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§0

The purpose of this paper is to interpolate p-adically the values at negative
integers of abelian L-functions for totally real fields, by using the method of
Hilbert modular forms. We recall that the p-adic study of L-values by means of
p-adic modular forms was initiated by Serre in his Antwerp paper [33] and was
suggested by Siegel’s use of Eisenstein series to prove the rationality of L-values
[38]. Serre used modular forms of one variable in his theory, and constructed p-
adic zeta functions, as well as p-adic L-functions for powers of the Teichmiiller
character, over totally real fields. Soon after, Katz (unpublished) and Queen [27]
observed that Serre’s theory applied more generally to the construction of p-adic
L-functions attached to abelian characters over totally real fields. Here the point
was to introduce p-adic modular forms with level, i.e, on I;(N). Already in
Serre’s paper, it was clear that the use of forms of one variable was insufficient
for a complete theory. For example, one could not rule out the possibility of a
pole at s=1 for the p-adic L-functions attached to certain non-trivial powers of
the Teichmiiller character. At the close of [33], Serre suggested that one develop
a theory of p-adic Hilbert modular forms to overcome these difficulties.

This problem was taken up by the first author of this paper, who described
in letters to Serre [5] how the required congruences among L-values would
follow from a (conjectural) theory of p-adic Hilbert forms. This theory was in
turn seen as a consequence of a construction over Z of certain Hilbert-
Blumenthal moduli schemes, whose fibres in characteristic p were further
conjectured to be geometrically irreducible. The geometric irreducibility amount-
ed to the surjectivity of a certain Galois representation, and was already known
in the case of one-variable modular forms (i.e., with the totally real field taken to
be Q) [12].

The second author entered the picture by proving (in 1974) the conjectured
irreducibility from the Galois-representation point of view [29]. Strictly speak-
ing, the schemes being proved irreducible did not yet exist.
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In 1976, however, Rapoport constructed in his thesis [28] the schemes in
question. The work of Rapoport contains the foundational material necessary to
the theory of p-adic Hilbert forms, and in particular the all-important g-
expansion principle. Thus, among other things, Rapoport gave algebraic mean-
ing to the g-expansion of a Hilbert modular form, so that one could define the g-
expansion of a Hilbert modular form over an arbitrary ring R, at an arbitrary
unramified cusp over R. The g-expansion principle then states that each g-
expansion of a Hilbert modular form F over a ring R completely determines
that form, and furthermore that F is a form over a subring R, of R if and only if
the g-expansion coefficients of F lie in R,. Rapoport’s thesis completed the
program begun by Serre and Deligne and thus removed the last tangible
obstacle to the writing of the present paper.

Before summarizing the contents of this paper, we wish to mention related
work by other authors. First of all, the “moduli” approach to modular forms
and its application to the comstruction of p-adic L-functions has been de-
veloped in a series of papers by Katz [15-19]. Especially, in [19], Katz uses the
theory of p-adic Hilbert modular forms in a construction of “2n-variable” p-adic
L-functions for CM fields. His paper begins with an excellent summary of the
theory, on which our §5 is modeled.

Secondly, Barsky [1] and Cassou-Nogués [2] have given alternate ap-
proaches to p-adic L-functions over totally real fields, based on the explicit
formulas of Shintani [37]. The results of Barsky/Cassou-Nogués and those of
the present paper were compared in [30]. The two sets of results are nearly
identical; the only difference between them is that we obtain certain “extra” 2-
adic divisibilities in the presence of functions with parity, which have not yet
been proven by the method which uses Shintani’s formulas.

As we have already suggested, our method for studying L-values is based on
a general theorem about p-adic Hilbert modular forms. It states, roughly
speaking, that such a form which at one cusp has a p-adically integral g-
expansion will have a p-adically integral g-expansion at every cusp. We apply
this theorem to certain linear combinations of Eisenstein series and thus obtain
integrality statements for corresponding-linear combinations of L-values. These
integrality statements include, for example, the “axioms” introduced by Coates
in [3] and therefore lead in particular to the construction of p-adic L-functions
over totally real fields.

For the convenience of the reader, we now briefly state our main results
concerning modular forms and integrality of L-values. We then explain how
these relate to p-adic L-functions.

q-Expansions of Hilbert Modular Forms

Let K be a totally real field, which for simplicity we choose different from the
rational field. Let r=[K:Q] be its degree. Let

H={reKR@C|Imt>0}
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be the usual Hilbert upper half plane associated to K. Let k be a non-negative
integer. We define an action |, of SL(2,K®R) on the space of C-valued
functions F(t) on $ by the usual formula

(F
in which 41 K® C—C denotes the norm.
We now let N denote a positive integer. Let I, (N) denote the subgroup of

k (: ))(T) N(ct+d)*F <a¢+b)

ct+d

SL(2, K) consisting of those matrices (‘: Z) which satisfy the conditions:

a,del+NO,
be®~!, ceND,

where O and D denote respectively the integer ring and the different of K. 4
(Hilbert) modular form of weight k on I, (N) is a holomorphic function

F: $9-C

such that
F|,M=F
for each MeT, (N).

The condition K +Q implies that F is “holomorphic at infinity,” as is well
known. Since F is invariant under translations t—t+b (beD~!), we may
expand F as a Fourier series

cO+ ) c(wa*,

ue@
u>0

where
qu — e2 mitr(p-t)

This series is the standard g-expansion of F. To obtain the others, it is
convenient to introduce the action on F of the group SL(2, K), where K is the
ring of finite adeles of K. For this, let I’ be the closure in SL(2, K) of the group I'
=TI (N). Using the strong approximation theorem for SL(2), we write

SL(2,K)=I-SL(2,K).

Given MeSL(2,K), we write M=M M,, with M, el and M ,€SL(2,K). We
then define F|, M to be F|,M,. For each invertible element o of If (i.e., for each

“finite idele”) we let
(o )
o a )’
We may write F, as a Fourier series

c(0,0)+ 3 clu, 0) g,

F=
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where the sum is restricted to totally positive elements of K which lie in the
square of the ideal («) of K “generated” by «. We call this series the g-expansion
of F at the cusp determined by o. We are interested in comparing the various g-
expansions of a form, or of a collection of forms. For example, we recall the
following result of Rapoport [28]:

(0.1) Theorem. Suppose that the g-expansion coefficients of F at one cusp are
rational numbers, i.e., that there is an ae K* such that c(u, 0)€Q for all u. Then the
g-expansion coefficients of F are rational for each ae K*.

We now consider forms F, (k=0) on I, (N)of respective weights 0, 1,2, ..., all
but finitely many of which are zero. We assume that each form satisfies the
rationality condition of (0.1). For each k and each aeK*, let F,, be the g-
expansion of F, at the cusp determined by a. We view these g-expansions as
formal power series over Q, in the variables ¢g* (with u=0 or u totally positive).

Let p be a prime. For aeK, the p™ component a, of « is the image of « in
K®Q,; its norm Aa, is an element of Q,. When aeK*, the sum

" S()= Z/Vot;ka’a
k=0

is thus a formal power series with coefficients in Q,.

(0.2) Theorem. If S(x) has coefficients in Z, for one «, then S(x) has coefficients
in Z, for each a.

(0.3) Corollary. Let a be such that S(«) has Z, coefficients, except possibly for its
constant coefficient. Then for all feK*, S(B) again has non-constant coefficients in
Z,, and the difference between the constant coefficients of S(x) and S(p) lies in Z,.

These assertions are special cases of (5.13), (5.14) as explained in (5.15).

Kummer Congruences

When the F, are Eisenstein series, (0.3) yields congruences among L-values. We
now state the principal such congruence (cf. (8.2)). Let K and p be as above, and
let { be a non-zero integral ideal of K. Let G; be the strict ray class group of K
mod§. Let G be the ray class group of conductor f* p®, corresponding via class
field theory to the largest abelian extension of K which is unramified at all finite
places of K prime to fp. When ¢ is a complex-valued function on G;, we define
as usual
L(s,e)=Y e(x) ¥z~ (Re(s)>1),

taking the sum over prime-to-f integral ideals of K. One knows that L(s, &) may
be continued to a meromorphic function on C, holomorphic except for a

possible simple pole at s=1. In particular, for each integer k=1, values
L(1—k, ¢) are defined.

According to a fundamental theorem of Siegel [38], the association

e~ L(1—k,e)



Values of Abelian L-functions 231

is rational in the sense that L(1 —k,¢) is a rational number whenever ¢ is Q-
valued. This being the case, we define by linearity values L(1 —k,¢)eV for each
function ¢ on G; with values in a Q-vector space V. This construction applies
especially when V' is a field of characteristic zero, for example Q,.

We now let A":G—Z; be that continuous character whose value on the
image in G of a prime-to-fp ideal is its norm. For ceG, k21, and ¢ a Q,-valued
function on G;, we define

4,(1—k,e)=L(1 —k,6)— N *L(1 k&) €Q,,

where ¢, is the function gré(cg) and the product cg is computed in G;. Let
£, &,, ... be a sequence of such functions, only finitely many of which are non-
zero. For x a prime-to-f ideal, set
P(x)= ) gx)N ¥ 1eQ,.
k21
(0.4) Theorem. Suppose that ¢(x)€Z, for each prime-to-f ideal x. Then for all
ce@, we have A€Z,, where
A=Y 4.1k
k=1

Our main theorem (8.2) is equivalent to (0.4). We prove also some further
assertions concerning the case where p=2 and the ¢, satisfy certain parity
conditions. Briefly, if p=2 and if ¢, is an odd (resp. even) function when k is odd
(resp. even), then 4€2"~'Z,. We may furthermore give necessary and sufficient
conditions for the divisibility of 4 by 2". (See (8.11), (8.12).)

p-adic L-functions

It is now well known that the integrality theorem (0.4) may be used to construct
p-adic L-functions [3, 30, 34]. In the above situation, we take f{ to be divisible by
each prime of K lying over p. Whenever {' is an ideal divisible by f and dividing
(fp)" for some n=1, the ideals of K prime to { are just those prime to f. Hence
for ¢ a locally constant function on G with values in a Q-vector space V, we may
unambiguously define values L(1 —k,¢)eV by selecting an { such that ¢ factors
through G— G, and applying the above procedure, with f replaced by f. We may

thus view the functions
e—~L(l—ke) (k=1)

as Q-valued distributions on G. For k=1 and ceG, the map
Kei: e A4 (1=K, ¢)
is then a Q,-valued distribution on G.
From (0.4), we immediately obtain (cf. [30, 4.1])

(0.5) Theorem. The distribution y,, is in fact a measure with values in Z,. We
have the formula® 1

Hek=N"" "ty
! In this formula, the right-hand member represents the product of the function #*~! and the
measure u, ;. Such products are to be distinguished from the (convolution) product of two measures
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Following a normalization of Serre, we put ,.=A4"~"'p_, for ceG. For k=1
and for ¢ locally constant, we have

[A*edA,=4,(1—k,e).

As in [34], we regard the various measures A, as elements of the ring A=A, of
Z -valued measures on G; this ring may alternately be described as a sort of
completed groupring Z [ G]. Choose c so that 1 —cis not a zero-divisor in A and let

in the total quotient ring of A. One sees easily that (1 —c) A=A for ¢’€G, so that
A is a pseudo-measure in the sense of [34]. With k and ¢ as above, the integral
against A of e is L(1—k,¢). We thus obtain a result cited by Serre in his
discussion of L-values [34, 3.5]. As Serre notes, one now obtains the usual p-
adic L-functions of K (attached to characters whose conductors divide powers of
f) by integrating suitable characters against A. (See also [30, §4].)

The plan of this paper is as follows. §1 begins by recalling the Kummer
congruences in the case K=Q. Although we do not prove these congruences
here, they may easily be derived from explicit expressions for values L(1 —k, ¢) in
terms of Bernoulli polynomials. Our aim is to motivate what follows by
reinterpreting the congruences in terms of measures on Z and on Q. In §2 and
§3, we study the analogues A and I of these two spaces for the case of an
arbitrary totally real field K % Q. Especially, we prove a functional equation for
L-functions which involves a somewhat curious Fourier transform for functions
on I.

In the next two §§, we prove an irreducibility theorem for the Hilbert-
Blumenthal moduli problem and give applications to p-adic modular forms. We
obtain (0.2), in particular. Then in §6 and §7 we construct Eisenstein series and
theta series for the Hilbert group and compute their g-expansions. From (0.3) we
can then obtain information about L-values. In the final § we make explicit this
information and use it to prove (0.4) and its 2-adic refinements. For this, we
work with measures on the space I.

As suggested above, most of the work presented in this paper was in principle completed in 1976.
However, the material concerning theta series grew out of work done in 1977-78. The second author
wishes to thank the Sloan Foundation and the N.S.F. for financial support and the I.H.E.S. for its
continuing hospitality.
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§ 1. Review of Kummer Congruences over Q

Let ¢ be a complex valued function defined on the set Z/fZ of integers mod f.
Viewing ¢ as a function on Z, periodic mod f, we set

1.1 L(s,e)= ), emn=*
nz1
for seC of real part Res>1. As is well known, this L-function may be
continued to a meromorphic function of s, analytic except for a possible simple
pole at s=1. We are interested in its values at the non-negative integral points
s=1,...,k with k= 1.
Deﬁne Bernoulli polynomials B,(x)e Q[x], k=0, by the formal expansion

ZexZ

g B (x)
(1.2) Theorem. For k=1, we have
__fk‘l S t
(1.3) L(1—k, &)= T t; e(t) B, (?)

Example. If k=1, the theorem gives

L0, 5= - Z o) (5-3).

S
In the special case where Y, ¢(f)=0, the value L(0, ¢) is thus the Cesaro sum of
t=1

the series Y ¢(f): we have
t=1

hm = Z z &(t)= Z Z &(t)= z (- t+1)———— Z te(t).
n=1t=1 n=11t=1 t=1
The general formula for L(0, ¢) may be recovered from this special one after
one knows that {(0)= —1/2, where { is the Riemann zeta function. This latter
fact is just Euler’s formula ) 1=0, as we see by rewriting the sum as
142- Y 1=1+2¢(0). neZ

nz1
Discussions of the analytic continuation of L(s,¢) and its evaluation at
negative integers may be found for example in [11; I, pp.72-78], [13, 23, 42].
. t . .
Since the numbers B, (7) are rational, (1.3) may be used as the definition of
values L(1 —k, &) for ¢ now a function mod f with values in an arbitrary Q-vector

space V:

(1.4) L(1—k, &)= ﬁl :ﬁ::"(—t/f) - &(1).
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Furthermore, we can unambiguously define such values for ¢ a periodic function
Z -V (i.e. a function defined mod f for some f) whose modulus of periodicity f
is not specified alone with ¢. [To verify this it suffices to examine the case V=Q
and thus a fortiori it is sufficient to treat the case V=C; then one simply
observes that the number f does not intervene in (1.1).] In other terms, (1.4)
defines for a given k=1 a Q-linear map

(periodic functions Z—Q) — Q,

and by tensoring with a Q-vector space V we obtain
(periodic function Z—-V) — V.
e~ L(1—k, ¢).

Since restriction from Z to Z identifies the locally constant functions on Z
with the periodic functions on Z, the map

e~ L(1—k, ¢

may be viewed as a distribution T, on Z with values in Q. Such a distribution
may alternately be regarded as a function on the compact open subsets U of Z,
here explicitly given by the formula

(L5) T,(U)=Y n*

nelU

s=1-k*

(The summation is extended over the positive integers ne U.) From (1.5) we may
deduce immediately the “invariance”

(1.6) T, (nU)=n*'T, (V)

for positive integers n. This invariance implies that T, has a unique extension to
a distribution T, on Q=Z ® Q which satisfies the invariance

1.7) T, (nU)=n1T,(U)

for n a positive rational number and U a compact-open subset of Q. This
distribution is again defined by (1.5), with the summation now over all positive
neqQ.

