| will try to present a quick summary of the Sylow theorems.
Probably Dylan told you nearly all of this.

Sylow subgroups exist.

We proved this by a method that is not so well known but
seems natural to me: prove the theorem by inspection for a
class of “standard” groups and them embed arbitrary groups
into one of the standard ones.

The key statement is this one: If H is a subgroup of G and P is
a p-Sylow subgroup of G, then there is a conjugate P’ of Pin G
so that P' N H is a p-Sylow subgroup of H.



Corollary: All p-subgroups of G are contained in a conjugate
of P.

For the proof, we take H to be a p-group inside G. Then HN P’
must be H, so that H C P'.

Corollary: All p-Sylows of G are conjugate.
We take H to be a p-Sylow. Since HC P, H= P'.

Corollary: Each p-subgroup of G is contained in a p-Sylow of G.
This is true because H C P’ and P’ is a p-Sylow.



Because all p-Sylow subgroups of G are conjugate, we have: if
P is a p-Sylow of G, then the set of p-Sylows is G/N(P), where
N stands for “normalizer.”

This is clear because the p-Sylows are the conjugates of P.
In particular, the number of p-Sylows is (G : N(P)), a divisor of
the prime-to-p part of #(G).

Next: When P acts on the set of p-Sylows by conjugation, P
fixes itself but fixes no other p-Sylow. Said differently: a
p-Sylow cannot normalize another p-Sylow.

The proof is that if P normalizes P’, then PP’ is a p-group
containing P and must therefore be P.



The upshot is the famous theorem to the effect that the number
of p-Sylows is congruent to 1 mod p.

Recall that if a p-group H acts on a finite set S, then

#(S) = #(S") (mod p).

Here, S is the set of points of S that are fixed by H. The
reason is that the orbits of H acting on S have p-power order
and are therefore either singleton sets or sets of size divisible

by p.
To derive the famous theorem, we take H = P and S to be the

set of p-Sylows of G. Because P normalizes only itself, there is
a unique singleton set, so that #(S") = 1.



A finite group is simple if it's non-trivial and has no proper
normal subgroups other than {e}.

| think that | assigned the exercise in Lang to check that there
are no non-abelian simple groups of order < 60. (Recall that a
finite abelian group is simple if and only if it has prime order.)

For n > 5, the group A, is simple. The proofs of this fact that |
know are totally unenlightening, so we pretend that it has been
carried out in Math 113 (or the equivalent course elsewhere).



A well-known theorem is that a finite simple group of order 60 is
isomorphic to As. There are lots of proofs of this fact in the
literature (and on the web). | will present the proof that’s in

Dummit—Foote. This is a good proof because it’s simple and
efficient.

| will present the proof on the white board, but the proof is
summarized in this .pdf, which you can download.



Let G be simple of order 60. Suppose that H is a proper
subgroup of G and let n= (G : H). The action of Gon G/H
defines a non-trivial permutation

m: G — Perm(G/H) =~ S.

The kernel of 7 is a proper normal subgroup of G and thus
must be {e}. Hence
G<— S,

In fact, we have
G— Ap;

otherwise, we could intersect the image of G with A, and get a
subgroup of G of index 2.

Thus n > 5. Also, if n =5, we have G ~ As as desired.



Accordingly, the goal will be to exhibit a subgroup of G of
order 12 (i.e., of index 5). This is connected up with the 2-Sylow
subgroups of G.

The number of 2-Sylow subgroups of G divides 15 (and is 1
mod 2, but that’s obvious anyway). The number can’t be 1
because then the unique 2-Sylow would be normal. The
number of 2-Sylows is (G : N), where N is the normalizer of
one of the 2-Sylows. This index can’t be 3 because then we'd
get an embedding of G into S3 by the discussion above; that
can’t work because of orders.

If the index is 5, then we get G ~ As and are completely happy.

Hence we are left with the possibility that the index is 15. We
assume that this is the case and press on.



We have to rule out the following crazy possibility: if P and Q
are two distinct 2-Sylows, then PN Q = {e}. We prove that this
is impossible by contradiction. If it’s really true, then the number
of elements of G with 2-power order is 1 + 15(4 — 1) = 46.

On the other hand, it’s obvious from the Sylow theorems that
the number of 5-Sylows is 6. Hence the number of elements of
order 5is 6 - 4 = 24. We're in trouble because

46 +24 =70 > 60.

Conclusion: there exist two different 2-Sylows P and Q with
PN Q of order 2.



Let M be the normalizer of P N Q. This group contains both P

and Q because P and Q are abelian. Hence the order of M is

divisible by 4 but is bigger than 4 (since P and Q are both in M
and are distinct group of order 4). The order of M could thus a
priori be 60, 20 or 12.

Equivalently, the index of M in G is one of 1, 3, 5. Index 1
means that M = G, so that P N Q is a non-trivial normal
subgroup of G (which is impossible because G is simple).
Index 3 is impossible (too small by our discussion). Index 5 is
what we wanted to achieve, so it's QED and we celebrate.

Exercise: calculate the number of 2-Sylow subgroups of As. Is
it15, orisit5?



