
Math 250A, Fall 2004
Last Midterm Exam—November 4, 2004

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs,
and other electronic devices. You may refer to a single 2-sided sheet of notes. Explain your answers
in full English sentences as is customary and appropriate. Your paper is your ambassador when it
is graded.

All rings are rings with identity!

1. Suppose that I and J are ideals in a commutative ring R such that I + J = R. Establish the
surjectivity of the natural map R → R/I × R/J, r 7→ (r mod I, r mod J). (Don’t just name a
theorem; write down a complete proof.)

This is the Chinese Remainder Theorem, but we are asked to supply a proof. If I + J = R, then 1
is an element of I + J , so that there are x ∈ I, y ∈ J with x + y = 1. Given a, b ∈ R, we can write
down r := ay + bx and see that r has the same image as a mod I and the same image as b mod J .

If I + J = R, as above, show that In + Jm = R whenever n and m are positive integers.

We can take m = n since In + Jm contains In + Jn if n ≥ m. Suppose that 1 = x + y as above.
Then 1 = (x + y)2n. If you expand out (x + y)2n by the binomial theorem, you’ll see that each
term is divisible either by xn or by yn. Hence (x + y)2n lies in In + Jn.

2. Let k be a field, and let V be the k-vector space consisting of (a1, a2, . . .) with ai ∈ k and ai non-
zero only for a finite set of i. Let R = Endk V be the ring of linear transformations V → V ; the
ring multiplication is composition. (If V were instead the smaller vector space kn, then R would
be the ring of n× n matrices over k.)

View R as a (left) R-module under the ring product and V as an R-module under the natural
operation r ·v = r(v). Prove that the R-module R is isomorphic to the product

∏∞
i=1 V and deduce

that the R-modules R and R⊕R are isomorphic.

We have R = Endk V = Homk(V, V ) = Homk(
∞⊕

i=1

k, V ) =
∞∏

i=1

Homk(k, V ) =
∞∏

i=1

V . In this string

in equalities, we have used that V is the direct sum of a countable number of copies of k, that maps
from a direct sum amount to maps from each of the summands, and that a k-linear map from k
to V is the same thing as a vector in V . The map f : R

∼→
∏

V from the left side to the right
side takes r ∈ R to (re1, re2, . . .), where the ei are the standard basis vectors of V . (For example,
e1 = (1, 0, 0, . . .).) If a is in R, then f(ar) = (are1, are2, . . .) = a(re1, re2, . . .), so the map f is
R-equivariant. (This means that it’s a map of R-modules.) The reason that R and R⊕R are then
isomorphic is that the R-modules

∏∞
i=1 V and (

∏∞
i=1 V )× (

∏∞
i=1 V ) are clearly the same thing: the

index sets { 1, 2, 3, . . . } and { 1, 2, 3, . . . }
∐
{ 1, 2, 3, . . . } are in bijection.

3. In each situation, either give a concrete example of the object described or else explain why there
cannot be an example. Include explanations!

A finitely generated torsion free module, over a principal ideal domain, that is not a free module.

We proved in class that finitely generated modules over PIDs are free modules. This is basically
all that I want you to say. If you give some details about the proof, I’ll think good thoughts about
you. If you supply false details about the proof, I’ll be sad.



A torsion-free abelian group that is not a free abelian group.

The example that I had in mind was Q. By coincidence, or not, one of the students came in to my
office this morning (Thursday) to ask why Q is not free. Here’s one reason: if F is the free abelian
group on a set I and A is an abelian group, then Hom(F,A) is (in natural bijection with) the set
of functions from I to (the underlying set of) A. Take F = Q and A = Z. The group Hom(Q,Z)
is the trivial group (0) (as you can see in various ways). This means that there is only one map of
sets I → Z; we can infer from this that I = , the empty set. Of course, the free abelian group on
the empty set is (0); since Q is non-zero, we have a contradiction.

A unique factorization domain that is not a principal ideal domain.

This is a fair question, I think. A standard example is the polynomial ring K[x, y], where K is a
field. We will know this “officially” only next week, but I’m sure that you’ve seen this example, or
other examples, before. (My example is mentioned on page 113 of the text.) In K[x, y], the ideal
(x, y) of polynomials with no constant term is not a principal ideal. Indeed, there is no polynomial
6= 1 that divides both x and y.

An exact sequence of Z-modules that does not split.

We’ve seen examples in class. One that comes to mind is

0 → 2Z → Z → Z/2Z → 0,

where the map 2Z → Z is the inclusion. It is clear that this sequence does not split because Z
contains no submodule isomorphic to Z/2Z.

4. Let A be an integral domain, and let K be the quotient field of A. Suppose that M and N are
A-submodules of K such that MN = A. (Recall that MN is the smallest A-submodule of K that
contains all products mn with m ∈ M,n ∈ N .) Show that the A-modules M and N are finitely
generated.

This is an abstraction of the first homework problem about Dedekind domains. Since 1 ∈ MN , we
can write 1 as a finite sum

∑
mini. If m is in M , we have m = m · 1 = m

∑
mini =

∑
(mni)mi,

which is a linear combination of the mi with coefficients in A. Hence M is generated by the mi;
similarly for N .

Let A be a commutative ring, and let M be an A-module. For each prime ideal p of A, let Mp be
the localization of M at p and let ιp : M → Mp be the natural map (which takes m ∈ M to the

formal fraction
m

1
). If m is a non-zero element of M , show that there is a maximal ideal p such

that ιp(m) is non-zero.

The quantity ιp(m) is zero if and only if m is annihilated by some element of the multiplicative set
A \ p. Hence ιp(m) is non-zero if and only if all elements of A that annihilate m are contained in p.
The set Ann(m) = { a ∈ A | am = 0 } is an ideal of A. It is a proper ideal because m is non-zero.
We have seen that every proper ideal of a commutative ring is contained in a maximal ideal if the
ring. If we take p to be a maximal ideal of A that contains Ann(m), then ιp(m) will be non-zero,
as required.
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