Another way to view distributions on Z is to regard them as collections of
functions a, on the groups Z/fZ (f=1), linked by a suitable compatibility
relation (cf. [26]). The value of « ; on the class of a modulo f is the value of the
distribution on the open subset a+fZ of Z. For T,, if we take a in the range

1<asf, then (1.4) states that o, maps (@ modf) to the rational number
k-1

. B, (a/f). This formula, or else the invariance (1.6), implies that the maps

o, associated to T, are each obtained by composing the natural maps
Z/f1Z—>Q/Z with a single map a: Q/Z—Q. In the language of Kubert-Lang
([21]), T, is thus an ordinary distribution.
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We now introduce “twists.” If ¢ is a positive integer and ¢ a periodic function
on Z with values in a Q-vector space, we write ¢, for the function x+—¢(cx). If we
are regarding ¢ as a function modulo f, then ¢ will typically be taken prime to f.
Set

(1.8) A,(1—k, e)=L(1—k, &) —c*L(1 —k, ¢,).

Now let ¢y, ..., ¢ be functions mod f with values in a p-adic field Q,,, and let
ky, ..., k, be positive integers. The following result summarizes the “generalized
Kummer congruences” as considered by Mazur and others (cf. [20, 24, 25]).

(1.9) Theorem. Suppose for all n=1 that we have

t
Y gmni-lteZ,

i=1

Then for each c=1, prime to p f, we have

. ,
> A.(1—k,e)eZ,.

i=1

This elementary theorem may be proved directly from (1.4). It is the
analogue for K =Q of (0.4). As mentioned in the Introduction, we now wish to
rephrase (1.9) in terms of measures.

First, taking a more “distribution-theoretic” point of view, we eliminate the
modulus f from the statement of the theorem. For this, it is desirable to allow
twisting by ¢ which are simultaneously prime to all moduli f: these will be
elements of the group Z*

So let ¢ be a locally constant function on Z with values in a Q-module V
(Q=Q®2 is the ring of finite adeles for Q). Then for ceZ* we agam define ¢,
and elements A4,.(1—k, e)eV. We regard V=Q, as a Q-module via the projec-
tion Q -Q,.

The hypotheszs of (1.9) may be rephrased as follows: the locally constant
functions ¢;: Z—»Q and positive integers k; (i=1, ..., t) are such that for all ne 2

we have (p(n)eZ where .

o)=Y e(nyns-",
i=1
Indeed, ¢ is a continuous function Z—)Q and is thus Z -valued if and only if its
values on positive integers lie in Z,. The concluswn may be rephrased as
follows: for all ce Z*, we have

t
»Zl A,(1—k,e)eZ,.

In fact, one sees immediately that this statement for a given ceZ* and the
conclusion of (1.9) for a given d =1 are equivalent if c=d mod fp", where f is a
modulus for all the ¢; and where p” is a common denominator for the (finitely
many) numbers

L(1—k,e ) (i=1,...,t; cmod f).



236 P. Deligne and K.A. Ribet

Having eliminated the f, we may also eliminate the p. Namely, the following
is trivially equivalent to (1.9).

(1.9a) Theorem. Let €1, ..., & be locally constant functions on Z with values in
Q. Let k, ..., k, be positive integers. Suppose that

t
Y g(x)xk-leZ

i=1

for all xe 2. Then for each ce Z* we have
t
2 A=k, ﬁi)ez-
i=1

We now rephrase this result in terms of measures on Z. Let ce Z*. For each
locally constant function &: Z—Z, the quantity 4,(0, ¢) lies in Z by (1.9a). The
map e—A4(0, ¢) is thus a measure y, on Z with values in Z, so that a quantity
[od u €2 is defined for all continuous functions ¢: Z—Z.

In particular, let x be the identity function (a+—a) on Z, and let ¢ be locally
constant. Then (1.9a) implies that we have

fex*"1du,=A4.(1—k,e)

for all k=1. Indeed, to verify this it suffices to check that the difference between
the two sides is congruent to 0 mod N, for each N=1. Let N be given, and let
n: 2—2 be a locally constant function which is congruent mod N to x*~1.
Because . is a measure we have

fext~tdpu,=[endu, modN-Z.
Thus it suffices to check that

4,0,en)=[endu,=A4.,(1—k, &) (modN).

This follows from (1.9a) and the congruence

k-1

e(x)n(x)=e(x)x for xeZ.

Summarizing, we have obtained from the Kummer congruences the follow-
ing result.

(19b) Theorem. For each ce 2*, the map e— 4,(0, &) is a measure pu, on Z with
values in Z. For all k=1, the product x*~' -, is the distribution g— A (1 —k, €)
(which is consequently a measure as well).

Conversely, this theorem immediately implies (1.9a). For suppose that we are
given g;, k; and c as in the hypothesis of (1.9a). Then we have, assuming (1.9b),

YA —kye)= (Ze;x~Y)dueZ.
A
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In yet another variant, we consider locally constant functions ¢ with compact
support on Q. For these, we define values L(1 —k, ¢) as the integrals of ¢ against
the distributions T, introduced above. Formally,

(1.10) L(—k &)=Y emn!
n>0

neQ

Introducing twisted values 4,(1 —k, ¢) as in (1.8), we obtain from the invariance
(1.7) the following integrality properties:

(1.11) For ceZ*, the map t,: e~ 4.(0,¢) is a Z-valued measure on Q.
(1.12) For k=1, the distribution x*~'dy_ on Q is the map
e—A4.(1-k, ¢).

Note that the map x*~! is not bounded when k> 1. Hence x*~! du_ will not be a
measure on Q for k>1.
Finally, we discuss an “extra divisibility” at 2 which arises formally from

parity considerations. For simplicity, we discuss only functions ¢ supported on
Z

Let & be the Dirac measure at 0 on Z:
o: e—¢(0).

(1.13) Lemma. p_ = —4.
Proof. We must verify that L(0, &) + L(0, ¢_,)= —¢&(0).

This follows immediately from the formula

L0, &)= — Z &(t) (—~l)
f 2
which is a special case of (1.3).
(1.14) Corollary. For k>1, we have x*~' - p _;,=0, ie.,
L(1—k,e)=(—1)*L(1—k,e_,).

Proof. We have x*~1.6=0.

Remark. (1.13) and (1.14) summarize the presence of trivial zeros of L-functions
for complex valued characters e.

Definition. A function @ on Z with values in a Q-vector space V is odd (resp.
even) if it satisfies @(—x)= — @(x) (resp. ¢(—x)=p(x)) for xe2.

From (1.14) we see that if k is even then L(1 —k, ¢)=0 if a locally constant ¢
is odd, whereas L(1—k, e)=0 for even functions if k>1 is odd. For k=1, we
have L(1 —k, &)=0 for even ¢ which vanish at 0 (1.13).

(1.15) Theorem. Let ¢: Z—Z be an odd function. Then we have

foduec22
for all ce2*,
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Proof. Let a be a locally constant function which is congruent to ¢ mod 4 and

+oa(— x)—oa(—
LIS s
even and vanishes at 0, we have [o*dpu =0, from the above discussion.
Moreover, we have ¢ =a~ mod 2, since

which vanishes at 0. Set o™ (x)= . Since a™ is

20(x)=p(x)—@(—x) = a(x)—a(—x)=2a"(x) (mod 4).

H h
ence we have f@du=fadu, (mod2).

These computations show that we may assume that ¢ is in fact locally constant,
say mod f. We make this assumption.

Since ¢ is odd, we may find a function &: Z/f Z—Z, vanishing at 0, such that
@(x)=¢e(x)—e(—x). We find

§(P(x)d“c=Ac(07 8)_Ac(0’ 8(- 1)):2Ac(0’ 8)622'

(1.16) Corollary. Let ¢, ..., ¢ and k, ..., k, be as in (1.9a). Suppose further for
each i=1, ..., t that ¢, and k, have the same parity (namely: ¢; is even if k; is even
and odd if k; is odd ). Then for all ce Z* we have

t
Y A(1—k;, e)e2Z.
i=1

§2. The Measure Spaces A and I

Let K be a totally real field, which will be fixed for the remainder of this paper.

In order to avoid certain technical difficulties later on, we will assume right

away that K is different from the rational field Q. We introduce the following

notation and conventions, which will be in force for the remainder of this paper:
r is the degree of K over Q.

A is the norm map K—Q or any norm map derived from it, such as the
norm map on ideals of K or a map of the type K® R—R, where R is a Q-
algebra.

An ideal of K is tacitly understood to be non-zero and fractional (as opposed
to integral), unless otherwise described. A conductor is a (non-zero) integral
ideal. The group of ideals is denoted by I, and the sub-monoid of integral ideals
by A,. \

We denote the ring of integers of K by ¢ and its different by ®. The unit
ideal (1) is sometimes abbreviated 1.

For a € K, the symbol o> 0 means that a is totally positive. For ae K @R, we
write a> 0 if the image of a under each R-algebra homomorphism

K®R-R

is positive. Thus, if we number the embeddings K—R, so that K ®@ R may be
written R’, then >0 means that « is an r-tuple of positive numbers.
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We let A denote the ring of adeles of K and write either K or A, for the ring
of finite adeles of K. If xeK* is a “finite idele,” we write (x) for the ideal
“generated” by x, namely
1‘1 pordp(x)

the product bemg extended over the prlme ideals p of K. Also, when a is an
ideal, we write a for the completion of a, i.e., the closure of a in K.

(2.1) Definition. Let a and b be ideals, and let { be a conductor. The ideals a and
b are equivalent (or congruent) modf if the ideal ab~! may be written as the
principal ideal (a) for some totally positive « in the set 1+fb~1!.

We write ~; for the equivalence relation introduced above. If a and b are
equivalent mod f, we write a ~;b and sometimes say that a and b are equivalent
mod ~;. The following results follow easily from the definition of ~..

(2.2) Suppose that a~;b and that D is an ideal containing §. Then d contains a if
and only if d contains b.

(2.3) Corollary. Any ideal equivalent modf to an integral ideal is again integral.

(2.4) If a and b are integral ideals which are equivalent mod {, then the greatest
common divisors (a, f) and (b, ) are equal.

(2.5) Let a and b be ideals and let © be an integral ideal. We have a~;b if and
only if ad~bd.

(2.6) The set A; of modf classes of integral ideals is a monoid under a
multiplication A;x A;—A; induced by multiplication of ideals. The invertible
elements are those classes represented by ideals which are relatively prime to f.
Further, the group G; of invertible elements of A; is precisely the group of strict
ray classes of K modulo f: when a and b are prime-to-f integral ideals, we have
a~:b if and only if a and b represent the same strict ray class modf.

Using the above results, and especially (2.5), (2.6), we obtain the following
description of 4;. It is a disjoint union of copies of the groups G,, d running over
the divisors of {. The image of G, in A; consists of those classes whose greatest
common divisor with { is fd~ . Thls decomposmon generalizes the fact that,
for f=1,Z/fZ is a disjoint union of copies of (Z/dZ)*, with d running over the
divisors of f.

(2.7) Suppose that a and b are integral ideals divisible by §. Then a is equivalent
to bmod f if and only if a is equivalent to b mod (1).

We have already introduced the notation 4; for the (finite) set of classes of
integral ideals mod f. Now let I; be the set of equivalence classes of all ideals
mod f. For each ideal d containing f, let I? be the set of classes mod f of ideals
contained in D, cf. (2.2).

(2.8) Each set I? is finite. Indeed, if b is the inverse of an integral ideal a, the
map on ideals x—ax induces a bijection

b ~
17— A,
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We now allow f to vary. Clearly, if f<f and if a~; b, then a~;b. There are
thus natural maps I, — I, inducing maps A4; — 4; and G; —G;. We define

I =lim I;
—
U
A = lim 4;
«—
U
G = lim G;
P

(We note that G no longer has the meaning given it in the Introduction.) In the
prohibited case K =Q, these limits become respectively Q, Z, and Z*. Also, we
recognize G as the Galois group of the maximal abelian extension K?° of K. In
what follows, we will gradually establish parallels between A and Z and between
I and Q. A typical element of I will be denoted (a;)=a, indicating that a; is the
I;-component of a.
For bel,, we let .
PP={(a)ella;=d for all f=b}

={(ap)el|a;=Dd for some f=d};

the equivalence of the two definitions resulting from (2.2). It is clear that we have

I=) r'=
acAo belg
(2.9) Proposition. Let d, and d, be ideals. Suppose that f,<d, and {,=Dd, are
conductors such that
fiDy, 120, 0.

Then multiplication of ideals induces a map

D D2 D1D2
Ifll X Ifz _)Iflbz+fzb1 .

Using (2.9), we find a multiplication‘
IxI-I.

Specifically, to calculate a product a-bmod f, suppose that ael®™, bel® If
fy<=Dd, and f, <D, are such that {,D,, f,0, =T, then q;, - b, gives ab mod {. It is
clear that b, - I®*=1" for ideals d, and d,. (We write again d for the image of
an ideal d in 1) Namely, a;=b, for all | sufficiently small if and only if
D, a;=d, D, for all f sufficiently small.

We observe, incidentally, that the natural map I,—1 is injective. In fact, if a
and b are ideals which are equivalent modulo a conductor fSanb, then by (2.2)
we have acb and bca.

(2.10) Proposition. Let I* be the set of invertible elements of 1 under the
multiplication. Then I*=1,xG.

Proof. 1t is immediate from (2.6) that if we have a-b=1 with a, be A4, then both
a and b belong to G. In general, if a-b=1 with a,bel, multiply a by an ideal
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(and b by its inverse) to have ae 4. We need not have beA; let be A, be the
denominator of b. Then beI*"", Calculating a - b mod 1, we find 1~a,b,, giving
that a, is divisible by . Hence acI®, so that in the expression

(> 'a)- (0b)=1,

both terms in the product lie in 4. Thus ~'a€G, so ael,xG.
[It is obvious that the intersection I, G is trivial because an element (a;) of
G is such that a;€ 4, (a;, )=1 for each j.]

(2.11) Proposition. Let f be a positive integer, and suppose that a,bel, are
congruent mod ~; (i.e., mod ~ ). Let  be a denominator for a (and hence for b).
Then

N a=Ab mod (N D),

ie. Na=AHb e (#dYfZ.

(2.12) Corollary. The norm map I,—N™* extends to a continuous map N 1-Q,
such that A (ab)=A (a) ¥ (b). We have N (A)SZ, ¥/ (G)= Z*.

Proof of (2.11). We may assume that d=1. Indeed, under the hypothesis that d
is a denominator, the ideals ad and bd are integral and congruent mod f (in fact,
mod fd). The assertion for d=1 gives A (ad)=.A4"(bD) mod {, as desired.
Now with a,be 4, set d=(f, a)=(f, b). We have ad~ ' ~bd ! mod fd~!; let
/' be the largest integer dividing the ideal fd—!. Then f divides f’- 4D, so that
the assertion
A (@ad " H=A(bd" ) mod [’

implies the proposition. We are thus reduced to the case where (f, a)=(f, b)=1.
Then, finally, let « be as in the definition of ~; for a,b. We have A a
=N o-Ab, with a=1 modxf We see immediately that 4" a=1 modxf, giving

N a=A4'b (mod f).

