in [2].) We show (in Corollary 4.5 below) that v is trivialized
by Kp whenever [F': Q] is odd, and more generally whenever there is an embed-
ding F — K for which the degree [FK: K] is odd. It would be interesting to
determine whether this hypothesis is necessary.

In the case where [F': Q] is odd, F'* is canonically a product P x {+1}. Indeed,
P may be identified with the subgroup of F* consisting of elements with positive
norm to Q*. Hence we have canonically

H?(G, F*)[2] = H*(G, {+1}) x Hom(G, P/P?).

This suggests a study of the image v+ of v in the first factor H?(G, {£1}).
One may be tempted to think that «4 is trivial, which would certainly explain
the vanishing of v over Kp. Although ~4 is trivial for the Q-elliptic curves
constructed by Shimura in [8], there seem to be examples where vy can be
non-trivial. One such example was communicated to the author by E. Pyle of
Berkeley, California; here, K = Q and A is a Q-elliptic curve.
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2. K-Hilbert-Blumenthal abelian varieties

Let K, K and G be as above, and let F be a totally real number field.

We consider pairs (A, ), where A is an abelian variety of dimension [F': Q]
over K, and where ¢ is an isomorphism F = Q ® End(A); such a pair will be
called a Hilbert-Blumenthal abelian variety. As mentioned above, it would be
more standard to allow ¢ to be an injection FF — Q ® End(A); however, the
more restrictive definition seems to be convenient in what follows. It should be
stressed that our Hilbert-Blumenthal abelian varieties are, in particular, non-CM
abelian varieties.

Abusing notation, we will generally write A for the pair (A,t). Moreover,
we will frequently view A as an object in the category of abelian varieties up
to isogeny over K. In this category, isogenies of abelian varieties become iso-
morphisms, and the endomorphism algebra usually denoted Q ® End(A) can be
written more simply as End(A).

Suppose that g is an element of G. Then 94 admits a natural multiplication %
by F, so that 94 is again a Hilbert-Blumenthal abelian variety. As mentioned
in §1, we say that A is a K-HBAV if there is an F-equivariant isomorphism
pg: 9A S A of abelian varieties up to isogeny for each g € G. Notice that a K-
HBAYV of dimension one is an elliptic K-curve with no complex multiplication.

To motivate the study of K-HBAVs, we record some facts concerning Q-
simple factors of abelian varieties over Q with many endomorphisms. We begin
with some terminology: an abelian variety A over Q is said to be a “fake”
Hilbert-Blumenthal abelian variety if its endomorphism algebra is a quaternion
division algebra over a totally real field F' and if dim(A) = 2. [F: Q]. Also,
an abelian variety C' over Q is said to be of GLy-type if Q ® Endg(C) is a
number field of degree dim(C). One knows that the Q-simple factors of the
Jacobian of a modular curve X;(NN) are of GLo-type. Moreover, it is reasonable
to conjecture that all abelian varieties of GLy-type over Q are Q-simple factors
of the Jacobian of some X;(N), cf. [5, 4.4]. (Such a conjecture may be viewed
as a higher-dimensional analogue of the conjecture of Taniyama and Shimura to
the effect that all elliptic curves over Q are modular.)

(2.1) PROPOSITION. Suppose that C is an abelian variety over Q of GLa-
type. Then C/Q s “isotypical”: it is isogenous to a product A X ---x A, where A
is a simple abelian variety over Q. Further, A must be one of the following: (i)
an elliptic curve with complex multiplication; (ii) a Hilbert-Blumenthal abelian
variety (for some totally real field F); (iti) a “fake” Hilbert-Blumenthal abelian
variety.

PROOF. Proposition 2.1 is implicit in the discussion of §5 of [5] (which is
based principally on results of G. Shimura). For completeness, we shall deduce
the proposition from some results included in [5].
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First of all, if C a contains any non-zero abelian subvariety with complex
multiplication, then a result of Shimura (Proposition 1.5 of [8]) implies that
C Q is a power of an elliptic curve with complex multiplication; thus, we are
in case (i). Assume instead that C /Q has no non-zero abelian subvariety with
complex multiplication. The number field £ := Q ® Endq(C) is then its own
commutant in X, the algebra of all endomorphisms of C' over Q. This implies
that the center of X is contained in E: it is therefore a subfield F' of E. One
shows that F' is in fact a totally real number field [5, 5.4]. Since the center of X
is a single field (as opposed to a product of several fields), C' is isotypical, as we
claimed. In fact, if we write X as M(n, D), where D is a division algebra with
center F', then C' Q is isogenous to the nth power of a simple abelian variety A
over Q whose endomorphism algebra is D.

