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We discuss the equation ap + 2αbp + cp = 0 in which a, b, and c are
non-zero relatively prime integers, p is an odd prime number, and α is a
positive integer. The technique used to prove Fermat’s Last Theorem shows
that the equation has no solutions with α > 1 or b even. When α = 1 and
b is odd, there are the two trivial solutions (±1,∓1,±1). In 1952, Dénes
conjectured that these are the only ones. Using methods of Darmon, we
prove this conjecture for p ≡ 1 mod 4.

1. Introduction. Let p ≥ 5 be a prime number. One knows that
Fermat’s equation ap + bp + cp = 0 has no non-zero integral solutions.
Indeed, suppose that ap + bp + cp = 0, where a, b and c are non-zero.
Following G. Frey, one considers the elliptic curve E with equation y2 =
x(x− ap)(x+ bp). The curve E is simultaneously modular [22, 20] and non-
modular [18]. Therefore no triple (a, b, c) with the hypothesized properties
could have existed.

Ever since A. Wiles’s 1993 announcement that Fermat’s Last Theo-
rem can be proved along these lines, it has been clear that the proof
sketched above can be adapted to other Diophantine equations having
the skeletal form A + B = C. In particular, suppose that L is a prime
number taken from the set

Σ = {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}.
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The analysis of J.-P. Serre [19, §4.3], combined with the author’s theo-
rem [18] and the recent work of Wiles [22] and Taylor–Wiles [20], provides
information about the family of equations ap + Lαbp + cp = 0.

Theorem 1. Suppose that p and L are distinct prime numbers, with
p ≥ 11 and L ∈ Σ. If α ≥ 0, then there are no triples of non-zero integers
(a, b, c) which satisfy ap + Lαbp + cp = 0.

The proof of this theorem can again be summarized succinctly. A non-
zero solution to ap+Lαbp+cp = 0 would define a semistable elliptic curve E;
this curve would be modular by [20, 22]. The group of p-division points on E
would define an irreducible two-dimensional representation % of Gal(Q/Q)
over Fp with very limited ramification. Moreover, % would be modular be-
cause E is modular. An application of the main theorem of [18] would lead
to the statement that % arises from the space of weight-two cusp forms
on Γ0(2L). As Serre explains in [19], one may deduce a contradiction from
this statement for L in Σ.

This article concerns the case L = 2, i.e., the equation

(?) ap + 2αbp + cp = 0

when p is an odd prime (1). This equation is qualitatively different from
those considered by Serre, since (?) has the non-zero solutions a = c = −b
with α = 1. Their presence is connected up with the fact that the elliptic
curves E defined by solutions to (?) are not necessarily semistable. In order
to proceed with our analysis, we must exploit the fact that the Shimura–
Taniyama conjecture holds for all elliptic curves over Q defined by equa-
tions of the form y2 = x(x − A)(x + B), even those curves which are not
semistable. As K. Rubin and A. Silverberg have observed, this extension
of Wiles’s theorem follows easily from F. Diamond’s refinement [7] of the
work of Wiles and Taylor–Wiles. Alternatively, a somewhat simplified proof
of the extended theorem has been given by Diamond and Kramer [8]; these
authors appeal directly to [22, 20], rather than to [7].

In our analysis, we take α to be an integer between 1 and p−1 without
loss of generality. Also, for technical reasons we exclude the case p = 3. The
reader interested in this omitted case may consult Vol. II, pp. 572–573 of
Dickson’s History of the Theory of Numbers [9]. According to this History,
Euler showed that a3 + 4b3 + c3 = 0 has no solutions in non-zero integers,
while Legendre established that a3+2b3+c3 = 0 has only the trivial solutions
with a = c = −b. Recently, H. Wasserman [21] has communicated a proof

(1) Our study of this equation was suggested by a letter from J. W. Weidenman
concerning Diophantine equations which are special cases of (?). The author wishes to
thank him for this inquiry.
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of Euler’s result which is inspired by the treatment of a3 + b3 + c3 = 0 given
by Ireland and Rosen in [12, Ch. 17, §8].