We now wish to compare the space I with the ring K of finite adeles of K.
For this, we regard K as the inverse limit lim K/f and consider an element o of
K as a sequence (o) of totally positive numbers in K, compatible with the
transition maps K/f' —»K/f for j'<f. Let i(x) be the sequence of principal ideals

((‘Xf))-

(2.13) Proposition. i(x) is an element of 1 which depends only on a, and not on
the choice of the o;.

Proof. This follows immediately from the following lemma, which in turn is an
immediate consequence of the definition of ~..

(2.14) Lemma. Let o, e K with a, §>0. Then («)~(B) modf if and only if there
is a totally positive unit ue K such that a=uf modf.

Now let U+ be the closure in 0* of the group of totally positive units of K.
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(2.15) Proposition. Let a, f§ eK. Then i(0)=i(p) if and only if a=pu for some
ueU+.

Proof. The lemma shows that if o= fu with ue U*, then (%)~ (B;) mod f for all f,
so i(a)=i(B). Conversely, suppose i(x)=i(f), and let us prove that a=pfu for
some u. We do have o, =, ; mod { for each f, where u is a totally positive unit.
However, the sequence (4, modf) may not be compatible because the units y
may not be unique mod f.

To deal with this problem, we multiply « and f by a positive integer so as to
have a, fe@. (This changes neither the hypothesis nor the conclusion of the
proposition.) For each f, let d;=gcd(f, o)=gcd(f, f;). Then the unit u; is
determined modulo §bd;” ‘—gf For f'<f, we have g —g;. Thus we need only to
know that U+ maps 1nto lim C;, where C; is the group of totally positive units

taken mod g;. This is obvious, for example because U+ is compact and maps
onto each C;.

(2.16) Proposition. A (i(0))=A"o for all acK.
Proof. Indeed, 4 (o)) =A4"o; because ;> 0.

Convention. Let acl, xe K. We write (a-a), or simply a-a, for the product
a-i(o) in I.

Note that for «>0 in K we have (a)=i(«) in I. Thus (x)-a~!=1.

(2.17) Lemma. For a€l, the quantity (a - 0) depends only on the strict ideal class
of a,: for bel, we have (a-0)=(b-0) if and only if a, and b, belong to the same
strict ideal class of K.

Proof. For t>0, we have (ta-0)=(a-t0)=(a-0). Hence we can assume that
a,be A, in which case the assertion to be proved is: (a-0)=(b-0) if and only if
a;~b, mod 1. For each f, let o, be a totally positive number divisible by f.
Modulo f, (a-0) is a;o; and (b - 0) is b;a;. By (2.7) we see that a;a;~b; o mod f if
and only if a;a;~b;a; mod 1, which is true if and only if a; and b, are in the
same strict ideal class.

(2.1%) Proposition. Let ael. Suppose that (a - 0)=(1-0). Then a=(1 - a) for some
ae K.

Proof. As usual, we can multiply a by some t>0 to assume that ae 4. Then by
hypothesis we have, for each f,.a;=(oy), where o€ K is a totally positive integer,
which by (2.14) is well defined, mod f, modulo the action of the group of totally
positive units. Let C; be the set of integers modf, taken modulo this action.
Then the compact @ maps onto each C; and hence on to the limit lim C;. This

gives what is needed.

(2.19) Corollary. Let a=(a))€ 1, and let be I, be an ideal in the same ideal class
as a,. Then a=(b - «) for some acK.

Proof. By (2.17), (ab='-0)=(1-0). Hence ab~! may be written (1 -«) for some
oE
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We recall that for x an invertible element of K, we denote by (x) the ideal

“generated” by x.

(2.20) Proposition. For each x € K*, we have (x)-x~ leg.

Proof. 1t suffices to prove that (x)- x~! € 4, using the symmetry and the fact that
an element of A with an inverse in A must in fact belong to G. This follows from
the following result, whose proof we omit.

(2.21) Lemma. Let a,d€l,, and ac K. Then
(a-a)el®
if and only if o belongs to the completion % of the ideal a='D.
As a complement to (2.21), we mention the following fact:

(2.22) Let a be an ideal and let o, feK. We have (a - o)~ (a- B) mod { if and only
if there is a totally positive unit u such that we have

ey
a—ufea"f.

Referring now to (2.20), we let j(x)=(x)-x~' for xe K*. Then j may be
viewed as a homomorphism R
j: K*>G

which is trivial on the set K>° of totally positive elements of K. On the other
hand, for each conductor { there is a natural map

/7% K*—»Gr,

trivial on K> °, which maps each x e K* such that x=1mod* f to the class in G;
of the ideal (x) generated by x, cf. [22, pp. 146-147]. (Here we should recall that
G, is the ray class group of K modf, so that each prime-to-f ideal of K, integral
or not, has a well defined image in G;. From the point of view of the equivalence
~i, only the integral prime-to-f ideals map to G;.) The resulting map

y: K*>G= }ﬁl G;
is surjective. By abuse of language, we may refer to it as an Artin symbol.
(2.33) Proposition. We have  =j.

Proof. Since both ¥ and j vanish on K>, it suffices to check that y; and the
composition of j and the quotient G— G, agree on elements of the set 1 +§. Now,
mod f, j(x) is represented by any ideal of the form (x)(x), where « is a totally
positive element of K with o —x~ ' ef. We must verify that

(@)(x) ~; (%),

and it suffices to see that T
ael+(x)"'§.



244 P. Deligne and K.A. Ribet

This, finally, follows from the defining property of o, together with the fact that

l—x"l=x"'(x—1)ex '}.

(2.24) Frobenius Elements

Let { be a conductor, and let v be a real place of K. Let acl+f be a number
which is negative at v and positive at each real place of K different from v. The
class g, of (@) in G, is independent of v and has order 1 or 2. It is trivial if and
only if « may be chosen to be a unit. If we interpret G; as the Galois group over
K of the ray class field K; of K of conductor f, then o, becomes complex
conjugation after we choose an embedding K;~>C which induces v on K.

For fixed v and varying f, the elements o, piece together to give a Frobenius
element in G, which we again call ¢,. Each o, now has order 2, and in fact the
subgroup Y * of G generated by the g, is an elementary 2-group whose order is
2". Each ¢, has norm —1. If we let ) be the kernel of the norm map

N Yo {1],

then ) has order 2"~ ' and is generated by products ¢,0,,, with v and w running
over the real places of K. For f a conductor, we let ) [ (resp. Y ) be the image of
Y * (resp. Y) in G,. We will be especially interested in the case f=(1).

In a natural way, the o, lead to the notion of functions with parity. Let ¢ be
a function on G with values in an abelian group ¥" For each real place v, let a,
be one of the two integers 0, 1. We say that ¢ has parity (a,) if we have

@(0,8)=(—1)"0(g)

for all g, v. When the a, are all equal to O (resp. 1) we say that ¢ is even (resp.
odd). The phrase “¢ has parity (— 1)*” means that ¢ is odd if k is odd and even if
k is even.

(2.25) Invertible Modules
As is well known, the group of ideal classes of K may be interpreted as the
group of isomorphism classes of invertible ¢-modules. We shall now similarly
interpret the constructions of this §. For this, we must introduce the notion of a
signed O-module.

Let # be an invertible O-module. For each real place v of K, let £, be the
tensor product ¥ ®, R, with R viewed as an 0-module via v. Then %, is a free R-
module of rank 1. A positivity for % is the choice, for each v, of an element of

Isom(Z,,R)~R¥,

taken modulo the action of the group of positive real numbers. There are
precisely 2" possible positivities for .&.

A pair consisting of an invertible 0-module &, together with a positivity +
for &, is a signed O-module. Two such modules (&, +), (&', +') are isomorphic if
there is an @-isomorphism ¥ —=-.%’ compatible with +, +'. It is clear that the
isomorphism classes of signed ¢-modules are the strict ideal classes of K. More
precisely, this works as follows. Each ideal a of K has a canonical positivity
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+ ... arising from the canonical isomorphism a ®,K =K. With a and b ideals,
we have (a, +_,, )=~ (b, +,,) if and only if a and b are in the same strict class.
Finally, any pair (%, +) is isomorphic to (a, +,,) for some ideal a.

Now let {f be a conductor. We consider triples (&, +, ), where ¢ is an @-
linear map % — K/f. Two such triples (&, +,9), (£’, +',¢") are said to be
isomorphic if there is an isomorphism (&, +)—— (%", +') so that the diagram

g/

is commutative. For a€l,, we let ¢_,, be the map a—=K—-K/f. A computation
shows that (a, + ) and (b, + ., @.,,) are isomorphic if and only if a~,b.

Furthermore, let (&, +, @) be a given triple, and let a be an ideal such that
(&, +) and (a, + are isomorphic. Choosing an isomorphism we find a
map a— ¥ —» K/, necessarily given by a multiplication y:a—7ya (with
yeK), followed by the reduction K—K/f. We may choose y to be totally
positive. Then the isomorphism ayL‘mz,?’ shows that we have (&, +, @)~
(@9, + can> Pean)- Hence I is just the set of isomorphism classes of triples (&, +, ).

To describe I, we consider triples (&, +, ¢), where ¢ is now an @-linear map
%K. Such triples give rise to elements of I as follows. Choosing an isomor-
phism (&, +)=(a, +,,), we find an O-linear a—K, which is necessarily of the
form “multiplication by y” for some yeK. The product (a-y) in I is easily seen to
depend only on (£, +,¢). Note that the image modf of this product is
represented by (&, +) together with the map “¢ mod {”:

¥ ——>K——K/i=K/i

In either situation, the action of a real Frobenius ¢, is as follows: we have

0, (&, +,90)=(%, +', p), where +' is deduced from + by changing + at v.

can? (pcan

can)

§3. A Functional Equation

In this § we define the L-series attached to a (complex valued) Schwartz function
on the measure space I. We then prove a functional equation for such L-series,
involving a Fourier transform on the space I. Defining this Fourier transform is
the first order of business.

We shall view the ring A of adeles of K as the product A; x K, where A,=I€
is the ring of finite adeles of K and K =K ®R is the product of the real
completions of K. For computing, we number these real places of K, so that K
=R". Also, for xeA, we write x (resp. x,) for the image of x in A (resp. K ).

Let | |: K,—R be the standard absolute value, namely

(X3 s x =TT 1x4
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We write instead || || for the standard absolute value on A, defined for example

by the equation
d(yx)=|y|-dx,

where dx is a Haar measure on A ;. For yeK*, we have ||y|| =4 (y)~ !, where ()
is the ideal of K generated by 7.

Let : A—-C* be the standard additive character, trivial on K, whose
restriction to a completion K, of K is given as follows:

For v real, y: x+—e>™~;

For v p-adic, y: x+—e=271rx
where tr: K,—Q, is the trace, and the exponential ¢*™* for teQ, is defined in
the usual way. The restriction of ¥ to A (resp. K ) is denoted ¥ (resp. ¥, ), or

simply ¥, according to the context. For ¢ a Schwartz function on A, (resp. K,
resp. A), we define the Fourier transform & of ¢ by the formula

(3.1) B =Je(x)-Y(xy)dx.
Here d x denotes Haar measure, normalized so that the formula
2(x)=¢(—x)

holds, cf. §3.3 and §4.1 of [39].
We now turn our attention to Schwartz functions on K and on I. We recall
the following “variance” formula for K:

(32) If n(x)=e&(yx) with yeK*, then

AW =8~y lIyl~ "

Now let ¢ be a locally constant function with compact support on I.
Specifically, assume that ¢ is supported on I* and defined modulo ~;. If «€l,
let ¢,: K—C be the function x+>&(« - x).-By (2.21) and (2.22), ¢, is supported on

P S .
«~'® and defined modulo «~'{. Let £, denote the Fourier transform of ¢,. For
yeK totally positive, one has the formula

(3.3) £ ()=2,07"%) 77",

as follows easily from (3.2).
We define the Fourier transform Te: I-C of ¢ by the formula

G4 (Te)(e™ ! - x)=(Nw™ ) E,(x),

for «€l,, xeK. [We observe that each element of I is a product «~!-x, by
(2.19).] To check that Te is well defined, suppose that «~'-a=+"'.B; we then
wish to verify that

Nu= V& () =No~ 18 (B).

The equation «~'-a=v"1.B gives «~1-0=2»"1.0, so that v =y« for some y>0
by (2.17).
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We find that («~ ' 0)=(«"1-y~ 1 B), so that
a=y"18t
for some teU™ (2.15). By (3.3), we have

£B) & 'B Elat™!)
Nov  Na — Na

The required formula then follows from (3.2), since ¢, is invariant under x+ xt,
and |¢t||=1.

We now give some formal properties of T that follow directly from the
definition.

3.5) T(Te)(x)=¢(x. —1).

Proof. Let n=Te. For («~'-a)el, we have

() -0)=—— [n.(x)p(xa)dx
N

=&, .(x)¥(xo)dx
=§“-|(a)=8“_1(—cx)
=e(e™ ' —a)=¢e((e ' a) —1).
(3.6) If n(z)=¢(dz) for some del,, then
(Tn)()=(Te)d~' z)- A'D.
Proof. We have
N aTnle ' a)=[n(e-x)P(xa)dx
=[e(ud-x)Y(xo)dx
—(Te)((wd)~'-a)- N (D).

(3.7) Corollary. Suppose that n(z)=e(cz) with ceG. Then (Tn)(y)=(Te)(c™! »).

Proof. As noted in §2, each ceG may be written (y)-y~! for some yeK*. Since
Iyl - A (y)=1, the result follows from (3.6), (3.3).

Using the above properties, we will now verify that Te is locally constant
and compactly supported. For the application that we ultimately have in mind,
the ideal b governing the support of ¢ is (1): that is, ¢ is supported on A. Let us
assume that this is the case, for simplicity. [If D=(1), one may use (3.6) to reduce
to the case d=(1).] We suppose (as above) that ¢ is defined mod ~{.

Let #n 'be defined by the formula

n(z)=(Te)(D'2).
(3.8) Theorem. The function n is supported on I'"" and defined mod ~ 1.

Proof. We first verify the periodicity. If =, yel are congruent mod 1, we may
write z=(«""-a), y=(«""- f) for some «€l, and elements a, B of K with o« — fe .
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Thus the periodicity property asserted for Ty reduces to the statement that
£ o is periodic mod 4. As already noted, ¢,y is supported on «~' D~ '. Looking
at the formula defining &, we see that the required periodicity follows from the
fact that the additive character y is trivial on D~ 1.

For the question of support, it is now enough to check that » vanishes on
each ideal « with « ¢{~ . (This remark follows from the periodicity and the fact

that for z ~» mod1 we have . -
zel™" <« yeli )

So we must check that (Te)(«)=0 provided that ~ ¢~ ' D~ !. The vanishing of
(T ¢)(«) amounts to the vanishing of the integral

fe(w=t-x)y(x)dx.
But the hypothesis on « insures the existence of an ae«f with Y (x)+1. The

integral thus vanishes because of the formula

ele™ - X)=¢ele ! (x+ ),
of. (2.22).

(3.9) Corollary. The function Te is supported on I'''"® "', It is defined modulo
D! in the sense that (T ¢)(z)=(T ¢)(y) whenever Dz~ Dy mod 1.

(3.10) Remark. The introduction of n is a consequence of our failure to have
defined ~, for f a fractional ideal. For later use we now define two elements 2, »
of I to be congruent mod D! if D2 and Dy are congruent mod 1.

