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P-ADIC INTERPCLATIOCN V.'A HIL3ERT MCDULAR FORMS
Kenneth 4. Ribet

Katz's article [3] was primarily concerned with the question of con~
structing p-alic measures p,(e) on Z’g vwhose moments are the values at
negative integers of the Riemann zeta function. Here we shall try to general
ize one of ths approaches discussed »y Ketz, the technigue involving modular

' forms, to stuly instead the values al negative integers of the zeta function

attached to any number field.

I. Deligne's Integrality Theorem

f

To begin. let K be a number f1:.d4 and let CK(S) be i‘cﬁs Dedekind zeta
function. Since the valugs CK at negative integers are all zero if K is
not totally real, we shall assume that K 1is a totally real field. The values
of L at negstive even integers ave in any cas: rire, and CK(O) =0 except
when K = Q‘(’:&fo) = -1/2). Moreover, according t- a result of Siegel ([6],

D- 136), the nmbers :
CK(l-k), k>1

are rational. -

D

It is therefore natural to ask whether c» rot the functi

k — E_K(I=.—~}:)

has p-adic properties analogous to tiose of the Riemann zeta function. Given
(a)

the situation for £ , ia fact, we miz:t try to eonstruct p-adic measures

on %p whose moments satisfly

ka—l du(a) - f(k)“(a)\,CK(l_k),
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where f(kqu(a)) is a simple "fudge factor" analogous to the factor l-ak
that comes up when K = §. Again (to continue the analogy) we might look for

Eisenstein series gk which have g-expansions

2wy d [

~ A
n - o

nk Ok
These are provided by the following result. ' . S

such thet a, € % for n>1 and such that a is»es‘sentizs_.llj CK(l-rK‘);:I R

Theorem (3iegel, Serre [5]). For each k > 1, there exists a modular form

& of weight kr = k-[K:Q)] whose g-expansion has constant term

-r o
= . 1-k
a'Ok 2 CK( ) A

and higher terms

0 if k 1s odd

s
t
’

&k~ < Z (le’),)k'l if k is even.
} ’ K .
\

(In the douple sum we sum first over a Tinite set of elements x : of the in-

-

verse different &~ of K, and for each 'x we then sum over the (finite) : 5 ‘

set of imtcgral ideals 4f), which divide the ideal (x)$.)

Now let p be a prime. By combining the above theorem with the technique
Y . . ! .
of ({3],8Xi1I) we get measures u(a; with the desired property: -

(2);

on 7,

Theorem 1. For each a ¢ Zp there exists a Y-valued meastre

i

whose moments are given by the formula ST T

.

f}__k-l au® - (l_akr)gk_

Z - ) B H
P ‘ g
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*
Corollary. For each a € Z% there exists a Zb—valued neasure u( on

%p such that

/"xk—l du(a) _ (1_akr) 5T CK(l"k)

for k > 1. Consequently, the number 2—r§K(l-k) is p-integral if

kr # 0 (mod p-1).

As Serre pointed out in his Antwerp lectures, this corollary does not
give the "best" integrality statement for values of CK at negative integers
(cf. [4], p. 164). TIndeed, we have the following result of Deligne.

Theorem 2([2]). The quantity Z—TCK(l—k) is p-integral whenever kd # 0

(mod p-1), where 4 is the degree over @® of the intersection of K with

the field @(u _) of p-power roots of unity.
P

The idea behind this theorem is Serre's suggestion that 8y be viewed

not merely as a function on the }{trlv of {3] but instead as the restriction
/(triv

to of a function Gk defined on a larger moduli scheme, the Hilbert-

Blumenthal scheme ‘Htrlv discussed below. This is possible since functions

Atri%-

on K

are p-adic Hilbert modular functions (just as functions on Katz's

j(triv are generalized one-variable p-adic modular functions), whereas &
by i@s very construction over & is the restriction to the usual upper half
plane of a Hilbert modular form Gk whose (generalized) q-expansion is
rational [7]. The point, in other words, is to maké algebraic sense out of

Siegel's G

K Doing this allows us to construct a new family of measures L

on Zb so that for each k satisfying kd i 0 (mod p-1) there is a measure

L for which the fudge factor f£(k,y) is a unit.