When α = 1, the equation ap+ 2bp + cp = 0 states that the three perfect
pth powers ap, (−b)p and cp form an arithmetic progression. As the author
learned from R. Tijdeman, there has been considerable interest in arithmetic
progressions consisting of perfect nth powers. While it is easy to exhibit three
perfect squares which form an arithmetic progression (e.g., 72, 132 and 172),
Fermat stated and Euler (among others) proved that four distinct squares
cannot form an arithmetic progression. (For a discussion, see [9, Vol. II,
Ch. XIV].) Furthermore, as Dickson reports in [9, Vol. II, Ch. XXII], Euler
proved that 2a4 ± 2b4 is a perfect square only when a = b; in particular,
three distinct fourth powers cannot form an arithmetic progression. (For a
proof of this latter fact, cf. [10, Ex. 4, p. 43].)

For pth powers (where p is an odd prime), Dénes [6] made the following
conjecture in 1952:

Conjecture 1. Let p be an odd prime. If x, y and z are non-zero integers
such that xp, yp and zp form an arithmetic progression, then x, y and z are
all equal.

Conjecture 1 amounts to the statement that the only solutions to ap +
2bp + cp = 0 in non-zero integers are those for which a = −b = c. In support
of the conjecture, Dénes proved the following theorem [6, Satz 9], which
implies the conjecture for all odd primes p < 31.

Theorem 2. Suppose that p is a regular odd prime for which the order
of 2 in (Z/pZ)∗ is either an even number or else equal to (p−1)/2. Suppose
further that 2p−1 6≡ 1 mod p2. Then the conjecture is true for p.

We prove two theorems about the family (?):

Theorem 3. The equation ap + 2αbp + cp = 0 has no solution in non-
zero integers a, b, c if α satisfies 2 ≤ α < p. Furthermore, there are no
solutions to ap+2bp+ cp = 0 in relatively prime non-zero integers for which
2 divides abc.

Given that all elliptic curves y2 = x(x − A)(x + B) are modular, we
obtain Theorem 3 by mimicking the proof of Fermat’s Last Theorem which
we sketched above.

Theorem 4. If p ≡ 1 mod 4, then Conjecture 1 is true for p.

Theorem 4 is proved by techniques introduced by Darmon in [2, 3]. (See
also the discussions in [4, §4] and [5, §4.3].) The condition p ≡ 1 mod 4 in
Theorem 4 is needed so that we can apply the work of B. Mazur [15], F. Mo-
mose [17], and S. Kamienny [13] on the rational points of modular curves
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associated with split Cartan subgroups of GL(2,Fp). In fact, we require as
well the secondary hypothesis p ≥ 17 to apply this work, so we do not prove
Theorem 4 for p = 5 or p = 13. Fortunately, these two primes are covered
by Dénes’s work.

It is perhaps worth stressing that the hypothesis p ≡ 1 mod 4 will dis-
appear as soon as theorems for non-split Cartan subgroups become avail-
able (2).

2. Frey curves. Let p be an odd prime number. We view (?) as an
equation in the three variables a, b and c with an auxiliary parameter, α.
We can and do assume that we have 0 < α < p. Suppose that (a, b, c)
is a solution to (?) in non-zero relatively prime integers. It is immediate
then that a and c are odd; i.e., the three monomials A = ap, B = 2αbp

and C = cp are relatively prime. Thus, the congruence a ≡ −1 mod 4 will
be satisfied after possibly multiplying (a, b, c) by −1. We shall normalize our
solutions by imposing this congruence. With this normalization in place, the
trivial solutions a = c = −b with α = 1 are reduced to the single triple
(a, b, c) = (−1, 1,−1).

Given a normalized solution of (?), one forms the Frey elliptic curve E
with equation

y2 = x(x−A)(x +B).

Theorem 5. The elliptic curve E is modular.

As indicated above, this theorem was pointed out by Rubin and Silver-
berg, who deduced it as a consequence of the results of [7]. After learning of
the Rubin–Silverberg observation, F. Diamond and K. Kramer gave a more
“elementary” proof of the theorem in [8]. This latter article applies the work
of Wiles and Taylor–Wiles, but does not rely on the refinements of [7]. It
contains a great deal of information about the arithmetic of Frey curves,
some of which we shall recall below.