We now begin our study of L-functions. Let ¢: I - C be locally constant and
compactly supported. We set
L(s,e)=) e(a)Na~*

for s with large real part, where the sum runs over all (fractional) ideals of K. It
is easy to rewrite L(s,¢) as a linear combination of functions of the form

V(5,0

where D is some ideal of K and {;(s,¢c) is the partial zeta function of a class
cmodf in the sense of Siegel. Using results of Hecke, we may thus admit a priori
that L(s,¢) may be continued to a meromorphic function on C, with at worst a
simple pole at s=1 and with no other poles. We are interested in obtaining a
functional equation linking L(s, ) and L(s, T ¢).

For this, we shall now assume that ¢ has parity (a,) for some collection of
integers a,=0 or 1, cf. (2.24). By (3.7), Te again has parity (a,). Let I4(s)

=n~%2r (%), and set

(3.11a) y(8)=[TIr(s+a,),

with the product taken over the real places of K. We put

(3.11b) A(s, e)=y(s) L(s, ¢).
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(3.12) Theorem. We have
A(s, &) =i A(1 —s5,Te).

In fact, the case of primary interest for us is that where all a, are either 0 (¢
even) or 1 (¢ odd) and s is an integer k=1 with the same parity as . In this case
we will obtain the following

. (3.13) Corollary. If ¢ has parity (—1)* and k=1, then
L(k,e)=2""o, L(1—k, Tg).

f@mi
MU I
Before beginning the proof of (3.12), (3.13), we remark that these equations
are essentially those discussed by Siegel [38].

where

Proof of (3.12). We will in fact establish an identity between the purtial L-
function obtained by summing &(a).4"a~* over a given wide ideal class of K and
that made by summing (T ¢)(a).# a*~ ! over the inverse of the class. Let « be an
ideal. We will prove that

(3.14) Y 8(B“)=h(s) Y Ne-Te(Beat)|pIY,

BeK*/U [BIS BeK*U

where the notation is as follows:
U =unit group of K

h(s)=i"-y,(1=5)y,(s)""!
| B| is the archimedean absolute value of B, i.e., |f|=|N B|.

Let p be the function x— [ [(sgnv(B))*. We have, by the parity hypothesis,

(3.15) e(Ba)=e(«-B) p(B)=¢.(B) p(B);
(Te)Be)=Te)w "B p(B)=(N )" &,(B) p(B).

Thus the formula to be verified reads:

BeK¥U* |BI* BeK¥U+ p(B)

(3.16) y Mih(s) y EL(@.‘B|-‘—1’

where U™ is the group of totally positive units. (We prefer to sum over this
latter unit group because ¢, £, and p (as well as | |) are invariant by it, whereas
only the products ¢, - p, £, p need be invariant by U. In (3.14), we have the right
to replace U by any subgroup of finite index in it.) Let y be a quasicharacter
K* —-C*, and let ¢, be a function such that both it and its Fourier transform
are rapidly decreasing at infinity (cf. [39], §2.4). For Res> 0, the integral

(3.17) [ 1) 1% @ (x)d* x

K*%



250 P. Deligne and K.A. Ribet

converges to an analytic function of s which has a meromorphic continuation to
all of C. Furthermore, there is a non-zero meromorphic function a(y,s) of s,
independent of ¢, such that

G18) a9 [ 1 @I e, x= | 2136, (0)d .
This formula, which is just a semi-local variant of the functional equation of [39,
loc. cit.], expresses the fact that the Fourier transform of the distribution x| |~°
=y, on K is proportional to x;* l |~

Let us take x equal to the “sign’ character p, viewed as a function on K*. If
we write the collection of numbers (a,) as a tuple (a,, ..., a,), using the chosen
numbering of the real places, then

p(9=[Tsgnlx)

Following Tate, we compute a(p,s) by choosing (pw(x):n(x;f-e"‘f-). With this
choice for ¢, each integral in (3.18) may be rewritten as a product of r different
elementary integrals of the type computed on p. 317 of [39]. We find that

a(p, s)=h(s),
with h as in (3.14). This (3.14) is a special case of

(3.19) Theorem. Let x: K* —C* be a quasicharacter invariant under a subgroup
U, of finite index in U. Let ¢ be a locally constant compactly supported function
on K which is also invariant under U,. Then we have the equality of meromorphic
functions
Y. eB BBl =alrs) Y EB)x(B) " IBFT
BeK*/U, BeK*/Uo

Remarks. 1. More generally, let K be a global field, and let S be a finite set of
primes of K which contains the archimedean primes. Let x be a quasicharacter
of [ K¥, invariant by a subgroup U, of finite index in the group of S-units of K.

veS
The Fourier transform § of y is a multiple a()-| |-y ' of | |"'x ! Letebea
U,-invariant locally constant function with compact support on ]:lK and let &

be its Fourier transform. The proof given below yields the identity

(3:20) Y AX)ex)= ) (x)Ex),
xeK*/Ug xeK*/Ug

where both sides are defined by analytic continuation in the family x| |=%
Suppose that we (formally) allow S to be the set of all places of K, and take U,
=K*. Then (3.20) yields the identity {=y"'| |~* (i.e., a(x)=1) for x a grossen-
character. This identity is Tate’s global functional equation, as rewritten by Weil
[40].

2. Our method of proof is similar to that given in Sato-Shintani [31]. A
common generalization should be possible.
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Proof of (3.19). For simplicity, we will write U instead of U, for the unit group
appearing in (3.19). Furthermore, let us continue to write y,=y-| |~*

Step I. Let ¢, be a function on K _ as in (3.17), chosen so that
[ 1) @ (x)d* x
K*o
is not identically zero. Let ¢ be the function e® ¢ on A:
P(X) =0, (X ) E(x ).
For each xe K* <A we consider the function
a—@(xa) (agA),

whose Fourier transform is

a—|x|"¢(x"ta).
We apply the Poisson summation formula to this function and obtain

(3.21) Y oxB=Y IxI"t¢x""p),

BeK peK

cf. [39, p.333].

Step 11. We have an equality of meromorphic functions

(3.22) I 200y exppd*x= [ xx"HIxI( Y ¢(xp)d*x.
K‘:o/U peK* K* /U peK*

[Note that the integrands are U-invariant. E.g,, if ye U and x’=7yx, then ¢(x’'f)
is by definition ¢(xy, f). Since ¢ is invariant under U, we may rewrite this as
o(x-B7y).] '

Let K (resp. K3) be the subset of K* consisting of elements with |x|>1
(resp. |x|<1). Over K7, both integrals converge to analytic functions of s
because of the rapid decrease of ¢, ¢ at co. Over K3, the left-hand integral is
well behaved for Res <0 and the right hand integral for Res>0. Let L and R,
respectively, denote the integrands of these integrals.

Suppose that we multiply (3.21) by x,(x), integrate over K> /U, change
variables x—x~! on the right-hand side, and isolate the terms corresponding to
p=0. We obtain

[ L= [ R+40) [ Ixlzx"Hd"x=00) [ r(s)d*x,
KZjU  K3U K3/U K3 /U
for Res> 0. Similarly, for Res <0 we have
R= | L+¢0) [ x(x)d*x=¢©) [ x,(c™")Ixld*x.
U KZ/U KU

K2 U KZ/

Now the point is that each integral multiplying ¢(0) and ¢(0) is meromorphic

on C, so that | L, [ R are continuable to meromorphic functions on C.
KiU  KZU
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Furthermore, when we take the difference of the two equations just written, the
¢(0) and the @(0) terms cancel, giving the desired equality (3.22).
For example, let us show that | x(x)d*xand | x,(x)d*x are meromor-
K= K> /U

oo/‘U 0
phic in s, and that each is the negative of the other.
We let n: K* /U—(0, o0) be the surjection x+—|x|. By Dirichlet’s theorem, the
fibres of = are compact. Hence for each t (0, o), the integral

j Xs(x) d*x

n- ()

is defined for all s. Because n and y, are homomorphisms, the integral vanishes if
% (and hence yx,) is non-trivial on the kernel of =. In that case, by Fubini’s
theorem, the two integrals to be calculated are identically zero. So we can
assume that y is trivial on Ker z, giving that y(x)=|x|* for some s, € C. We then
find:

| xx)d*x=
KU So
and
| xxd x= ;
KU 0~

where V is the volume of 7~ *(1). Hence our claim, and thus (3.22), is verified.

Step 111. We apply Fubini’s theorem to the left hand side of (3.22), obtaining
Y| ) expyd x.

BeK*/U K*_
We replace x by f~'x, i.e, ' x, in the integral. It becomes
eB) B | 2@, (x)d*x,
K,
so that the left-hand side of (3.22) may be rewritten
[ Y eBrB) '] | t(¥)@ux)d*x.
BeK*/U K*,

This decomposition gives a meromorphic continuation to the first factor, i.e., the
sum: the product of the two factors is meromorphic by the above, whereas the
integral is meromorphic (and non-zero by the choice of ¢ ). We similarly write
the right-hand side of (3.22) as:

LY BB | xx=HIxl" @, (x)d* x.
BeK*U

K%

This gives, because of (3.18), the equality
Y eBrBIBE=alx", —s),, Y. LB x(B)IBI~ e,

BeK*U eK*/U

which is just (3.19) with y~! and —s instead of x and s.
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Proof of (3.13). The factor a(y, s) is in this case

Te(l—9)71 . .

[ ] if k is even

Ig(s)

Sl PTHICIPS PR
[iL(:i)] if k is odd.
Tr(1+5)
However, we have

FR(S) _Al—s__—s (E) FR(1+S)__ les —5 . (E)
—_—Fn(1~s)—2 ™% cos 5 I(s), ————l_rk(z_s)—- i2'7*g~%sin > r(s),

as remarked in [39, p.317]. The assertion now follows on setting s=k in each
case.

Trivial Zeros

(3.23) Proposition. The function A(s, €) of (3.11b) is holomorphic on C except in
the case where ¢ is even, ie., where all a, vanish. In this case, A(s,¢) is
holomorphic for all s30, 1 and has at worst simple poles at these points.

As is well known, by considering the poles of I'(s) one deduces the existence
of “trivial zeros™ for L(s,¢):

(3.24) Corollary. We have L(1 —k, €)=0 for all even integers k=1 except when ¢
is an even function. Similarly, if ¢ is not an odd function, we have L(1—k, g)=0
for all odd integers k> 1.

[The assertion concerning k=1 would be false in the excluded case K=Q.
Note that in (3.24) the function ¢ is still assumed to have some parity, as in
(3.12).]

Proof of (3.23). We review the proof of (3.19), making the normalization y=p.
The proof of the equality (3.22) shows that the functions in (3.22) are everywhere
holomorphic, except for the case where y is trivial, in which case there may be
simple poles only at the points s=0,1. We now make in Step III of the proof of
(3.19) the choice

0,0 =[1(x% - e=).

Then we may explicitly calculate the integrals appearing in Step 111, obtaining
in particular the equation

K[ 1(X) @, (x)d* x =[] I'n(a,—5).

Except for the change of sign in s, the product is the I'-factor y(s) used to define
A(s, €). We may conclude that the product of y(s) by the L-series in the statement
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of (3.19) has the property asserted of A(s, ¢): it is holomorphic if the a, are not
all zero, and otherwise has possible simple poles at 0 and 1 and no other poles.
Expressing A(s, ¢) in terms of such series, we find that A(s, ¢) has this property as
well.

§4. An Irreducibility Theorem

This § concerns the “Hilbert-Blumenthal” moduli problem of classifying abelian
varieties with real multiplication. We wish to complement the work of Rapoport
[28] with an irreducibility theorem in characteristic p. We recall that a Hilbert-
Blumenthal abelian variety (or: HBAV) relative to the integer ring O of K over a
base S is an abelian scheme X/S, furnished with a homomorphism m: @—End X
making Lie(X/S) into a locally free ¢ ® Og-module of rank 1. It follows in
particular from this definition that the relative dimension of X over S is the
degree r of K over Q. Conversely, if S is of characteristic 0 and X/S is an abelian
scheme of relative dimension r furnished with an m: ®—End X, then the
condition on Lie (X/S) is automatically satisfied. Also, if S is of characteristic
p>0, then the condition is satisfied at least whenever X is ordinary.

Let X be a HBAV over an algebraically closed field k. If N is prime to the
characteristic of k, the group scheme X, of N-division points of X is etale, and
so may be identified with the group of its points: a free O/N ¢-module of rank 2.
Also, we attach to X its polarization module #(X); this is the invertible ¢-
module consisting of the symmetric ¢-linear homomorphisms X — X*, where X*
is the dual of X. This module has a natural positivity, in which we declare
positive those homomorphisms defined by a polarization [28, §1].

In the special case k=C, we may interpret X, and 2(X) in terms of the
homology group T(X)=H,(X(C), Z). For X, we have

4.1) XN———% T(X)/T(X)—§> T(X)/NT(X).

For 2(X), we regard T(X) and T(X*) as being paired over Z into Z(1)=2rniZ.
We have

T(X*)=Hom,(T(X), D~ '(1)),
which leads to

4.2) 2(X)=Hom, (/2\ T(X), D~'(1)).

(The exterior power is taken over (.) The notion of positivity on 2(X) results
from the fact that the real vector space T(X)®,R has a natural complex
structure [28, 1.26].

If we combine (4.1) and (4.2), we obtain an isomorphism

(4.3) /Z\XN-L»Hom@(g’(X), D (1)®Z/NZ.
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Over an arbitrary base S, the groups (X )y (with N invertible on S) and
2(X,) fit together to give local systems X, 2(X) (for the etale topology). From
the e, -pairings of Weil, we may construct an analogue of (4.3):

(4.4) A X y—> Hom, (2(X), DY@y

Let N =3 be an integer, and let 2 be an invertible O-module of rank 1, given
with a positivity. For each base S, we consider triples (X, 4, &) over S consisting
of: a HBAV X/S, a positive isomorphism 1: Z(X)——%, and a level-N
structure a: (O/N 0)>*—— X . Let F[#, N] be the functor

St {isomorphism classes of triples (X, 4, «) over S}.
According to [28], F[#, N] is represented by an algebraic space 4 =4y [Z],

1 . . L
smooth over Z [7\’—] One can find a compactification .# of .#, proper and

1 L= . .
smooth over Z I}]V] so that the complement of .# in .# is a relative divisor

with normal crossings. (We note in passing that the level-N structure is imposed
in order to eliminate automorphisms.) It follows that .# has the “same”
geometric connected components in characteristic p¥N as over C. These com-
ponents are parameterized by the set of “invertible” elements of the free O/N O-
module

H=(Hom,(?, DY ®Z/NZ)(1).

Explicitly, given a triple (X, 4, «), we obtain an element of H according to the
following recipe. From o and (4.4) we obtain an isomorphism

(9/N@=/2\(@/N(9)2—~»/2\XNzHomo(9’(X), D H@uy=H,

and using 4 we have also an isomorphism H= H'. Composing the two, we
obtain an isomorphism (/N O =~ H, and hence a canonically given “basis vector”
of H.

Let pYN be a prime, and let p">1 be a power of p. Let MA°=.43[2,p] be
the open subset of the reduction of .# modulo p which corresponds to ordinary
abelian varieties. (We recall that X is ordinary if X, is an extension of an etale
group scheme by a group scheme of multiplicative type.) We shall see below that
A° meets each connected component of .# modp, so that it is dense in
4 mod p.

If X/S is an ordinary Hilbert abelian variety in characteristic p, then X, is
locally (over S for the etale topology) an extension of an etale group scheme, @-
isomorphic to O/p"@, by a group scheme of multiplicative type, isomorphic to
O®u,.:

(Xpn)° ~O @ pyn.