II. Tﬁe Hilbert-Blumenthal Scheme }(Erlv

We first need a notion replacing that of an eiliptic curve /R. Let O
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be the integer ring of K. A Hilbert-Blumenthal structure over a ring R is.

an abelian scheme X/R together with an inclusion

m:0 ¢ End, X o
which makes Lie (X), the tangent space to X at the origin, free of rank 1 i o

over O ® R. A trivializabion of such a structure over a p-adically complete'

and separated R is an isomorphism of formal groups

A NA
cp:0®%05m—>X.

If X admits such a trivialization, then X is (fibre-~by-fibre) ordinary.

Given an ordinary Hilbert-Blumenthal structure over R (i.e., a structure
*

with X ordinary) there will in general be no trivialization over R. How-

ever, if is one trivialization, then we can get other trivializations &
s O] H g .

by "twisting" ¢ by elements a of

~ * N .‘
Aut(o@cgm) = (0® %p) -

g

Now we define two stacks on the category of p-adically com'ple‘i:e and

separated rings:

f‘(;r W (R) =  the trivialized Hilbert-Blumenthal
structures /R ‘
ord . . :
f‘(K (R) = the ordinary Hilbert-Blumenthal
structures /R.
These are direct generalizations of the stacks /_(trlv and )tord of

1

elliptic curves associated to the "one-variable case," and they are connected

by a "Galois" covering

friv
A K

L

ord L
Ay | :
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- * triv .
with structural group (0 ® Zp) . As before, the stack /{K is™ the

formal affine scheme over %p which represents the funétor

isomorphism classes of trivialized

Ré&
Hilbert-Blumenthal structures /R .

In analogy with the elliptic curve case, we call elements of the coordinate

ring VK of }(Erlv p-adic Hilbert modular functions (over %p). Given any

trivialized structure (X,m,q)) over a p-adically complete and separated R, we
can evaluate any f € Vg at (X,m,p) to get a number f(%,m,p) in R.
* * ¥*
Now let N: (0 ®ZD) - %p be the norm. Also, given a ¢ (0 ® Zp)
and f ¢ VK’ let [a]f be the function satisfying for each (X,m,qp):
- -1
([all)(xzm’q)) = f(X,m,a q))
This rule defines an operation [a] on V‘{’ which we extend by linearity to
1
7 —
nK[p] :
Definition. A function f € VK[%J has weight k if
N4
[2] £ = (Na)'f.

Cx
for every ae (0® %U) .

-

Theoren (Sjegel). For each k >1 there exists a function C-k € WK[%] which
has weight k and a (generalized) g-expansion whose constant term is
Q_r";x(l—k) and whose higher coefficients are all integers.

As mentioned earlier, this is the "key point." To prove this result, one
constructs G, as a classical Hilbert modular form [7] and observes that the
"g-expansion” of G, is rational. By the analogue of the g-expansion prin-

ciple, G, is a Hilbert modular form which is "defined over @." Thus it is

k
a (negative) power of p times a Hilbert modular form over Zp- But on the
other hand, we can view a true modular form as a p-adic modular function just

as in the one-variable case; this gives exactly what is desired.

The legitimacy of this chain of reasoning rests on our knowing what the
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'
g-expansion of a Hilbert modular form actually is and our knowing that a - .
frnction is determined by its g-expansion (at least in characteristic O)
We will return soon to the latter point, although we will ignore the formei
point from now on. Incidentally, the theory of g-expansions for Hilbert
modular forms is contained in the (unpublished) work of M. Rapoport on thé.
Hilbert modular scheme.