Because of our normalization, the integer A satisfies A ≡ −1 mod 4;
furthermore, B is even. These are the conventions that were employed in
[19] and [8]. The calculations of [19, §4.1] show that the conductor NE of E
has the form 2t rad′(ABC), where t is a non-negative integer. Here, we have
written rad′(ABC) for the product of the odd prime divisors of ABC. In
particular, the curve E is semistable at all primes p 6= 2. The precise value

(2) Added August 1996 : H. Darmon and L. Mevel have recently completed the proof
of Conjecture 1 by proving an analogue of the theorems of Mazur, Momose and Ka-
mienny for modular curves defined by non-split Cartan subgroups and additional auxiliary
structure. See their forthcoming article Winding quotients and some variants of Fermat’s
Last Theorem.
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of t is computed by Diamond and Kramer [8], who find that t is 5, 3, 3,
0 or 1 according as ord2(B) is 1, 2, 3, 4, or an integer greater than 4.
Thus E is semistable at 2 if and only if B is divisible by 16. Since E is in
any case semistable away from 2, E is a semistable elliptic curve precisely
when 16 divides B. The minimal discriminant ∆E of E may be written
2u(ABC)2, where u is an integer which is calculated in [8]. For instance,
u = −8 when t = 1. Therefore

ordl(∆E) ≡ 0 mod p

for all primes l 6= 2.

Lemma. The conductor NE is a power of 2 if and only if (a, b, c) is the
trivial solution (−1, 1,−1).

P r o o f. The solution (−1, 1,−1) to (?) for the value α = 1 leads to the
elliptic curve E = E0 with equation y2 = x(x + 1)(x + 2). A translation
in x transforms E0 into the familiar complex multiplication elliptic curve
y2 = x3 − x of conductor 32. Conversely, suppose that NE is a power of 2.
Then rad′(ABC) = 1, so that ABC is a power of 2. Since a ≡ −1 mod 4,
we have a = −1. Similarly, the odd number c can only be ±1 and b must be
a power of 2. The equation −1 + 2αbp + (±1) = 0 forces b = 1, α = 1 and
±1 = −1.

Corollary. If (a, b, c) is not the trivial solution, then E has multiplica-
tive reduction at some prime q 6= 2.

P r o o f. This is clear since NE is a power of 2 times a square-free odd
number.

For each prime number l, let E[l] be the group of l-division points on E,
regarded as a two-dimensional representation of Gal(Q/Q) over the field Fl.
We recall the following fact.

Proposition 1. The representation E[l] is irreducible for all primes
l ≥ 5. Moreover , if E is not semistable, then E[3] is irreducible.

P r o o f. First suppose that E is semistable over Q. Then, as was
noted in [19], the result to be proved follows easily from a theorem of
Mazur [14, 15]. More precisely, suppose that l ≥ 5 and that E[l] is re-
ducible. Then E has a rational subgroup C of order l. The semistability
hypothesis implies that the action of Gal(Q/Q) on C is ramified only at l,
and a local study at l then shows that Gal(Q/Q) must act on C either
trivially or via the mod l cyclotomic character. This implies that some el-
liptic curve over Q which is isogenous to E contains a group of rational
points which is isomorphic to Z/2Z⊕ Z/2lZ. The existence of such a curve
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is incompatible with “Ogg’s Conjecture” (3), which was proved by Mazur
in [14].

Now suppose that E is not semistable; this means that E has additive
reduction at 2. Then the indicated irreducibility follows from a stronger
statement which is proved by Diamond and Kramer in [8]: Let I be an
inertia subgroup of Gal(Q/Q) for the prime 2; then the action of I on E[l]
is irreducible if l ≥ 3. Since the proof of this statement is quite elementary,
we shall recall it now for the convenience of the reader.