Let # =4[22, N, p"] be the covering of .#° defined by:
I = jﬂDmMo(”pn®09 (Xp")o)’
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X/A#° being the universal Hilbert-Blumenthal abelian variety. It is a principal
homogeneous space (“torsor”) over #°, with structural group (0/p" 0)*. It may
alternately be obtained as the reduction (mod p) of the space S’ associated to
the moduli problem of classifying quadruples (X, 4,a, ), with X, A, a as above,
and f an (O-linear) immersion

OQum—X.
The space #’ is etale and quasi-finite over .#, but not finite.

(4.5) Theorem. The covering [, N, p"] of M} [P, p] is geometrically irreduc-
ible. Le., if F is an algebraic closure of F,, then S defines an irreducible covering
of each connected component of M° &g F

Proof. Let q be large enough so that all the geometric connected components of
M° are defined over F,. (By the above discussion, it suffices in fact to have F,
containing the N'® roots of 1.) Let .#%c < M°®y, F, be one of the components
and let me #5(F) be a base point of M,. The covering of #¢ induced by £ is
determined (up to unique 1somorph1sm) by its fibre £, and the monodromy
action of n,(#9, m) on #,. This action is given by a character
Pt T (M, m)—>(O/p"O)F.
Irreducibility of the covering, after extension from F, to F,., amounts to the
surjectivity of p|m, (¢ ®r, F o). Geometric irreducibility amounts to surjectivity
for all a=1: any geometric connected component of .# is defined over some F,..

Each closed point x of .#7®g, F,. defines a Frobenius element F, in m; (#]®F,.).
(Although F, is in fact not well defined, its image under p is well defined.)
We will prove the required surjectivity by using these Frobenius elements and
their powers. (The Cebotarev density theorem tells us that we will be able to do
this if the theorem is true.) The powers come in because of the following “base
change” formula. Let b be a multiple of a, and let x € # "( .- Then x is a closed
point of 4% ®p, F,» but defines as well as closed point x’ of M, Fya. Let F
be the re51due field of x', so that a|c|b.-Then we have F,=F"° in nl(,jl ®F,, )

Suppose that erl‘;(Fq,,) corresponds to a triple (X, l o) over Then

p(F,)e(0/p"O)* is the number giving the action of Frobenius on the etale group
scheme Hom (O ® a,., (X ,»)°). Equivalently, we wrlte the Frobenius endomor-
phism of the formal group X of X as a product ¢°- u, where ue(0 ®Z »)* Then

p(F,) is the image of u in (O/p"O)* cf. [15, (4.2.1)]. (Depending on conventions
chosen, one may prefer to take u~' instead of u at this point; this problem is
irrelevant for our purposes.)

Notice that the recipe just given for p(F,) does not involve either the level N-
structure o or the isomorphism A. On the other hand, the action of GL(2, O/N 0)
on .#° deduced from

g (X, A 0)—(X,Aaog™ 1)

permutes the geometric connected components of .#°. This enables us to ignore
the distinction between .#4(F,,) and #°(F,) in finding a triple (X, 4, a) such
that the associated ¥ maps mod p" to a desired element @ of (0/p"0)*; we are
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required only to find an ordinary X/F,,, for some multiple b of a, with the
following properties:

() X admits a level-N structure « over F;

(ii) The number ue(0®Z,)* computed for X maps to the given @ in
(O/p"O)*;

(iii) The polarization module 2 (X) is isomorphic to the given £ (as an
invertible O-module with positivity).

Carrying out this construction will prove the surjectivity, and thus the
theorem.

We eliminate consideration of requirement (iii) by the following trick. Let M
be a positive integer, prime to pN, such that the ideal M O is divisible by some
ideal of @ in each strict ideal class of K. Assume that X/F,, satifies (ii) and
admits a level NM structure over F,, but does not necessarily satisfy (iii).
Choose a level NM structure for X, and view it as a level M structure plus a
level N structure. If ¢ is an ideal with M 0 < ¢= (), we may divide X by the image
in X of the group ((0) x ¢ mod M) under the immersion (0/M 0)>*~X. We obtain
a variety X'/F,, which satisfies (i) and (ii). It is easily seen (and at least guessed
from (4.2)) that the polarization module 2(X’) is isomorphic to 2(X)®c¢™ .
Since we may choose ¢ in any strict ideal class of K, we may arrange 2(X’) to be
isomorphic to the given . We may thus forget about condition (iii), after
replacing N by a suitable multiple.

To construct varieties X satisfying (i) and (ii), we use the description given in
[4] of the category of ordinary abelian varieties over a finite field. The
equivalence of categories furnished by [4] identifies ordinary Hilbert-Blumen-
thal abelian varieties with pairs (&, F), where % is a locally free O-module of
rank 2, and F is a “Frobenius” endomorphism. One requires that F satisfy:

(a) detF=gq% and (tr F)>2—4detF <0,
(b) the completion & ®Z, of £ decomposes as the sum L' ® L" of two F-

stable free (0 ® Z,)-modules of rank 1,with F acting as q¢"u on &' and as u™' on
&L for some ue (O ®Z,)*.

[The number u appearing in (b) is the number u associated above to the
abelian variety corresponding to (&, F).] Varieties which admit level-N struc-
tures correspond to pairs (&, F) which satisfy in addition:

(c) We have F=1mod N.
We will construct pairs (&, F) by considering irreducible polynomials

x*+cx+d (c,de) and taking £ to be the integer ring of K[x]/(x*+cx+d)
and F to be multiplication by x. To satisfy conditions (a) and (b), we need:

(1) d=¢%
() c*—44"<0;
(3) ce(ORZ)*.
x—1

For (c), we require that be integral:
(4) N|2+c), N?|(1+g¢°+c).

Then u~!, being the unit root of x2+cx+d, will be congruent to —c¢, mod g°.
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To complete the proof of the theorem, we pick ce @ so that c=—2 mod N>
and c= —i~! mod p". Next we choose b so that c—4¢” <0, ¢’=1mod N, and
p"l¢®. Conditions (1) through (4) are satisfied, and we have u~'=
—c=#u"! modp" as required.

We now define a I,,(N) structure on a Hilbert-Blumenthal abelian variety to
be an O-linear immersion O @ uy—X. (Here N is a positive integer, not
necessarily prime to p.) Let 2 be a locally free rank-one (¢-module with
positivity, and let F[£, N] be the functor

S+ {isomorphism classes of triples (X, 4, o)| X is a Hilbert-Blumenthal
abelian variety over S; A is a positive isomorphism (X))~ 2; a is
a I, (N)-structure}.

For N sufficiently large, such triples have no automorphisms, and F[2, N] is
represented by an algebraic space #[£, N], smooth over Z.

(4.6) Corollary. For each prime p, the reduction mod p of M [P, N] is geometri-
cally irreducible.

Proof. Let us write N=p"N’, where pYN" Since #[%, N] is surjective mod p
when N is a multiple of N, we may prove the corollary with N replaced by any
multiple of N. Hence we may assume that N’ is so large that the moduli space
M[P, N'] exists.

Over the algebraic closure F of F,, let us fix an embedding py —(Z/N’ 7).
After tensoring with O, we get a map g: O ® uy.—(O/N'0)*. Via g, a level N’
structure on a Hilbert-Blumenthal abelian variety gives rise to a I, ,(N')-
structure on the variety, so that we have a map Ay [?]> M [P, N'] over F. If I
is the subgroup of GL(2,0/N’0) fixing g, we find an isomorphism #y.[Z?]/T
——> M[# N'] over F. Now I acts transitively on the geometric connected
components of .#,.[#] because det I' =(0O/N’ 0)*; this gives the irreducibility of
M[P, N'] over F, proving the corollary in case N=N'. If p">1 we remark that
similarly there is an isomorphism

Ivl?, p")/T——> M[P,N] (overF).

The theorem implies that I' permutes the geometric connected components of
I[P, p"] (they are the same as those of #[#, N']), so we again get the
statement of the corollary.

§5. Hilbert Modular Forms

In this §, we review the connections among complex, algebraic, and p-adic
Hilbert modular forms (for K), emphasizing the g-expansions of these forms.
Our irreducibility theorem (4.6) implies a g-expansion principle for such forms,
which states (roughly speaking) that a form is determined by any one of its g-
expansions.
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In our exposition, we will follow very closely Chap. I of Katz’s paper [19]. In
order to make our discussion consistent with that of [197], we shall slightly
change the definition of a I, (N)-structure on a HBAV X/S. Namely, we shall
now understand such a structure to mean an embedding

i (NT1D /D H(1)>X
rather than an embedding
a: (O/NO)(1)—>X

as above. This change has little importance for what follows, in light of the
correspondence X—X ® D~ ! between HBAV’s provided with a I, (N) struc-
ture in the previous sense and those provided with a I, (N)-structure in the new
sense.

In order to define modular forms, we choose (and fix) an ideal ¢ of K, which
will serve as polarization module. We view ¢ as a signed @-module (2.25),
endowing it with its canonical positivity +_,.. This choice being made, modular
forms are functions of quadruples (X, A, , i), where:

X is a HBAV over a ring R,

A: P(X)—>c is a positive isomorphism,

o is a basis of the O ® R-module wy g, a priori a locally free © ® R-module
of rank 1.

i: N 'D YD !X is a I,,(N)-structure (over R).

Note that w amounts to an @-linear isomorphism
(5.1) Lie(X/R)——> D '®R.

For k a positive integer, we let M, (I,,(N), R) be the R-module of (Hilbert)
modular forms of weight k on I,,(N) over R, for the polarization module c.
Recall that an element of M,(I,,(N), R) is a function F defined on quadruples
(X, 4, w, i) over R-algebras R’ such that:

For (X, 2, w,i) over R’, the value F((X, 4, w,i)) is an element of R’ which
depends only on the R’-isomorphism class of (X, 4, w, i).

For (X, A, w, i) over R’ and ae(0 ® R)*, we have

F(X, A aw,i)=Na"* F(X, 4, w,i).

For (X, 4, w,i) over R’ and f: R"—=R" a homomorphism of R-algebras, we
have
F((X, 4, 0, i)g)=f(F(X, 4, o, 1))).

That is, the function F commutes with any extension of scalars R'—R".
An (unramified) cusp on I,,(N) over R is determined by the following data:
Two ideals a, bel, such that ab~!=c.

An O-linear isomorphism &: N~ 0/0 ——N~'a~!/a~1,
An 0 ® R-linear isomorphism

ji a '@ R—->0OQ®R.
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Roughly speaking, these three data give rise, respectively to:

A HBAYV analogue X , of the Tate curve [15].

A I, ,(N)-structure i on X .

A basis vector w=w(j) for Dx, o
all over a suitable power series ring. Further, X, ; is provided with a canonical
A. By evaluating a modular form FeM,(I,,(N), R) on the resulting quadruple,
we obtain a formal power series

F(a,b,6,))= )  c,q",

peab
u>0orpu=0

whose coefficients c,=c,(a, b, ¢, j) are elements of R. This is the g-expansion of F
at the cusp (determined by) a, b, ¢, j.

Now suppose that (a,b,¢,j) is a cusp, and suppose that « is an invertible
element of O ® R. Let « - j be the composite

J
a"}®R—=50®R—>0O®R,

with the latter map being “multiplication by o.” Then, since F is of weight k, we
have the formula

(5.2) F(a,b,¢e,0-j)=N a"*F(a,b,e,j).
(5.3) Example. If R is a Q-algebra, the equality
al®Q=0®Q

provides us with a canonical isomorphism j_,, beAtween a'®R and O®R.
Suppose, further, that we are given a finite idele « € K*. We may then take a=(a)
to be the ideal generated by a, b=ac™ !, and ¢ to be the isomorphism

-1

N-10/0~N-10/0—>N-'a"'/a~'~N-ta~ja~ '

We shall refer to the cusp (a, b, ¢, j,,) simply as the cusp determined by a.

Our irreducibility theorem (4.6) implies the following “g-expansion prin-
ciples” cf. [6, VII, §3], [28, §6]):

(54) Let (a, b, ¢ j) be a cusp on I,,(N) over R. Suppose that F(a, b, ¢, j)=0,
where FeM,(T',,(N), R). Then F =0.

(5.5) Further, let R, be a subring of R, and suppose that (a, b, ¢, j) is in fact a
cusp on I,,(N) over R, Suppose that the g-expansion coefficients c, of
F(a,b,¢,j)all lie in R,. Then F is an element of M, (I, ,(N), R,).

[In connection with the conclusion of (5.5), we remark that there is a natural
map M, (I,,(N), Ro) > M,(I,,(N), R) because every R-algebra R’ is in particular
an R, -algebra. The injectivity of this map may be deduced from (5.4).]
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Over the complex field C, we may express quadruples (X, 4, w, i) in terms of
lattices £ in the C-vector space K ®,C. (We tacitly suppose all such lattices to
be stable under 00.) Specifically, the data (X, 4, w, i) amount to the giving of:

A lattice < K®C. s

An (O-linear) isomorphism A: A¥ —5 D¢ 1
An (O-linear) embedding i: N~! D~ !/D N1 2/2.

We may view A as an (-linear alternating form A(x, y) on & x &, giving rise
by linearity to a K ® R-linear alternating form on K®C. For ae KQ C, we

have
)‘(a X, oty)=(oto?) : A(xa y)9

where & is the conjugate of « in K® C.
From this point of view, an element of M,(I',,(N), C) is simply a holomorphic
function F on the space of triples (&, 4, i) which satisfies:

(5.6) F%, (@) ‘A, ai)=N o *F(Z, 1, i)

for ae(K ® C)*. Given such a function, we may obtain the g-expansion of the
corresponding modular form at a cusp of the form (a,b,¢,j,,,) (cf. (5.3)) by
evaluating the function on a suitable triple (%, 4, i).

This triple is constructed as follows. First, we introduce the lattice &
=27ni(D 'a~! +b1), where 7 is a “variable” element of the “upper half plane”

H={re K®C|Im>0}.
Second, we define an alternating form A=2_,, by the formula
(@mi)(o+Br), Rri)(y+d1))—ad—By.
Finally, we let i be the embedding
N 1D YD ! =5 N 1a 1D a1 D !N ¥/2,

the first map being the isomorphism deduced from ¢ and the second being
induced by multiplication by 2xi.

If we evaluate an F as above on (%, 4, i), we obtain a holomorphic function
F(t) which is invariant under translations by elements of a~1b~!D~1. It may
consequently be expanded as a Fourier series

F(T) — Fa,b,c(t)= Z C” eZm’-tr(t'M)’

neab

the summation being restricted to those elements p of ab which are either 0 or
totally positive. (Here tr is the trace map K ® C—C.) Then the numbers c, are
precisely the coefficients c,(a, b, ¢, j,,) of the g-expansion of the modular form
determined by F, at the cusp (over C) determined by a, b, and &. It is usual to

make the formal substitution
qu =e2m’~tr(u~r) .
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this underscores the equality between the Fourier expansion of F(z) and the g-
expansion of the corresponding modular form.

We now wish to discuss “slashing” by matrices. Let us fix an integer k>0.
0
element of SL(2, K ® R). We define F|M to be the function on $ whose value at

T is B
kg (4T )
N (yt+9) F(vt+6 ,

Suppose that F is a complex-valued function on $, and that M = (: B) is an

as in §0.

In particular, this formula defines a right action of SL(2, K) on the space of
functions on §. Because of the strong approximation theorem for SL(2), we may
define F|M whenever F is invariant by a congruence subgroup of SL(2, K) and
MeSL(2, K) is a matrix with entries in the ring K of finite adeles of K.
(Explicitly, suppose that we have F|M =F for all M in a congruence subgroup I’
of SL(2, K). Let I’ be the closure of I' in SL(2, K). Given M eSL(2, K), we may
write M =M, M, with M, eI’ and M, eSL(2, K). We define F|M to be F|M,.)