Let t be such that ¢? is the rank of D over F. Then a short calculation, based
on the fact that E is a maximal commutative semisimple subalgebra of M(n, D),
establishes the formula dim(A) = ¢- [F: Q]. An argument exploiting the action
of D on H'(A(C), Q) shows that ¢ is at most 2. (See the proof of Proposition 5.2
of [5] for these facts.) If t = 1, we are in case (ii), while if ¢ = 2 we are in
case (iii). |

(2.2) PROPOSITION. Suppose that C is an abelian variety over Q of GLg-

type. Let A be a simple Q-quotient of C whose endomorphism algebra is a totally
real field. Then A is a Q-HBAV.

ProOOF. From what we have seen, the abelian variety C /Q is isogenous to a
product A x --- x A (with, say, n factors), and we are in case (ii). Using the
analysis of [5], §5 again, we see that the center of the endomorphism algebra X
of C /Q is a subalgebra of the algebra of Q-endomorphisms of C. If this center
is F', then X is isomorphic to M(n, F'), and the endomorphism algebra of A is F.
After fixing an isomorphism X = M(n, F'), we may view A as the image of the
matrix whose upper left-hand corner entry is 1 and whose other entries are 0.
In this model, there is an obvious F-equivariant isogeny A: Cg — A™ given by
the n different matrices with a single 1 in the first column and 0’s elsewhere.

Let g be an element of G and take d € F. Then we have a commutative
diagram

Av A ¢ = ¢ B oaan
ld ld 1 1
An A o = o B o

in which the central square expresses the fact that d is defined over Q. Con-
tracting it, we get a diagram

A S ggn
ld 1%
A = gA"
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in which the isomorphism A™ 5 9A™ is I\oA "1,

For each pair of integers (i,7) with 1 < 4,5 < n, we get a map A — 94
by composing the following maps: the inclusion A — A™ which uses the ith
coordinate, the isomorphism A" ~ 94™, and the projection 9A™ — 9A which uses
the jth coordinate. For some pair (4, j), this map is non-zero, hence an isogeny.
(Recall that A is simple.) Let x be this isogeny. Then we have

A 5 o9a
ld 1%
A 5 94
as desired. [ |

3. The class v

Let A be a K-HBAV. For each g, let 11y be an F-equivariant isomorphism up
to isogeny 94 — A. We can, and do, assume that the collection (14) has been
constructed from a model A, of A over a finite extension L of K in such a way
that p4 and p1g are the same map YA — A whenever g and ¢’ coincide on L. Thus
the association g — pg is in an obvious sense locally constant. For each pair
0,7 € G, we note that p,%u,ou; "} is an automorphism of A up to isogeny, and
consequently of the form «(c(o, 7)) with ¢(o,7) € F*. The map (o,7) — c(o,T)
is a continuous two-cocycle on G with values in F*, with F* being regarded as
a trivial G-module. The image « of ¢ in H?(G, F'*) is independent of the choices
of the .

The following proposition is a mild generalization of [5, Th. 8.2].

(3.1) PROPOSITION. Let E be an extension of K in K; let H = Gal(K/E)
be the corresponding closed subgroup of G. Then the Hilbert-Blumenthal abelian
variety A is F-equivariantly isogenous to a Hilbert-Blumenthal abelian vari-

ety over E if and only if the class v lies in the kernel of the restriction map

H2(G, F*) — H2(H, F*).

PRrOOF. It suffices to prove the proposition in the case £ = K, in which case
the assertion to be proved is that v = 1 if and only if A is (F-equivariantly)
isogenous to a Hilbert-Blumenthal abelian variety over K.

Suppose first that there is a Hilbert-Blumenthal abelian variety B over K, to-
gether with an isomorphism \: A = B /K of Hilbert-Blumenthal abelian varieties

up to isogeny over K. For each g € G, we obtain an isomorphism 9\: 94 = B.
After setting py := A71e9\, we find that c is identically 1, so that v is trivial.
Conversely, suppose that v = 1. Let L and A, be as above; to simplify
notation, we shall write A for A,. After replacing L by a finite extension of L,
we can, and do, assume that the u, are defined over L. Further, the hypothesis
that v = 1 means that there is a locally constant function a: G — F* so that
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c(o,7) = a(o)a(r)/a(oT); we enlarge L, if necessary so that « is defined modulo
Gal(K /L), and so that L is a Galois extension of K. We then replace u, by
(1/a(g)) - pg for each g € G. The new p’s satisfy por = potr, and p1gy depends
only on the image of ¢ in the finite group A = Gal(L/K). Finally, 1, may be
viewed as an F-equivariant isomorphism up to isogeny 94 = A which is defined
over L.