Assuming a satisfactory theory of g-expansions we will prove for VK a

Key Lemma. Let h e VK[_%] be a function whose g-expansion is p-integral ex-
cept perhaps for its constant term. Then for each a ¢ (0® Kp)* the’v
difference

B - [a]p

belongs to VK.

Proof. Tet ¢ be the constant term of the g-expansion of h. Then_ h-c¢c
belongs to WK because it is an element of VKE-] with integrallq—expa.nsion.

a

Since [ale = e, we have

h - [alp = (h-c) - [al(B-c) eVK.

* .
Theorem 3. For each a ¢ (0® %’,p) , the number

{1 - (ma)¥} 277 (1K)

is p-integral.

Proof. Since GK has weight Kk,

G, - [a.](v‘rk = {1- (Na)k}Gk.

The former is an element of VK by the Key Lemma, so in particular it has an
integral g-expansion. Therefore the constant temm of {1 - (Na)k}Gk is in~

tegral; this is exactly what we want.

* .
Now if a is in Zp, then Na = a’. Hence Theorem 3 tells us in
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particular that
(1-a75)27Tr (1-k) ,’

*
is p-integral whenever a € %p; this is Theorem 1 {or more precisely its
corollary). On the other hand, Theorem 3 is a consequence of Theorem 2. In- &
deed, let Kp be the largest abelian extension of K which is unramified

away from p, and let G = Gal(Kp/K). Iet p _ be the group of p-power roots
p

of unity in X. Then we have a diagram

N

—"Td?“'-‘?ﬂ

+

A(TA
D

.

alu )
\ D
r/d H
*
KN o ) Zy
P

. a
Q.

¥
Restriction provides a norm map N:G =~ %p whose image H is

- -

Gal(a(un ):k M afu )
P 0

Thus the image of G in Z.: has index d = [KN @{u 00)‘:Q]. If j 1is the
compositioh of the natural inclusion i

(c® ZD)*‘——* (1ddles of K)
with the Artin map V

(Td%les of K) —»Gal(Kp/K),
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then § is amap (O® %p) —+ G, and the diagram

(o@z)——-———;(}

\/

is (anti-) commutative. Tt follows that ' ' (I
*.d *
(z) = H D N[(0® Z)]
D = P
and this shows that Theorem 2 implies Theorem 3. In other words, we have ob-
tained a result intermediate between the one-variable theorem (Theorem 1) ard

the "good" theorem (Theorem 2) essentially by shifting our perspective and

instead of }{trlv = I(;‘rlv.

working with /‘{trlv

III. TIrreducibility of the Covering /{trlv - )(;rd.

In the case of modular functions of one variable, Katz ob‘balned the maln

facts concerning g-expansions as a corollary of the 1rreduc1b1]_1ty of /(trlv
([3], § XI). Here we will discuss the question of irreducibility for /{;rlv.

The first difficulty is that in general the base f{;rd is ‘not connected.
Indeed, if X/k 1is a Hilbert-Blumenthal structure over an algebraically closed

field, we define its polarization module #= £(X), a certain invertible

i

O-module "with positivity," as follows: { is the set of O-homomorphisms

~ . ~ o~
fe Homk(X,X) which are symmetric in the sense that £ = £ (note that £ is

AR A

amep X =X-X just as f is); £ € is positive if f is a polarization
~ - .

of X, i.e., an isogeny X —X assoclated to some ample line bundle on X.

Now just as the isomorphism classes of invertible O-modules are the ideal

classes of X, so the isomorphism classes of invertible O-modules with

positivity are the strict ideal classes of K. Thus, taking P(X) to its

ror gt

nip -
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isomorphism class enables us to associate to the Hilbert-Blumenthal structure

X a strict ideal class of XK. It turns out that this association decomposes

ord

HK into components }‘(;r% parameterized by the strict ideal classes of K
=3

and that each component /(;I% is geometrically irreducible.
2
For each &, let }(triv be the fibre of }l‘briv over A ord
? K,& K K, &
We still have for each & a covering

triv
AK, 6

ord
K, &

*
with structural group (0 ® %D)

triv

Thecrem. The scheme /A
=fcoren K, 6

is geometrically irreducible.