As is well known, modular forms of weight k on I (N) over C correspond
to holomorphic functions of t which are invariant (under slashing) by suitable
subgroups of SL(2, K). To establish this correspondence, we fix ideals a and b of
K such that ab~!=¢, together with an isomorphism

e: N 10/0—>N-ta"'/a" 1

2
Each lattice ¥ < K ® C, equipped with a polarization A% —-D~1¢=1 and a
level-N structure
i: DN YD N '¥/¥

is isomorphic for some T $ to the lattice 2rwi(a~ 1D~ +b1), equipped with the
canonical polarization A, and the inclusion i=i(e) discussed above. Further-
more, two elements t and t° of § give isomorphic lattices precisely when we
ha ’
ve _at+p
T yt+d

’

for some (i ‘g) in SL(2, K) such that:

a,6€0, d=0=1modNO
yeNab®D, pea 'b~ 1D

We denote by I (N;a,b), or simply I, (N), the subgroup of SL(2, K) consisting
of matrices which satisfy these conditions. Then we have

(5.7) Proposition. If FeM,(I,,(N), C) is a modular form on I'yo(N) of weight k,
then the function F,  (t) on $ is invariant under slashing by the group I, (N).
Conversely, any holomorphic function on § which is invariant under I,(N) is of
the form F, , (1) for some F € M,(I,,(.v), C).
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Remark. A I, (N)-invariant function on § is holomorphic at infinity because of
our assumption K +Q.

We now wish to consider the various g-expansions of a form
FeM,(I,,(N), C) at the cusps defined by elements of K*, as in (5.3). For each
element x of K* (we have another use now for the letter ), the g-expansion of F
at the cusp determined by x is the formal power series corresponding to the
Fourier series F, , ,(7), where a,b, and ¢ are derived from x as in (5.3). We write
simply F,(7) for this function.

6 )

Proof. By (5.7), F,(7) is invariant under the group I (N; O, ¢~'). According to

(5.8) Proposition. For each x € K*, we have F,=F,

0 . .
the definition of Fll (g — 1), we may compute this function by slashing F, by

any matrix (ac g) €SL(2, K) subject to the conditions:
Y

aea, dea”l, BeD bl yeNDbD.
a=xmodNd, d=x"! modNa !

(Here we have put a=(x), b=c¢'a. Cf. [10, pp.234-235].)
We view the modular form F as a function of triples (%, 4, i). Since F has

weight k, we find for each 7€ $ that [F1 (Z f;)] (7) is the value of F on the

lattice

(5.9 2ri[ D yt+8)+c Har+B)],

with an appropriate polarization and level structure. The conditions satisfied by
a, B, y, and & insure that the lattice (5.9) is 27i(D~'a~! +b1) with the polariza-
tion 4, and the I (N)-structure i(¢), where ¢ is the isomorphism defined by x
as in (5.3). We omit details of this calculation.

The Modular Forms of §0

According to (5.7), the weight-k modular forms defined in the Introduction are
precisely the standard g-expansions F,(t) of forms FeM,(I,,(N), C), with the
polarization module ¢ chosen to be @. The “other” g-expansions of these forms
were defined by a formula which is now justified by (5.8). Therefore (0.1) is a
special case of the g-expansion principle (5.4), (5.5).

p-adic Modular Forms

Let p be a prime. A I, (N p™)-structure on a HBAV X is a compatible system of
I, ,(N p")-structures, for n20. Let R be a p-adic ring: R—=]im R/p"R. A p-adic
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Hilbert modular form on I,,(N) over R is a function F of triples (X, 4, i), where:
X is a HBAV over a p-adic R-algebra R/,
A: P(X)—>c~! is a positive isomorphism,
iis a I,(Np*)-structure on X.

It is required that F(X, A,i) depend only on the R’-isomorphism class of
(X, 4, i)/R’ and that F commute with extensions of scalars R"—R".

We let V(I,,(N), R) be the R-module of p-adic Hilbert modular forms over
R.

The key point concerning p-adic modular forms is that there is a canonical
way to associate a p-adic modular form to each (Hilbert) modular form, of any
weight, over R. We recall that whenever X/R has a I, (N p®)-structure i, we
may deduce from i an isomorphism of formal groups

P '®,G,——X
and hence an isomorphism of their Lie algebras
D !®R > Lie(X/R).

There is thus a canonically chosen basis w(i) of wy g.
The map on test objects

(X, A4, )—(X, 4, w(i), i)
induces a map
Mk([:)o(N)’ R) - V(I;a(N), R)

for each k. We denote this map by =,, or simply 7.

To make g-expansions for p-adic modular forms, let a and b be ideals of K
with ab~!=¢ and let é=(g,) be a compatible system of isomorphisms

€. p "N~ '0/0—>p"N-'a~l/a~1

These data provide us with a “Tate variety” X, , as before, together with a
I, ,(Np®)-structure on X, ,, which we denote by i(¢). Given a p-adic modular
form F, its g-expansion F(a,b,¢) is obtained by evaluating F on the triple
consisting of X, , the canonical isomorphism

i PX, ),

and the level structure i(e). (We refer to (a, b, €) as a “p-adic cusp.”)
It is easy to describe the differential w(i(e)) on X a5 in terms of an isomor-
phism
j=j): a '®@R—>0O®R.
Namely, the ¢, give isomorphisms
p~"0/0—>p~"a"t/a"!
for each n, and hence an isomorphism

0®Z,—a"'QL,.
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Tensoring with R gives an isomorphism
O®R—>a '®R,
which is just the inverse of the desired map j. This gives the compatibility:

(5.10) If FeM(I,,(N), R) is a modular form of weight k, and (a, b, ¢) is a p-

adic cusp, then )
(m F)(a, b, &)=F(a, b, &, j(¢)).

(5.11) Example. Let xe K*. A p-adic cusp (a, b, ¢) is defined by a as follows. We
take a=(x) and b=ac~?!, as in (5.3), and for each n=>0 we define ¢, to be the
composite » o~

p "N '0/0 25 N-'p~tala-'xp "N 'al/a!,

cf. (5.3). Let a, be the image of « in (K ® Q,)*. Multiplication by «, induces an
isomorphism

(5.12) '®Z,—0QZ,

Tensoring with R, we obtain an isomorphism between a~!®R and O®R,
which is just the map j(e) discussed above.

We now consider the situation where R is a flat Z,-module. We define
V(I,,(N), E), where E=R®Q,, to be the tensor product

V(I:JO(N)’ R) ®Zp Qp‘
Then for each k we have a map
M My (I,(N), E)=M(I;,(N), ) ® Q,— V(I,,(N), E),

obtained by tensoring the previous =, with Q,. Given data (a, b, ¢) as above, we
may define for each Fe V(I (N), E) its g-expansion F(a, b, ¢) at (a, b, €). Then we
have the following g-expansion principle.

(5.13) Let FeV(I,,(N), E), and let (a,b,¢) be a p-adic cusp. Then the g-
expansion F(a, b, ¢), a priori a power series with coefficients in E, in fact has
coefficients in R if and only if F is an element of V(I (N), R).

(5.14) Corollary. Suppose that FeV(I,,(N), E) has at one cusp (a,b,¢) a g-
expansion whose non-constant coefficients are all elements of R. Then the differ-
ence between the constant terms of the g-expansions of F at any two cusps is an
element of R.

Proof. Let te E be the constant term of F(a, b, ¢). We may view t as an element
of My(I,,(N), E) and hence in particular as an element of V(I (N), E). The g-
expansion of ¢ at each cusp is the constant power series ¢t. By the hypothesis on
F, and because of (5.13), F—t belongs to V(I,,(N), R). The g-expansion of this
form at each cusp has coefficients in R, and so in particular its constant term
belongs to R. This proves the required “integrality.”
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(5.15) Let FeM,(I,,(N), E), and for ae K*, let F, denote the g-expansion of F
at the cusp determined by a (5.3). Then the g-expansion of w, F at the p-adic cusp
determined by o (5.11) is given by

N a *F,,

where a,€ (K ®Q,)* is the component of o at p. To see this, we write the p-adic

g-expansion as
F(a, b, &, Jj),

where j is the isomorphism a~!' ® E—— ¢ ® E induced by multiplication by «,,,
viewed as a map a~'®Z,~> 0 ®Z,. (The ideals a and b, and the map &, are
defined in (5.11).) The g-expansion F, is

F(“? ba SO’jcan)s

where j,, is the isomorphism a !'@E—->0Q®E derived from the equality
a"'®Q=0Q®Q. We thus have j=a, j,,, so that desired formula follows from
(5.2). '

Now for each k=1, let F, be an element of M, (I,,(N), E). Assume that F, =0
for k sufficiently large. Then, by the above discussion, the p-adic modular form

w, F), has g-expansion
Y mFy S act,,
k

at the p-adic cusp determined by o. (Here we have written F_, for the g-
expansion (F,), of F, at the cusp determined by o.) By (5.13), we see that this
power series has coefficients in R for one « if and only if it has coefficients in R
for each a. Similarly, by (5.14), if the non-constant coefficients of one of these series
all lie in R, then the difference between the constant coefficients of any two of
these series lies in R.

We thus see, in particular, how (0.2) and (0.3) are special cases of (5.13) and
(5.14), respectively.

Variant: Forms on T, (f)

We suppose that f is a conductor, i.e., a non-zero integral ideal of K. A T, (f)-
structure on a HBAV X is an embedding

(' D7YDH)=X.

A modular form of weight k on I, (f) over R is a function of tuples (X, 4, w, i) as
before, with i now a I, (f)-structure on X over R. We denote the space of such
forms by M, (o0 (f), R).

Let N be a positive integer divisible by f. Then an element of M, (I,,(f), R) is
simply an element of M, (I,,(N), R) which enjoys the following extra invariance:
its value on a tuple (X, 4, w, i), where i is a I, (N)-structure on X, depends only
on X, A, w, and the composite

(D YD HD)(NID- YD) ()b X.
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In particular, a g-expansion F(a, b, ¢, j) is defined for each form F on I (f) and
each cusp (a,b,¢,j) on I, ,(N). When R is a Q-algebra, we may thus speak of the
g-expansion of F at the cusp determined by an ae K*.

We may similarly define p-adic modular forms on I, (f).

§ 6. Eisenstein Series

Let B be an ideal of K. In this § we shall construct Eisenstein series for the
Hilbert group, following Hecke and Siegel. The polarization module ¢ of § 5 will
be the ideal B 1.

For ¢ a Schwartz function on I, we define the modification of ¢ (with respect
to B) to be the unique Schwartz function & on I which is supported on I® and
whose value on an ideal = =B is given by &(zz ' - 0). Since this quantity depends
only on the strict ideal class of =, £ is defined mod{ for every conductor f=B.
For ceG, we define £, to be (§),, i.e., the twist by ¢ of the modification of &.

(6.1) Theorem. Let k=1 be an integer, and let ¢: - C be a function with parity
(= 1)* which is supported on A and defined modulo the conductor §. Then there
exists a modular form

Gk,aeMk(I;o(f)’ C)

whose g-expansion at the cusp determined by each a.e K* is given by the formulas

62) If k>1

N 2L =k e)+ Y () eluz™ )N (uz™ 1)) g )

u>0 zcBa2
If k=1
Na{27LO, e, +8)+ Y (Y eluzY)q").
u>»0 z<Ba2
Here:

a=(a) is the ideal of K “generated” by a,
c=(a-a~') is the element of G defined by «, cf. (2.23).

Proof. We will construct G, , as a function of (0-)lattices # in K® C. We are
required from this point of view to produce a complex number G, (&) each
time that we are given a lattice # together with the supplementary data of a ¢-
polarization and a I, (f) structure on . Given such data, we first ignore the
polarization completely (!). We then view the I (f) structure as the giving of an
overlattice £’ 2.% together with an isomorphism

PP ~D DL,
We consider the various @-submodules .# of &’ which are invertible, i.e., of

rank 1. Given an .#, we choose arbitrarily a positivity + for . (2.25). We will
then evaluate the Fourier transform Te of ¢ on an element of I which is defined
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mod D! in the sense of (3.9). This element is obtained as in (2.25) from the
triple consisting of .#, the positivity +, and the map given as the composite

ML L)L ~D YD 1K/DL,

We write Te(# — K/D~!) for the value of Te on this element.

We further associate a volume to (#, +). Namely, let a be an ideal which
defines the same strict ideal class as (.4, +). Choose a positive isomorphism
(a, +.an) X (A, +). This isomorphism induces an inclusion K=K ®C, and if
meK®C is the image of 1 €K, then .# =a-m. We define

vol(A, +)=Na- N/ meC,

the product of the norms of the ideal a and the number me K ® C. The volume
is well defined because replacing (.#, +)=~(a, +_,,) by another isomorphism
would only replace a by ay~! and m by ym, where y is totally positive, and in
particular of positive norm.

Similarly, if we modify + at one real place v, then vol (., +) is replaced by
its negative, so that vol (.#, +)* is multiplied by (— 1)*. However, because ¢ has
parity (—1)%, so that Te again has this parity, changing + at v multiplies
Te(#, +, #—K/D~') by this same factor. Hence the quotient

Te(M, +,0: M—-K/DY)
vol(, +)*

is independent of the choice of +, so that a quantity

Te(M, M—K/DY)
(vol A)

is well defined. We define the value of G, , on & to be [(— 1)*(k—1)!7"- S, where
S is the sum
Te(M, #-K/DY)
McP ‘(VOl ./”)k ’

computed in the sense of analytic continuation:

63 5= ¥ Te(M, M—-K/D™Y)
(6.3) = Z T OLAFIVOLAT 5o’
[The sum is absolutely convergent for k>2; the continuation is necessary only
for k=1, 2.]
To verify that this sum defines a modular form whose g-expansion is that

given in (6.2), we must compute the value of G, , at the cusp defined by B, a.
That is, we take

& =2ni(a"'D '+aB17)
#'=27i@@'f-' D' +aB7)
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together with the isomorphism
g:/g=a—l f—l D“/a“‘ D—l ~ f—l D—l/b—l

induced by multlphcatlon by a: a!{ 1D a1 D1 5f! ‘/S\f The map
' ->D~1i1/D~! is then just the composition of the three maps
division by 2#i and projection: &’ < 2ni(a~ ' ! D! +aB1)»a 'f 1D

multiplication: D~ !a "f—‘_» 1= ,

the canonical map: 'f‘/F -§- =1 p-T /ﬁ 5
Hence, for # %', Te(M, +, #M—F* D~1/D~) is the value of Te on the

element of I given by the triple
(M, +, M—~a" 1D SK).

The sum (6.3) may now be written

S=Qni)™ ¥ (Te)(M, +, MK —25K)

Mckrame  VOL(A, +)E[vol(A, +)I° |, o
(# invertible)

where the “pr” is simply projection .#—K onto the first factor. Indeed, let
M=K+aBt be an invertible @-module. If pr(.#) is the ideal d, then
(M, +, #—>K) is simply (- o) for a suitable choice of +. Since (d0-a)cIf'®7"
if and only if bacf~! D~', .# gives a non-zero contribution to the sum only
if it is contained in a~ ! {~! D! +aBr=2ni)"! £

Let n(2)=(Te)(z - @), b=Ba. Then we have

ok n(A, +, #—L>K)
S=@m)™ 2 T el T

calculated (if necessary) by analytic continuation.