Since E has additive reduction at 2, the 2-part of NE may be written
22+δ, where δ is the exponent of the Swan conductor of the representation
given by the action of I on E[l]. As we noted above, 2 + δ is equal to either
5 or 3; thus δ is an odd number. Assume now that E[l] is reducible as an
I-module. Then E[l] is an extension of one 1-dimensional representation by
another, and δ is the sum of the conductors of the two characters associated
with the 1-dimensional representations. These characters are in fact inverses
of each other, since I acts trivially on the determinant of E[l]. (This deter-
minant corresponds to the mod l cyclotomic character, which is unramified
at 2.) Hence the conductors of the two characters are equal, giving that
δ is even.

Corollary. Suppose that p ≥ 5 or that p = 3 and b is odd. Then E[p]
is irreducible.

P r o o f. The only point to be checked is that E is non-semistable if p = 3
and b is odd. In fact, suppose that p = 3. Then E is semistable if and only
if b is even. Indeed, if b is even, then 8 divides bp, so that 16 divides B.
Conversely, suppose that 16 divides B = 2αbp. Since 1 ≤ α ≤ 2, it is clear
that b is even.

3. Proofs of Theorems 3 and 4. Suppose that ap + 2αbp + cp = 0,
where the integers a, b and c are non-zero and relatively prime, and where
α satisfies 1 ≤ α < p. It is evident then that a and c are odd. As above, we
multiply (a, b, c) by −1 if necessary in order to ensure that a is congruent
to 3 mod 4. We again form the Frey curve E : y2 = x(x − A)(x + B).
In the notation introduced above the conductor NE of E is the product
2t rad′(ABC), for some integer t in the set {0, 1, 3, 5}. We have t ≤ 3 if and

(3) Added February 1996 : According to a communication from Professor A. Schinzel,
the conjecture in question was first formulated in approximate form by B. Levi in 1909
(Atti IV Congresso Internaz. Mat. Roma, 2, 1909, 173–177) and then more precisely by
T. Nagell in 1949 (Den 11te Skandiviske Matematikerkongress, Trondheim 1949, Johan
Grundt Tanums Forlag, Oslo, 1952, 71–76). Professor Schinzel reports that he learned of
the former article from N. Schappacher and R. Schoof.
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only if the even number B is divisible by 4; we have t = 5 in the contrary
case. We will suppose from now on that p ≥ 5.

We first prove Theorem 3, i.e., that t = 5. Because p ≥ 5, we may deduce
from the Corollary to Proposition 1 that the representation

% : Gal(Q/Q)→ GL(2,Fp)

defined by E[p] is irreducible. It is modular of level NE (i.e., it arises from
the space of weight-two cusp forms on Γ0(NE)) because E is a modular
elliptic curve of conductor NE . Since ∆E is a perfect pth power times a
power of 2, the representation % is finite at each prime l 6= 2. The main
theorem of [18] thus implies that % is modular of level 2t. (Each odd prime l
dividing NE can be jettisoned from the level of %.) We conclude that t = 5,
since there are no non-zero cusp forms of weight two on Γ0(8). Equivalently,
ord2(B) = 2, as asserted by Theorem 3.

R e m a r k. In the omitted case p = 3, suppose that b is odd. Then E[3]
is again an irreducible representation, and the argument we have given may
be used to deduce that α = 1.

Continuing the argument, we now prove Theorem 4. Let E0 again be the
elliptic curve which is associated with the trivial solution (−1, 1,−1), i.e.,
the elliptic curve over Q with equation y2 = x3 − x.

Proposition 2. The 2-dimensional mod p representations of Gal(Q/Q)
which are defined by E and E0 are isomorphic.

P r o o f. Let % be the mod p representation which is defined by E, i.e., by
the space E[p] of p-division points of E; let %0 be the analogue of % for E0.
We have seen that the irreducible representation % is associated with an
eigenform in the space of weight-two cusp forms on Γ0(2t) = Γ0(32). It is
a known fact that this space is one-dimensional; equivalently, J0(32) is an
elliptic curve. (See, e.g., [1, p. 136].) It follows that % is the modp represen-
tation J0(32)[p]. In particular, the isomorphism class of % is independent of
the solution (a, b, c) giving rise to E. Therefore, % and %0 are isomorphic,
as stated.