A5 explained by Katz, the covering gives rise to a character

ord *
.‘x.vrl( Hx,s )=+ (0® %p)

and (given the irreducibility of the base) the theorem is equivalent to the

-

surjectivity of

ord =
x | m( Ay g® F)

For simplicity, we will prove this only when & is the class of the inverse
-1
different §  of K.
For convenience, let us adopt the following notation:

ﬂ’criv

triv
n K, &

]

?
e

ord
f(. le, g ® Fp’

0 0® Z_.
D p

il

Also, let X now be the character
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*
m(A) o,
arising from the covering
Atriv - A.
What we want to prove is the surjectivity of »

x | m(A4 ® ﬁp)-

Since 7rl

—_ *
positive integer k +that the image G of Trl( M @ Fp) in (o/pko) is all of

is compact and X is continuous, it is enough to prove for each

*
(O/pko) - But on the other hand, G is clearly the intersection

ALt
n
k *
where G = is the image in (0/p 0) of nl(,‘( ® F n). So it suffices to
P

prove that Gn = (O/pko)* for all n sufficiently large.

Suppose that « ¢ (O/pko)*. Choose a € 0 congruent to < mod pk,
Let n >k be an integer large enough so that a.2 - hpn is totally negative.
Let T Dbe the free Z-module

ofxl/( ~ax + p%)

of rank 2-[K:§] and let F be the endomorphism "multiplication by x" on
T. One checks easily that the pair (T,F) satisfies hypotheses (a), (b), and
(¢) of the main theorem of [1}. Let X be the ordinary abelian variety over

L associated to (T,F) by that main theorem, and let
n
b

m:Q €& EndF {(x)

be the map arising from the F-linear action of 0 on T. To check that (X,m) ’

is a Hilbert-Blumenthal structure, we note that Iie(x) is dual to the kernel

of F on T ®,}7 i o and observe that this kernel is free of rank 1 over
“op
0ORF n
P

Also, I claim that the polarization module attached to X is ,‘}-l. For

this, let
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Fa)
and define a pairing { , > : T XT —2ri Z by the formula

{atbx, e+dxy = 2mi-tr

o/ Z(ad - be).

’~
Then the pair consisting of T and its map "multiplication by x" reoresents

Fal
the dual variety X to X. Therefore the O-modulzs of O-homomorphisms from
X/F , to its dual is given by
b ~ ~
Homo x] (T,7)> 7T,
the isomorphism being the map f = £(1). Now if f belongs to this module,

~ A
then its dual is the map f ¢ HomO[X] (T,7) which satisfies

B = (he(w)

A

A A
for all t, ue T, vhere{ , > is the pairingon TXT = T X

=3 »

analogous to ¢ ,; >. (Thus (w,z}A = -{z,w» .) Thus f is symmetric
(i.e., f is an element of (X)) if and only if <f(t),u>A = {t,0(u).
This equation holds exactly when f(1) € 3-]‘ as follows immediately
from the déﬁnition of { ,»; thus @(X) is the O-submodule 3'1-1
of ;

Now if TI') is the-h'l‘ate module attached to X, viewed as an Op-module,
then Deligné's recipe tells us that the Frobenius endomorphism of X acts
on TI'> by multiplication by £, where £ 1s the unique element of (o® Zp)*
which satisfies

- : 62 -at+p =0

So if x is the point of MO F o defined by X and if F, e 71'1(}{ QF n)
P . p

is its Frobenius element (well-defined up to conjugation), then
X(Fx) = £

Since

£ =a¢ mod pn

we have
£ =a mod pk

because k < n. Thus the image of F_ in G is (a mod pk), or in other
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K (% '
words (. So @€ G . Therefore (o/p0) = ¢, provided that n is

sufficiently large.
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