Let R be the abelian variety Resy x A, where “Res” denotes Weil’s “Re-
striction of scalars” functor. In other words, R represents the functor C' +—
Hom(C/p,, A) from the category of abelian varieties up to isogeny over K to the
category of Q-vector spaces. Thus R is an abelian variety over K which is fur-
nished with a structural homomorphism (up to isogeny) A : R/, — A. Given C
over K and a homomorphism (of abelian varieties up to isogeny) ¢: C;p, — A,
there is a unique homomorphism 6: C — R over K such that A-f = .

One constructs R by considering the product ngGal(L/K) 9A and using obvi-
ous patching data to descend this product to K. In particular, R has dimension
[L: K]-dim(A). From this point of view, the map A: R/, — A is the projection
of T] geGal(L/K) 9A onto its factor A. Alternatively, given R with its structural
map A, and an element g of Gal(L/K), we can view 9\ as a map R, — 9A.
One shows that the map R/, — ngGal(L/K) 94 induced by the family of 9\ is
an isomorphism.

By functoriality, F' acts on R over K. Thus we have FF C X, where X =
Endk (R). Further, the universal property satisfied by R makes it easy to com-
pute Endg (R) as a Q-vector space. Indeed, we have

Endg (R) = Homg (R, R) = Homp(R/r, A) = @ Homp (4, A) = O F - .
9 g

Let [g] be the element of Endg (R) which corresponds to 4 in the gth factor of
the direct sum. Then [g] is the unique element in Endg (R) such that Ao[g] =
fgo?A. The unicity implies that each [g] commutes with the action of F' on R.
A short computation, based on the unicity and the formula p,r = s -, shows
that [o][r] = [o7] for 0,7 € A. Also, the [g] commute with F'. Hence X is in the
end the group algebra F[A].

The field F' is a direct summand of the algebra X = F[A] via the inclusion
a € F+— a-[1] and the augmentation map [g] — 1. Let B be the subvariety
of R corresponding to the direct summand F' of X. Then B is an abelian variety
over K with an induced action of F'. We claim that B is a Hilbert-Blumenthal
abelian variety over K, i.e., that dim(B) = dim(A), and that in fact A and B
are isomorphic Hilbert-Blumenthal abelian varieties up to isogeny over L. To
see this, we remark that R/, is isogenous to a product of copies of A (since the
9A are each isogenous to A), so that By, is certainly isogenous to a product of
some number of copies of A. To determine the dimension of B, we remark that

F = Endg(B) = Homg (B, R) = Homp (B, A).
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Since F' is the endomorphism algebra of A, B/, is isogenous to A. |

Suppose now that A is a K-HBAV over K. Fix a polarization 04: A — A~
of A as an abelian variety. The associated Rosati involution of the endomorphism
algebra of A may be viewed as a positive involution of the totally real field F'
and therefore is forced to be the identity.

Let B again be a Hilbert-Blumenthal abelian variety over K, and fix a po-
larization 0 of B. Then for each F-equivariant map u: B — A, we define the
“degree” deg(u) by the formula

deg(p) = pebigtop 0a,

so that deg(u) is an element of the endomorphism algebra of A. Identifying this
algebra with F', we consider that deg(u) is an element of F'. If K is a subfield of C,
2

2
then 64 and 0y identify A Hy(A(C), Q) and A H;(B(C), Q) with F. The number
F F

deg(p) is the element of F' describing the map /2\H1(B(C), Q) — /2\H1(A(C), Q)
induced by pu. " "

If p: A — Ais given by an element ¢ of F, then deg(u) = c?. Also, it is easy
to check that deg is multiplicative in the following sense. Suppose that (C,60¢)
is a third polarized Hilbert-Blumenthal abelian variety, and that A\: C — B
is F-equivariant. Then deg(pueA) = deg(u) deg(A), provided of course that the
“degrees” are computed with respect to a fixed set of polarizations.

(3.2) PROPOSITION. Let A be a K-HBAV over K. Then the order of the
associated cohomology class v € H2(G, F*) is at most two.