We next recall the well known fact that the image of %0 is contained in
the normalizer of a Cartan subgroup of GL(2,Fp). Indeed, let R = Z[µ4] be
the full ring of endomorphisms of E0. Then E0[p] is easily seen to be a free
rank-1 module over R/pR. Let C be the image of (R/pR)∗ in the group of
automorphisms of E0[p], so that C is either F∗p×F∗p or F∗p2 , according as p is
congruent to 1 or to −1 mod 4. Then C is a Cartan subgroup of AutE0[p] ≈
GL(2,Fp). One says that C is split or non-split according as p is 1 or −1 mod
4. The restriction of %0 to Gal(Q/Q(

√
−1)) takes values in C, and the full
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image of % takes values in the normalizer of C in GL(2,Fp). The index of C
in its normalizer is 2.

Suppose now that p ≡ 1 mod 4. Then E defines a point on the mod-
ular curve denoted by Xsplit(p) (cf. [14, Ch. III, §6] and the discussions
in §3 and §4e of [15]). This circumstance puts strong constraints on the
set of prime numbers dividing the denominator of the j-invariant of E,
i.e., the set of primes at which E does not have potential good reduction.
Specifically, if p ≥ 17, a result of Mazur [15, Cor. 4.8] proves that E has
potential good reduction at all primes l 6= 2, p satisfying l 6≡ ±1 mod p.
(This result holds also for p = 11, but this is irrelevant to our application,
which requires p ≡ 1 mod 4.) Mazur’s theorem has been strengthened by
subsequent work. In particular, F. Momose [17, Prop. 3.1] proves that E
has potential good reduction at all primes l 6= 2, as long as the prime p
satisfies p ≥ 17.

Alternatively, under the same hypothesis on p, Darmon notes in [2,
Cor. 1.7] that E has potential good reduction at all primes l 6= 2, 3; this
observation is obtained by combining a theorem of Kamienny [13] with
[15, Cor. 4.3]. Darmon’s result concerns elliptic curves over Q(

√
−1)

and requires only that E possess a rational subgroup of order 2p over
this field.

Suppose now that we have p ≥ 17 and p ≡ 1 mod 4. Then if (a, b, c) is
a normalized solution to ap + 2bp + cp = 0, the corresponding curve E has
multiplicative reduction at all odd primes l dividing abc. Momose’s result
implies that there is no such prime; Darmon’s implies that 3 is the only
possible such prime. On either count, we find that two of a, b and c are ±1
while the third is ±3n for some n ≥ 0. Indeed, a, b and c are relatively prime
and all of them are odd in view of Theorem 3. Elementary reasoning allows
us to reach a contradiction.

4. A conjecture of Frey

Conjecture 2. Let A be an elliptic curve over Q. Then all sufficiently
large prime numbers p have the following property: if B is an elliptic curve
over Q for which A[p] and B[p] are isomorphic representations of Gal(Q/Q),
then A and B are isogenous over Q.

Conjecture 2 appears as Conjecture 4.3 in [4], where it is attributed
to G. Frey. It is similar in flavor to the conjectural statements in Frey’s
article [11]. The reader is invited to consult Mazur’s article [16] as well as
[4] and [11] for variants and generalizations. Here is one such generalization
[4, Conj. 4.4 and Conj. 4.5]:

Conjecture 3. There is an integer t > 0 with the following property.
Suppose that A and B are elliptic curves over Q and that the Galois repre-
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sentations A[p] and B[p] have isomorphic semisimplifications. If p > t, then
A and B are isogenous.

We record the following simple observation:

Proposition 3. Suppose that Conjecture 2 is true. Then Conjecture 1
holds for all sufficiently large prime numbers p (4).

P r o o f. Suppose that (a, b, c) is a normalized solution to ap+2bp+cp = 0.
If E is the associated Frey curve, then we have seen that E[p] and E0[p] are
isomorphic. Applying Conjecture 2 with A = E0, we find that E and E0

are isogenous for p sufficiently large. The isogeny relation between E and E0

implies that these two elliptic curves have the same primes of bad reduction,
so that E has good reduction outside 2. By the Lemma of Section 2, this
implies that (a, b, c) = (−1, 1,−1). Hence ap + 2bp + cp = 0 has only the
trivial normalized solution for sufficiently large p.
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