1 (6 points). Establish the irreducibility over \mathbf{Q} of each of the following polynomials:

$$
\left\{\begin{array}{l}
x^{13}+27 x^{2}-120 x+69 \\
x^{3}+3 x^{2}+9 \\
x^{3}+x^{2}+2
\end{array}\right.
$$

It might help to remember that we discussed three criteria for irreducibility in class.

The first polynomial is visibly an Eisenstein polynomial with $p=3$. The second is irreducible mod 2 . The third is irreducible if it has no roots in \mathbf{Z}, but the only possible integral roots are $\pm 1, \pm 2$. It's easy to check that these numbers aren't roots of the third polynomial.

2 (6 points). Suppose that A is an integral domain (i.e., a commutative entire ring). Suppose that I and J are non-zero ideals of A for which the product IJ is a principal ideal. Show that the ideals I and J are finitely generated.

See problem \#13 on page 116, which was assigned for homework a few weeks ago. Suppose that $I J=(a)$, and write $a=\sum_{i=1}^{n} x_{i} y_{i}$, with $x_{i} \in I, y_{i} \in J$. I claim that $I=\left(x_{1}, \ldots, x_{n}\right)$. For $x \in I$, we have $a x=\sum x_{i}\left(x y_{i}\right)$. Since $x y_{i} \in I J=(a)$, we can write $x y_{i}=a t_{i}$ for some $t_{i} \in A$. This gives $a x=\sum x_{i} a t_{i}=a \sum x_{i} t_{i}$. Then $x=\sum x_{i} t_{i}$ because A is entire. Therefore, $x \in\left(x_{1}, \ldots, x_{n}\right)$.

3 (7 points). Find a set X and a subset S_{X} of X with the following property: if A is a set and S a subset of A, there is a unique map $\varphi: A \rightarrow X$ such that $S=\varphi^{-1}\left(S_{X}\right)$.

Discuss the implication of the existence of $\left(X, S_{X}\right)$ for the association (sets) \rightarrow (sets) that takes each set to the set of its subsets. (Explain how the association defines a contravariant functor and decide whether or not the functor is representable.)

The set X that I had in mind is a set with two elements, say $X=\{0,1\}$. We can then take $S_{X}=\{1\}$; what's important is that it be a 1 -element subset of
the set with two elements. Given $S \subseteq A$, we define $\varphi(a)$ to be 1 if $a \in S$ and 0 otherwise. Then clearly $S=\varphi^{-1}\left(S_{X}\right)$, and φ is the only map that works.

If A is a set, let $F(A)$ be the set of subsets of A. Then clearly $F(A)=\operatorname{Maps}(A, X)$ in view of what's in the previous paragraph. The point is that we can regard F as either a covariant or a contravariant functor. Indeed, if $f: A \rightarrow B$ is a map of sets and S is a subset of A, then $f(S)$ is a subset of B. But, in the other direction, if T is a subset of B, then $f^{-1}(T)$ is a subset of A. If we think of F as a covariant functor, then it isn't representable in any obvious way; my guess is that it isn't representable. (If you see why this is true, let me know.) On the other hand, if we think of F as a contravariant functor, then it's representable by X, together with the supplemental datum $S_{X} \in F(X)$. Namely, as discussed, we have for each A a bijection $F(A) \leftleftarrows \operatorname{Maps}(A, X)$ given by $\varphi \in \operatorname{Maps}(A, X) \mapsto \varphi^{-1}\left(S_{X}\right)$.

4 (6 points). Consider the commutative diagram

of abelian groups and homomorphisms.
Assume:
(1) The kernel of v is the image of u;
(2) The kernel of b^{\prime} is the image of b;
(3) The compositions $v^{\prime} \circ u^{\prime}$ and $a^{\prime} \circ a$ are both 0 ;
(4) The maps c and u^{\prime} are injective;
(5) The map a^{\prime} is surjective.

Show that $u^{\prime \prime}$ is injective. (Source: Bourbaki)
Take $\alpha^{\prime \prime} \in A^{\prime \prime}$ with $u^{\prime \prime}\left(\alpha^{\prime \prime}\right)=0$. Using the surjectivity of a^{\prime}, pick $\alpha^{\prime} \in A^{\prime}$ that maps to $\alpha^{\prime \prime}$. Its image β^{\prime} in B^{\prime} is in the kernel of b^{\prime}, which is the image of b. Find $\beta \in B$ such that $b(\beta)=\beta^{\prime}$, and let let $\gamma=v(\beta)$. The image of γ in C^{\prime} is 0 , because it's the image of β^{\prime}, which is the image of α^{\prime} under u^{\prime}. Because c is injective, $\gamma=0$. By the exactness of the top row, there is an $\alpha \in A$ such that $\beta=u(\alpha)$. If we can show that $\alpha^{\prime}=a(\alpha)$, then we are done because the image of α in $A^{\prime \prime}$ will be both $\alpha^{\prime \prime}$ and 0 . Let $\theta=a(\alpha)$. Then the commutativity of the diagram shows that the image of θ in B^{\prime} is β^{\prime}, which is the same as the image of α^{\prime}. But u^{\prime} is injective, so $\theta=\alpha^{\prime}$, as desired.