PRrROOF. Fix a polarization 8: A — A~ of A and for each g € G let % denote
the associated polarization of 94. Choose a family (4) as above, and let ¢ be
the F*-valued two-cocycle on G defined by this family. For each g, let

dg = ugogeilo,u;]oﬁ

be the degree of p, calculated with respect to the polarizations 6 and %. This
element of F' is canonical in the following sense: if we replace # by another
polarization 6’ of A, then d, will remain unchanged provided that we replace %
by %’.
By construction,
c(0,7) = polirotig,
for 0,7 € G. On taking degrees, we find the formula

ded;
clo,7)? =

which expresses the square of ¢ as a coboundary. |
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(3.3) THEOREM. Let v be an element of order dividing two in H?(G, F*).
Then there is an open normal subgroup H of G such that G/H is an elementary
abelian two-group and such that the image of vy in H2(H, F'*) is trivial. In other
words, vy becomes trivial after K is replaced by a finite (2,... ,2)-extension of K.

PROOF. Let P = F*/{£1}, so that there is a tautological exact sequence
(3.4) 0—-{xl} - F*—>P—0.

In the case where [F': Q] is odd, there is a natural splitting of this exact sequence:
we may view P as the subgroup of F™* consisting of elements with positive norm
to Q*. In the general case, (3.4) is still split, but apparently in no natural way.
This follows directly from:

(3.5) LEMMA. The group P is a free abelian group, of countable rank.

To prove the lemma, we consider the map ¢: a — (a) which takes an element
a of P to the fractional ideal of F' generated by a lift of a to F*. The image of ¢
is a subgroup (of finite index) of the group of all fractional ideals of F’; this latter
group is the free abelian group on the set of non-Archimedean places of F'. Hence
the image of ¢ is a free abelian group, so that P is abstractly isomorphic to the
direct sum of the image of ¢ and the kernel of ¢. On the other hand, ker(¢) is
the group U/{£1}, where U is the group of units of F'. According to Dirichlet’s
theorem, ker(¢) is a free abelian group of rank n—1, where n = [F': Q]. It follows
that P is the direct sum of two free abelian groups, one finitely generated and
one countably generated. This proves the lemma.

Returning to the proof of (3.3), we fix a splitting of (3.4). We shall assume
that this is the indicated natural splitting if [F': Q] is odd. The splitting fixes
an isomorphism of abelian groups F* ~ {41} x P. This isomorphism induces in
turn a decomposition

H?(G, F)[2] = H?(G,{£1}) x H*(G, P)[2],

where the notation “[2]” indicates the kernel of multiplication by 2. The element
v of H2(G, F'*) is then the product of its two projections v+ € H%(G, {£1}) and
5y € H%(G, P)[2]. The factor 7 is independent of the chosen splitting of (3.4):
it is the image of v under the map on cohomology induced by the quotient
map F* — P. On the other hand, the “sign” component v+ of v depends on
the splitting. We thus consider that vy is defined intrinsically only in the case
where [F': Q] is odd.

To prove (3.3), we must show that both vy and 7 become trivial when K is
replaced by a (2,... ,2)-extension of K.

To treat 7, we consider the exact sequence

ZL’}—)I2

1-P™% P P/P? > 1;
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note that P is torsion free. The associated long exact cohomology sequence then
gives an isomorphism

Hom(G, P/P?) & H%(G, P)[2].

Suppose that 7 corresponds to the homomorphism ¢: G — P/P?. Then ker(y)
is a subgroup of G which corresponds to a (2,... ,2)-extension Kp of K. It is
clear that 7 becomes trivial over this extension.

It remains to split y+. It is known that H?(G,{#1}) = 0 if K has charac-
teristic 2, cf. [6, p. II-5]. Assume, then, that the characteristic of K is different
from 2. The group H?(G,{£1}) may then be identified with Br(K)[2], where
Br(K) is the Brauer group of K. A theorem of S. A. Merkur’ev [3] states that
Br(K)[2] is generated by the classes of quaternion algebras over K. Since each
quaternion algebra over K is split by a quadratic extension of K, it follows that
v+ is split by a (2,... ,2)-extension of K, as required. |

4. The odd-dimensional situation

In this section, we assume that K has characteristic 0. (An assumption con-
cerning the parity of [F': Q] will be made later.)

We begin with some preliminary comments concerning the class v defined
by a K-HBAV. First, we note that the tensor product F' ®q K decomposes as
some direct sum of fields ®,cq K., where the K are finite extensions of K.
The index set © is the set Hom(F, K) of field embeddings F — K, modulo the
action of G on Hom(F, K).