Let #<K+b1, and suppose that « is an ideal isomorphic to .# as an
invertible @-module. Then # =« - (f+ A1) for some B, Ae K, and the pair (8, 1)
is well defined up to multiplication by a unit of K. Fix one choice (8, 1) and
endow .# with the positivity induced by +,,, on « via (B+A1): «—> .#. For
this positivity we have vol A =(A «)(A (B + A1), and the element of I given by
(A, #—>K) is («- ). Hence S may be written

Nk 1 { ﬂ“(ﬂ) n.(B) }
@ni) N ﬂeZ/U N B o*aé.-! JEK N (At+ P’

“

where the outer sum is over a set {«} of representations for the set of wide ideal
classes of K, and where #_(B)=n(«- f) as in § 3.
Thus S is naturally the sum of two terms, the first being

@ni)~* L(k, n)=(21i)~* L{k, (T&)( - ).
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Changing variables, we rewrite this as

@ni)* L(k, Te(c ™ @) A a* (c=a-a™")
=§;_a_k.ll%~L(l—k,T(T8(C_l$))) (by (3.13))
_ [%cai_jv_]‘ L —k, (T2&)(c 2)) (by the invariance (3.7))
=%‘%§'—_] Ll—kece.—1)  (by (3.5)
=% L~k ¢) (by the parity of ¢).

Since G, ,=(—1)*[(k—1)!]"- S, this first contribution to S gives precisely the
term 27" Na*L(1—k, &) in (6.2).

For the second term, we must find the value at s=0 of the series

¥ n.(B)
0% lcbu-1 fek N (Ar+pPFril
modU
(We write x**!s! for x*|x|*) As Katz has recently recalled [19], Hecke’s tech-
nique for treating such expressions is to apply the Poisson summation formula
to ) with Res>0, and then to show that one obtains the value of the resulting

B
double series by setting s=0 in each term.
More precisely, for Res> 0, our series may be written

R elnitr(ry)dt
Y Yam | T S0k
0+ Acbu-! yeK kor A (AT+1)
mod U
[The summation modulo U continues to be well defined, as one can verify
explicitly from the formula

(6.4) A.(y)=(sgn O n, ()

for all units { of K. (Here we write sgn { for the sign of A {.) The formula (6.4) is
an immediate consequence of the parity of ¢.]
We consider the term in the inner sum with y=0:

(65) D

01501 kar A AT+
mod U

By (6.4), we have #_(0)=0 if there is a unit { with (sgn {)*= — 1. We assume from
now on, therefore, that this is not the case.
In the integral, we write y for the totally positive number Imte(K ® R)*.
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: 1 r
Then the integral becomes AT -0 (8),
where
+ 00 dt
o (s)= j

O kit

We have, in fact |y|=.4"y because y is totally positive.) Then (6.5) may be re-
written

. 7.(0) sgn Ak
6.5 bis — s) - — .
(6209 T AN

By writing the sum in terms of partial zeta functions (for example), we see that it
represents a meromorphic function of s with a possible simple pole at s=2—k.
Thus if k> 2, (6.5) represents a function of s which is holomorphic at least in the
half-plane Re(s) > — 1. Further, its value at s=0 is then zero, because we easily
compute ¢,(0)=0.

Now Hecke [9, p.393] yields the expressions

()
®,(8)= 5 >

r (—2-+ 1) (s+2)

ver ()

—
i [=+1
: (2+ )
For k=2, we thus find again that (6.5) is holomorphic for Re(s)> —% and has
the value 0 at s=0. (Because r>1, ¢,(s)" has at least a double zero at s=2—k
=0.)
For k=1, the possible pole at s=1 of the series

()=

(6.6) sgn 4

O#*iebe—1! IA'IS
mod U
does not appear. Indeed, (6.6) is, up to the factor A (b«~')"%, the L-series
attached to an odd function on the group of strict ideal classes of K. Hence (6.5)
is again holomorphic for Re(s)> —1, and its value at s=0 is

. . sgn A

20—y Y B
acba-1 AP |s=0

2%0

mod U
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Thus the term we are considering becomes

_ A sgn A
6.7 -2)7'Y N a1 (0 —_— .
(6.7) (-2 ; « m()lg_‘”u“yho
mod U

For Ae K we have

Tn(A~'e1-0)=(sgnd) A «~11,(0).
Hence (6.7) may be rewritten as the L-value which is formally

(=2)7" Y. Tn(z~'-0).

z<b
Now n(x)=Te(z - «). Hence
Ty(z)=¢e(z-a~1)(—1) A a.
Thus (6.7) becomes

Ha2™ Y ezt 0)=Ha2" Y e(z"1-0).

z<b z<Ba

Since c=(a-a~!), this becomes

27" Ha Y e((cz)™t0)=2""AHaL(0,E).
z<B
If we now take into account the factor [(—1)(k—1)!]" in G, ,, we finally arrive
at the conclusion that the term we are calculating contributes to the g-
exapansion (6.2) a term
(12" 4 aL(0,¢)

when k=1. Under the assumption made above that all units of K have norm 1,
we can ignore the (— 1), and we obtain precisely the perturbing term in (6.2) for
k=1. If there is a unit of K with norm —1, then as we have already noted, (6.5)
vanishes. On the other hand, £=0 for odd ¢ if there is a unit of K of negative
norm. Hence the perturbing term of (6.4) vanishes as well.

We must finally consider the behavior for s—0 of the sum

6 elnitr(ly) dt
.8 7l —_—,
68) 0*,1;;,5-1\y§(.”“mx£,n N (ATt

As Katz explains, it suffices to continue each integral as a holomorphic function
of 5, set s=0, and evaluate the resulting double sum. Referring to Katz’s
calculation ([19], 3.2.32), we find that

iy
= [(k—- !

= 0 otherwise.

e2ni‘r(t7) d t

emweng; ] e~ 2MUOAY ok p1 =1 if 91 <0
K@ﬂﬂ(lt_*_t)k'f'lsl
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The inner sum of (6.8) may thus be written

ko
[((sz ll))!] ﬁZK &.(B) N BB~ g%,

BA>0

because on the substitution f— — f the functions £,(8) and 4" B* both take on
factors (—1)™. Thus (6.8) gives to S the contribution

1

6.9 PP — 7] N~ NN (Bee =1V~ gPA\.
©9) [(k_l)!]rg(o*n%g;_,ﬂ%{otm(ﬁ)(sgnﬁ) 1N (Be™) q)

We recognise the bracketed term as (T#n)(8«~!). Setting u=p1, we change the
order of summation in (6.9) and rewrite it as

1
T R L P G U

‘lio « A:‘g“_
1
~TT L, LI DA @

u>»0 zc<hb

We have (Tn)(z)=¢(z-a"') A a-(—1)y* Multiplying by the factor
(= 1y*[(k—1)!]" which appears in G, ., we have then

HNa) N e@tpa YN (@ wr gt

u>0 z<Ba
=AY Y e tpaa )N (@ wF g
u>0 z<=Ba2
= Hat Z( > Ec(x“u)/V(x"ﬂ)"“)q“-
u>0\zc=Ba2

The proof of (6.1) is complete.

§7. Theta Series

In this §, we study certain series of weight one, with the polarization module ¢ of
§5 taken to be the ring of integers of K.

Let u be a totally positive element of K, and let L=K(}) —u) be the
corresponding totally imaginary quadratic extension of K. Let

w: Go{+1}

be the character of G=Gal(K®*/K) corresponding to L/K. By composing w with
the “Artin” map j of (2.23) we obtain a character

R*>{+1},

again denoted by w.
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(7.1) Theorem. For suitable N =1, there exists a weight-one modular form F over
C onI,,(N) whose g-expansion at the cusp determined by each aeK* is the series

Naow(@) Y g,

x,y€a
where a=(q) is the ideal generated by o.

Remark. 1t is well known that the series Zq"2+“y2 is the standard g-expansion of
a weight-one modular form, cf. e.g. [7]. Our interest is in calculating the “other”
g-expansions of this form. We do this by analyzing the action (by “slashing”) of
SL(2, K) on this form, in terms of the Weil representation.

Proof of (7.1). Let ¢y: A—C* be the additive character of §3. We recall that the
choice of Y as an additive character on A, trivial of K, determines a certain
representation, the Weil representation, of SL(2,A) on the Schwartz space
F(L,) of the adelization L, =L ®gA of L. (See [14, 35, 41].) We denote this
representation by r. This representation is derived from local Weil repre-
sentations r, of the various groups SL(2,K,) on the corresponding Schwartz
spaces & (L,). This local representations may in turn be described by certain

1) and of matrices of the form

0
explicit formulas giving the actions of (_ 10

1 x\ (a O
(0 ) (o a-l) ot £33
For Me%(L,) one defines

OM)= Y M(x).

xeL

This function is left invariant under SL(2, K): for seSL(2, K) we have
O(r(s)M)=0(M).

For fixed M, the function s—@(r(s) M) is then a continuous function on
SL(2, A) which is invariant on the left by SL(2, K) [35, §2].

We shall make a particular choice for the infinite component of M (cf. [8,
2.35]). Let » denote the norm from L to K. Let L =L®qR. For xeL, set

M (x)=exp{—2ntrg gpm(»(x))}.

Then M is the product of functions M, on the completions L,=L®,R of L at
the infinite primes of K (we use v: KR to make the tensor product), each
given by the same formula

M (x)=e 2™,

If we view L, as the complex field C, the function M, is simply

_ 2
zse 2n|z| .

cosf —sinf . e
sinf  cos 9) eSL(2,R). If v is an infinite place of

K, we write p,(6) for p(f) if we think of SL(2,R) as SL(2, K,). One has the
formula

For feR, let p(0)=(
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(1.2) L(0,(0)-M,=e~"M,,
cf. [36, Lemma 1.2].
(7.3) On the other hand, let a, beR, b>0. The explicit formulas which define r,

show that 1/___
(g e )

is the function
X beZni((a+bi)n(x)).

For t in the upper half plane
H={rteK®C|Im1> 0},

b

d
Writing A" for the norm map K®C—-C, we let j(g, ) be the “factor of
automorphy”

and for g= (Z )eSL(Z,K@R), we write g-1 for the quotient g—g;ef).

N (ct+d).

One verifies easily the formula

for g, heSL(2, K ®R).

We now consider the finite part L, =L®gA, of L,, and its Schwartz space
& (L,). A “finite” Weil representation gives an action of SL(2,A[) on ¥ (L),
which we again denote r. The “multiplication” map

SLR2,A) x #(L)-S(L,),

is continuous, so that the stabilizer in SL(2,A,) of each ee (L) is open. For
eeS (L), we let M,=e® M, be the product of & with the function M, defined
above. Let

o, SL(2,A)-C
be the corresponding function s+— O (r(s)-M,) on SL(2, A).
For geSL(2, K®R), we write simply ¢,(g) for the value of ¢, on the image
1xg of g in SL2, A).
For each ¢, we define a function F, on § by the series

Y &(x) g,

xeL

(7.5) Proposition. We have F,(1)=¢,(g)j(g, i) for all geSL(2, K®R) such that
g-i=r.
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Proof. If g is an element such that g-i=r1, then any other element is obtained by
multiplying g on the right by rotations p,(#)eSL(2, K,)—SL(2, K®R). Since
j(p,(6),i)=¢®, we see by (7.2) and by (7.4) that the assertion is true for one g if
and only if it is true for each g. We write t=a+bi, with a, be K ®R. Since 1€,

b is totally positive. Thus b has a unique totally positive square root ]/B It is

Vb ayb!

clear that the matrix g= ( 0 1/5_1

however, the formula F(t)=¢,(g)j(g,i) is an immediate consequence of the
definition of ¢,(g) and (7.3).

) is such that g-i=r. For this choice of g

We now recall the “slashing” operator (with the weight k taken to be 1)
(FIh)(x)=F(h-1)j(h,7)~!, heSL(2, K®R).
(7.6) Proposition. For heSL(2, K ® R), we have

(EIM(@)=0.(hg)ig i)

for each g such that g-i=1.
Proof. This formula follows immediately from (7.4) and (7.5).

For AeSL(2,A), we let A, (resp. A,) denote the image of A in SL(2,A))
(resp. SL(2, K®R)). Regarding SL(2,A;) and SL(2,K®R) as subgroups of
SL(2,A), we have A=A4, A,

(7.7) Theorem. For all AeSL(2, K), we have
F|A =Fr(,4,)-1-c-

Proof. Let 1€$, and choose geSL(2, K ® R) so that g-i=1. Since | represents the
action of a matrix in SL(2, K®R), it is (F|A4,)(r) which we must compute. By
(7.6), this number is

0.(4,8)ig =047 )i )

with the equality resulting from the left-invariance of ¢, under SL(2, K). Since
geSL(2,K®R), A, and g commute in SL(2,A). Commuting the two, and
recalling the definition of ¢,, we find that

(ps(Af_l g)= (P.-(Af—n).z(g).

The asserted equality now follows from (7.5).

Since the stabilizer of ¢ in SL(2,A ) is open, (7.7) implies that F, is invariant
under some congruence subgroup of SL(2, 0). Hence, by strong approximation,
F| A may be defined for all AeSL(2, A ). By continuity, we see that the definition
thus obtained is the obvious one: for all AeSL(2,A ), we have

(1.8) ElA=F s,

We now make a specific choice of &. Let R< L be tAhe lgttice O+ Ou, and let ¢
be the characteristic function of the subset R®,2=0+0u of L s Then

F;= Z qxz+uy2'

x,yed
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To show that the holomorphic function F =F, is (the g-expansion of) a modular
form of weight 1 on I,,(N) over C, we must show that F is invariant under the

b
d) with a, del + N O, be D!, ce ND. Any such matrix is

1 : . . e
the product of a transvection (0 )lc) (xeD~') and a matrix which satisfies

. a
group of matrices (c

beND~! in addition to the other requirements. Since F is clearly invariant
under the transvections, it is enough to show that F is invariant under

o-{ )

What is required, for (7.1), is merely that F be invariant under I'(N) for some N.
But this is simply a restatement of the fact that F, is invariant under some
congruence subgroup of SL(2, 0), which we have already established.

To conclude the proof of (7.1), we note by (5.8) that the g-expansion of F at

. 0

the cusp corresponding to o is F| A, where A= (g a“) eSL(2, Aj). By (7.8), we
may rewrite this F, ,-:,. Now 4 ~1 is such that r(4 ') is given by a particularly
simple formula [35, (2.1)]. We find that r(4) e is the function on L,

a,del +N(0,beND“‘,ceND}.

-1

x— o)~ ol ~e(e " x).

Now w(x) '=w(®), and |«|| '=4a. Finally, e(a~'x) is the characteristic
function of &+ducL,. Hence

_ x2+uy?
F;.(a“x)— Z q >

x,y€a

and
FlA=o@AN a ) ¢~ 7,

X,y€a

as desired.

§8. Congruences for L-values

For &: I-C a Schwartz function, we have defined L(s, ¢) as the sum

Y (@) a~s

aelp

in §3. By writing L(s,¢) in terms of partial zeta functions, we see that Siegel’s
rationality theorem [37, 38] is equivalent to:

(8.1) Theorem. If ¢ takes values in Q, then for each integer k=1 we have
L(1—k,e)eQ.