Next, suppose that L is a finite extension of K, and consider M := LRk K as a
G-module, with G acting trivially on the first factor. Choose an embedding ¢ of L
into K, and let H = Gal(K /o(L)). Then L ® K is the induced representation
Indg K. Indeed, M may be written as the group of functions f: ¥ — K, where &
is the set of embeddings L < K. In this optic, G acts via (g- f)(7) = g(f(g~'7))
for g € G and 7 € X. It is clear that M = @,.cxM,, where M, consists of
those functions which vanish outside of 7. Further, the subgroups M, of M
are permuted transitively by G, since G acts transitively on 3. The formula
M = Ind% K then follows by a well known criterion (see, e.g., [1, Ch. III, 5.4]).

Finally, we consider F ®q K as a G-module, with G acting trivially on the
first factor and in the natural way on the second. Then

FeqK = (FoqK) @k K =&(K, @k K).

Therefore,
FeqK =ohdj K.
w

In this latter formula, we have chosen for each w a K-embedding K, — K and
have put H, := Gal(K/K,,).
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In a similar vein, one proves
(FoqK)* = ® md§ K .
Shapiro’s lemma [1, Ch. III, 6.2] provides an identification
) =H'(H,, K)

H'(G,Indf] K~
for each 4 > 0. (The induced module Indgw K" may be regarded as a co-induced
module because the index of H,, in G is finite.) Thus

H'(G,(F @q K)") = & H'(H,, K )
for each i. Consequently,
HY(G,Foq K)*)=0
by Hilbert’s Theorem 90. Similarly,
(4.1) H?(G, (F ®q K)*) = EBBr(Kw)

because H2(H,,, K ) is the Brauer group of K.
Now consider the exact sequence of G-modules

(4.2) 0—-F"—=(F®K)"— (FK)"/F*—0,

where G acts in the usual way on K and the indicated tensor products are taken
over Q. Exploiting the vanishing of H!(G, (F ® K)*), we obtain

0— HYG,(Fe K)*/F*) % HX(G, F*) —» H3(G,(F o K)*) — -

Here, § is the indicated connecting homomorphism in the long cohomology se-
quence arising from (4.2).

(4.3) LEMMA. Let A be a K-HBAV. Then the element v of H2(G, F*) defined
by A lies in the image of 6. Equivalently, the image of v in H*(G, (F @ K)*)
18 zero.

PROOF. We must exhibit an element 3 of HY(G, (F ® K)*/F*) such that
v = 8(B). Let V = Lie(A/K). For each g € G, the map uy: 94 — A induces a
(F ® K)-linear homomorphism Lie(94/K) — Lie(A/K), or equivalently an F-
linear homomorphism Ay: V — V which is g-linear in the sense that it satisfies
Aa - v) = g(a)A\(v) for a € K and v € V. Now it is well known, and easy to
verify, that the Lie algebra Lie(A/K) is free of rank one over F @ K. Let v
be a basis of V, considered as a free rank-one F' ® K-module. Then one has
Ag(v) = a4 - v for some element a, in (F ® K)*. The relations among the y,
provide the formula ¢(o, 7)asr = as%, for o,7 € G. It follows that the function
G — (F®K)*/F* induced by g — a, is a 1-cocycle, and that the corresponding
class 3 in HY(G, (F ® K)*) maps to v under 4. [ |
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(4.4) PROPOSITION. Suppose that v is the element of H?(G, F*) arising from
a K-HBAV and that 57 = 0. Then v = 0 provided that no element of order two
in the Brauer group of K is split by all extensions of K of the form K.

PROOF. In view of the hypothesis ¥ = 0, we have v = v € H?(G, {*1}).
According to (4.3), «y lies in the kernel of the map

Jr (G, {#1}) — B*(G, (F ® K)")

induced by the inclusion of {£1} in (F ® K)*. This map may be viewed as the

natural map
Br(K)[2] — @ Br(K,),

which is injective by hypothesis. Thus ~ is indeed 0. |

(4.5) COROLLARY. Suppose that v € H?*(G,F*) arises from a K-HBAV.
Suppose that [F: Q] is odd. Then the class v becomes zero after K is replaced
by the extension Kp of K defined by 7. In particular, if ¥ = 0, then v = 0.

ProoOF. The two assertions of the corollary are equivalent, since 7 becomes
trivial after K is replaced by Kp. Because of (4.4), to prove the second assertion
it is enough to prove that the map j which occurs in the proof of (4.4) is injective
whenever [F: Q] is odd.

However, [F: Q] = > [K.,: K]. Thus, if [F: Q] is odd, then there is at
least one index w for which [K,: K] is odd. Further, if [K,: K] is odd, then it is
evident that the map Br(K)[2] — Br(K,,) is injective since there is a corestriction
map cor: Br(K,) — Br(K) whose composition with the natural map Br(K) —
Br(K,) is multiplication by [K,: K]. |
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