In the following discussion, we will admit (8.1) as known. The reader will
observe that it is in fact a consequence of (0.1), in view of the calculations with
Eisenstein series below.
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As in §0, Theorem (8.1) allows us to define, by linearity, values
L(1 -k, ¢e)eV
for each ¢ with values in a Q-vector space V. We may view each association
e—L(1—k¢e) (k=1)

as a Q-valued distribution T, on I. Each T, has an obvious homogeneity
property with respect to substitutions

e(z)—el(az)

with a an ideal of K. In particular, T, is invariant under such substitutions.
If V is now a Q-module and ceG, we define

4,(1—k,e)=L(1—k,e)— A c*L(1—k, ¢,),
where ¢, is the function z+—¢(cz), cf. §0. For each ¢ and k, the map
Pei: e A (1—k,¢)

is a distribution on I with values in Q. Let us denote U, simply by pu..

(8.2) Main Theorem. For each c€G, p_ is a measure on I with values in Z. If ¢ is
a Schwartz function on I and k a positive integer, we have

fe-A*Tdu=A4,1—k,e).
[Note that in the above equation, 4" is the norm function I »Q.]

The principal purpose of this § is to derive (8.2). Along the way, we will
prove certain further assertions concerning the integrals against u. of odd
functions. These are summarized in (8.11), (8.12). Also, we wish to point out how
(0.4) is a consequence of (8.2).

(8.3) Proposition. Let ¢ be a Schwartz- function on I with values in a Q-vector
space V. Suppose that k=1 and that c is an element of the subgroup X* of G, cf.
(2.24). Then we have

L(1—k,e)=Hc*L(1—k,e).

Proof. We easily reduce to the case where ¢ is a complex-valued function which
has parity (a,) for some set of integers a,=0,1. For such ¢, the proposition
amounts to the vanishing of L(1 —k,&) whenever we have (—1)#(—1)* for
some v. This is the vanishing given by (3.24).

(8.4) Theorem (The “Eisenstein congruences™). Let ¢, ..., &, ... be Schwartz
functions on I with values in Q. Let B be an ideal of K. Suppose that only finitely
many of the ¢, are non-zero and that ¢, has parity (— 1)* for each k. Set

o= Y gN* 1 I-Q.
k21



Values of Abelian L-functions 279

Suppose for each totally positive element u of K that the finite sum

Y oua™h)
acB
aelg

lies in Z. Then for each ceG, we have

(8.5) 4,0,8)+ Y A.(1-ke) e 2" 2,

k21
where £, is the modification of ¢, with respect to B (§6).

Proof. For a given collection of functions (¢,), the hypothesis and the conclusion
of the theorem depend only on the strict ideal class of B. Also, if D is an ideal of
K, the theorem for (g,) and for B is equivalent to the theorem for the ideal Bbd
and the collection of functions

z g (2 D) N DF L

It thus suffices to treat the case where the ¢, are supported on A. At the same
time, we may as well assume that the ideal B is equal to the ideal @. (This latter
assumption will prove to be convenient because the modular forms in §0 were
made with polarization module ¢ implicitly taken to be ¢.) Furthermore, we
observe that it suffices to treat the case where the ¢, are Q-valued. Indeed, it is
clear that the hypothesis to (8.4) does not change if we replace the ¢, by
functions which are congruent to them modulo 2. As for the conclusion of (8.4),
we may specify in advance a positive integer D such that the conclusion is
unchanged if we replace the ¢, by functions congruent to them mod DZ. (The
point is that the L-values in question are a priori given as linear combinations of
certain rational numbers - values of partial zeta functions - which may be
specified as soon as one knows a common modulus of definition for the &,.)

So let functions ¢, be given as in (8.4), under the further assumption that they
are Q-valued and supported on A. Assume that the ideal ‘B is equal to @. For
each k=1, let F, be the Eisenstein series G, , of (6.1). From (8.1) and equation
(6.2), we see that the F, each satisfy the rationality condition of (0.1). For each
acK*, let

S@= Y N F,;
k=1
this is a priori a formal series with coefficients in Q.

Now the non-constant coefficients of S(1) are rational integers and thus in
particular are in Z. Hence, by (0.3), applied for each prime p, the difference
between the constant coefficients of S(1) and S(o) lies again in 2, for aeK*.
Given o, set c=j(a)=(x)-a~*. Looking at (6.2), and using the equation

Ne=HN (N oL,

we see that the conclusion of (8.4) holds for ¢. But j is surjective; hence the
conclusion holds for each ceG.
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[In fact, it is clear that the conclusion of (8.4) depends a priori only on the
image of ¢ in Gy, where f is a suitable conductor. Hence all that is needed is that
Gy is a quotient of K*.]

Although (8.4) and (8.2) are quite similar, there are two obstacles which prevent us from
deducing (8.2) as an immediate consequence of (8.4). First of all, there is a parity assumption on the
g in (8.4). Secondly, (8.4) contains a perturbing term, involving the modification of ¢,. These
difficulties may account for the complexity of the calculations that follow.

We shall suppose below without comment that ¢ is a Schwartz function on I
with values in Z.

(8.6) Proposition. If K has some unit of norm —1 (e.g., if r is odd), and if ¢ is an
odd function, then A,(0,¢)e2" Z.

Proof. By (8.4), it suffices to show that £=0. However, the unit hypothesis shows
that there is an element o of £*, not in X, whose image in G, is trivial. It follows
that the restriction to the set of elements of I of the form («-0) of any odd
function on I is identically zero. Hence, by definition, £=0 in this case.

We now consider the case where no unit of K has norm —1. In G,, the
Frobenius group i contains as a subgroup of index 2 the group X, generated
by products of pairs of Frobenius elements. We let X=G,/Z, and let o be the
real Frobenius element of X. The order of ¢ is 2. (We may view X as the Galois
group over K of the largest abelian extension of K which is unramified at the
finite places and either totally real or else a “CM field.” The fact that K has no
unit of norm —1 means that this extension is in fact a CM field. In this optic, o
is the canonical “complex conjugation” of the field.)

(8.7) Lemma. Let ¢ be a function X—Z which is odd [¢(o x)= —&(x)] and which
satisfies
Y &(x)=0(mod2).

xmod
{1,0}

Then ¢ is the sum of functions of the form h(x)—h(ax), where h: X—~2 is odd and
where aeX.

Proof. For each aeX, define an odd function h,: -2 by:

1 if x=a
h,(x)={—1 if x=0a
0 otherwise.
By subtracting from ¢ multiples of the functions h,(x)—h,(ax), we may assume

that ¢ is supported on {1,s}. The hypothesis on ¢ then means that ¢ takes even
values. The equation

e(x)=¢(x)/2—¢e(0 x)/2
exhibits ¢ as a function of the form h(x)—h(ax).

.Suppose now that ¢: I-2 is a function which is odd (or, more generally,
which has parity (a,) for some collection of integers a,=0 or 1). We will define
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an invariant 6(¢) in Z/2Z. The restriction of ¢ to the set of elements of the form
(z-0) in I may be viewed as a function

. G,~2.

Composing t with the natural map Z—Z/2Z, we obtain a function 7 on G,
which is even, ie., Z{-invariant. We set

5(@)=).7(g),
the summation running over elements g of G,, taken modulo Z§.

(8.8) Proposition. Suppose that ¢ is an odd function and that 6(e)=0. Then
4,0,e)e2’Z.

Proof. Because of (8.6), we may assume that no unit of K has norm —1. The
function t: G, —Z constructed as above for ¢ is Z,-invariant and consequently
may be viewed as a function on X. By (8.7), we may find odd locally constant
functions H: A—Z and ideals a of K such that the difference & between & and
the sum of the functions

H(z)—H(az)
vanishes on X. By (8.4), we get then
4,(0,8)e2'Z.
On the other hand, we have 4,(0, H(z))=A4.(0, H(az)) for each H, so that
4.00,6)=4,0,¢).
This proves what is wanted.

(8.9) Corollary. For each odd ¢, we have A4,(0,¢)€2"~*Z.

We now introduce the notion of an exceptional field. We say that K is
exceptional if the following two conditions are satisfied:

i) All units of K have norm +1,

ii) There are units of K of all signatures compatible with (i).

When K is exceptional, we have Z, ={1}, and X consists of two elements.
A field is exceptional if its strict Hilbert class field is a CM field.

(8.10) Proposition. Suppose that K is not exceptional. Then for each odd ¢ we

have
4,0,e)e2"Z.

Proof. In view of (8.6), we may again suppose that K satisfies (i). The hypothesis
that K is not exceptional then means that there is a principal ideal («) generated
by an integer o of positive norm, whose strict ideal class is non-trivial. Let  be
the locally constant compactly supported function on I whose value on an ideal

a is given by
_ 0 if ad(x)
n(a)_{%sgna if ac(a).
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Here
0 if a is non-principal
sgna=4{+1 if a=(f) with &/ >0
-1 if a=(p) with # <0.

Note that sgn is well defined precisely because there is no unit of negative norm
in K.
Let us check that # satisfies the hypothesis to (8.4) with B=0, i.e.,

Y aa~h= Y nla)eZ,

acO (wcac(w

for all u>0. We observe that a—aa~!u gives an involution on the set of a in
the second sum, and that n(a)=n(xa~'y). Hence n does indeed satisfiy the
hypothesis if there are no fixed points of the involution on which 7 takes non-
zero values. But if a=aa~!yu and if a is principal, then (xp) is the square of a
principal ideal and hence in the trivial strict ideal class of K. This is contrary to
the choice of a and the fact that u>0. Hence 4,(0, )+ 4,(0, f) €2 Z, by (8.4).

However # is obviously the “same” function as #, except that its support is 0
rather than (x). More precisely, we have 5(z)=7((«) z). It follows that 4,0, n)
= 4,0, 7). Thus

4,00,2ie2" 2.

The function =24 is odd and Z-valued (it is just the function sgn with support
on A). It satisfies d(¢)=1 because, on the (= - 0), ¢ vanishes on all elements except
those with wide class 1; in the sum defining é(¢) there is only one term. This
gives (8.10).

Proof of (8.2). For ceG, we must first show that u, is a measure. This means
showing that 4,(0, &)e Z for all ¢. Given ¢, we may define an odd function ¢~ by
the formula

e (@)=2"") No-e(oz) e 2-'2,

in which the summation runs over the group X* (whose cardinality is 2"). It is
apparent from (8.3) that 4,(0,e)=4,(0, ™). By (8.8) and (8.10), it suffices to show
that 6(2"¢~)=0 whenever K is exceptional.

Under this hypothesis on K, the restriction of ¢ to the (z-0) is already
invariant under Z, since the image of this group in G, is trivial. Hence the
restriction of ¢~ to the (z - 0) takes values in 2! Z. Since r > 1, the restriction of
2"¢” to the (= - 0) thus takes even values. In particular, §(2"¢~)=0, as required.
Thus u, is indeed a measure with values in 2.

It remains now to show that

fe-N*Ydu=4,(1—k,¢)

for k> 1, and all Schwartz functions ¢. We define ¢~ as above, and we similarly
define ¢* by omitting the factor 4o in the sum defining ¢~. Let &' be either ¢~
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or ¢* according as k is odd or even, so that ¢! has the same parity as k. By (8.3),
we have

Ac(l —ka 8)=Ac(1 _k, gf)a
and
eN* Ly =t Ay

Hence there is no loss of generality in supposing that ¢ has parity (—1)%, which
we now do. Making a change of variables, we shall suppose also that ¢ is
supported on A.

Let m be a positive integer. Choose a locally constant function

n: A-2Z
which is odd and congruent modulo m to the norm function 4" on A. By (8.4),
we obtain from
eN* " 1=gn*~1 (modmZ)

the congruence
N

A,(1—k, &)=4,0,en*~*)+4,0,en*~!) modm2.

Now A" vanishes on the (« - 0), so that n takes values on these elements which

S~
are divisible by m. Hence en*~! =0 mod m, so that its integral against y,_ is again
divisible by m. Thus we have simply

4.(1—=k,&)=4,0, en* ') mod m.

On the other hand, because y, is a measure, the right hand member of this
congruence is congruent modm to the integral against u, of e#*~L Hence the
two numbers we wish to prove equal are congruent modm. But m was an
arbitrary positive integer, so that the proof of (8.2) is complete.

We now summarize what we can say about the integral of an odd function.
Let ¢: I-Z be odd, continuous, and compactly supported.

(8.11) Theorem. We have [@du €2 ~'2. Moreover, this integral lies in 2'2
unless K is exceptional and é(p)=1.

Proof. Choose an odd Schwartz function ¢: I-2Z which is congruent to
¢ mod 2". Then 3(p)=45(¢e) and the integrals against p_ of ¢ and ¢ are congruent
mod 2". Hence our assertions follow from (8.8), (8.9), and (8.10).

Suppose now that K is exceptional. For ceG and ¢ with 6(p)=1, the
quantity
2= [pdp, (mod2)

is an element &(c) of Z/2Z which, by (8.11), is independent of ¢. To compute it,
we can take ¢ to be locally constant. The equation

Acc'(o’ (P) = Ac(oﬁ ¢)+ Ac’(0$ ‘A/‘C(pc)
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then shows that & is a homomorphism G—Z/2Z. Its kernel corresponds, then, to
some extension of K of degree 1 or 2 which, by (8.3) is easily seen to be totally
real. After looking at a small number of numerical examples, Lenstra predicted
that this extension would prove to be the field M obtained by adjoining to K the
square roots of all positive units. (That this field is a quadratic extension follows
from the fact that K is exceptional.)

His prediction was correct.

(8.12) Theorem. If K is exceptional and 6(p)=1, then we have
fodue2Z
if and only if the image of c in Gal(M/K) is trivial.

Proof. Let ¢ be the “sign” function with support on A, as in the proof of (8.10).
We have already noted in that proof that ¢ is an odd function with d(¢)=1. Also,
with B =0, we have ¢=¢.

Let E be the Eisenstein series G, ,, made with B =(. Next, choose u to be a
totally positive unit which is not a square in K, so that

M=K(/u).

Let F be the theta series of (7.1), made with this choice of u. The two forms F
and E satisfy the rationality property of (0.1), as we see by looking at the g-
expansions of F and E at the standard cusp. (For the constant term of F, we
need also (8.1).) An elementary argument shows that the non-constant terms of
the standard g-expansions of E and 1 F are congruent modulo 2. In other words,
the form E/2-F/4 has a standard g-expansion whose non-constant terms all lie
in Z. Arguing now as in the proof of (8.4), we find for all ce G a congruence

277 4,(0,6)+2774,0,8) _1—AHcw(o)

5 7] mod Z,

with w as in (7.1). On the other hand, we have already remarked that ¢ and & are
equal. Hence the integral in (8.12) lies in 2" Z if and only if

New(c)=1 (mod 4).
Now, mod4, A" is the quadratic character of G corresponding to the extension

K@/ -1)K,

whereas w corresponds to the quadratic extension

K@/ -u/K.

Hence the product of these two quadratic characters corresponds to the exten-
sion M/K, as desired.
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Proof of (0.4). Let (g;,) be a sequence of functions as in (0.4). We may view these
as functions on I, defined mod f and supported on A. From this point of view,
the ¢, furthermore vanish on integral ideals which are not prime to f. Hence if
we form the sum ) g .4*~! as a function I-Q,, the hypothesis to (0.4) implies
that this function is in fact Z -valued. (Note that A" is a priori Z-valued, while ¢,
is Q,-valued, so we may consider the product & .4™~' as a number in Q,.) For
each ceG, the integral against u, of this sum is again an element of Z,. Using
the second part of (8.2), we get then

Y 41—k e)eZ,,

kz1

as needed for (0.4).

We must observe that the group called G in §0 is not the full group
Gal (K®®/K) as in the succeeding §s, but rather a quotient of it. The explanation
is that for ¢ a function modf with values in Q,, the quantities 4.(1—k, )€ Q,
depend only on the image of ¢ in the quotient group used in §0.
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