Math 250A

Last Midterm Exam

Professor K. A. Ribet November 1, 2001

1 (6 points). Establish the irreducibility over \mathbf{Q} of each of the following polynomials:

$$\begin{cases} x^{13} + 27x^2 - 120x + 69, \\ x^3 + 3x^2 + 9, \\ x^3 + x^2 + 2. \end{cases}$$

It might help to remember that we discussed three criteria for irreducibility in class.

The first polynomial is visibly an Eisenstein polynomial with p = 3. The second is irreducible mod 2. The third is irreducible if it has no roots in \mathbf{Z} , but the only possible integral roots are ± 1 , ± 2 . It's easy to check that these numbers aren't roots of the third polynomial.

2 (6 points). Suppose that A is an integral domain (i.e., a commutative entire ring). Suppose that I and J are non-zero ideals of A for which the product IJ is a principal ideal. Show that the ideals I and J are finitely generated.

See problem #13 on page 116, which was assigned for homework a few weeks ago. Suppose that IJ = (a), and write $a = \sum_{i=1}^{n} x_i y_i$, with $x_i \in I$, $y_i \in J$. I claim that $I = (x_1, \ldots, x_n)$. For $x \in I$, we have $ax = \sum x_i(xy_i)$. Since $xy_i \in IJ = (a)$, we can write $xy_i = at_i$ for some $t_i \in A$. This gives $ax = \sum x_i at_i = a \sum x_i t_i$. Then $x = \sum x_i t_i$ because A is entire. Therefore, $x \in (x_1, \ldots, x_n)$.

3 (7 points). Find a set X and a subset S_X of X with the following property: if A is a set and S a subset of A, there is a unique map $\varphi \colon A \to X$ such that $S = \varphi^{-1}(S_X)$.

Discuss the implication of the existence of (X, S_X) for the association (sets) \rightarrow (sets) that takes each set to the set of its subsets. (Explain how the association defines a contravariant functor and decide whether or not the functor is representable.)

The set X that I had in mind is a set with two elements, say $X = \{0, 1\}$. We can then take $S_X = \{1\}$; what's important is that it be a 1-element subset of

the set with two elements. Given $S \subseteq A$, we define $\varphi(a)$ to be 1 if $a \in S$ and 0 otherwise. Then clearly $S = \varphi^{-1}(S_X)$, and φ is the only map that works.

If A is a set, let F(A) be the set of subsets of A. Then clearly F(A) = Maps(A, X)in view of what's in the previous paragraph. The point is that we can regard F as either a covariant or a contravariant functor. Indeed, if $f: A \to B$ is a map of sets and S is a subset of A, then f(S) is a subset of B. But, in the other direction, if T is a subset of B, then $f^{-1}(T)$ is a subset of A. If we think of F as a covariant functor, then it isn't representable in any obvious way; my guess is that it isn't representable. (If you see why this is true, let me know.) On the other hand, if we think of F as a contravariant functor, then it's representable by X, together with the supplemental datum $S_X \in F(X)$. Namely, as discussed, we have for each A a bijection $F(A) \stackrel{\sim}{\leftarrow} \text{Maps}(A, X)$ given by $\varphi \in \text{Maps}(A, X) \mapsto \varphi^{-1}(S_X)$.

4 (6 points). Consider the commutative diagram

of abelian groups and homomorphisms. Assume:

- (1) The kernel of v is the image of u;
- (2) The kernel of b' is the image of b;
- (3) The compositions $v' \circ u'$ and $a' \circ a$ are both 0;
- (4) The maps c and u' are injective;
- (5) The map a' is surjective.

Show that u'' is injective. (Source: Bourbaki)

Take $\alpha'' \in A''$ with $u''(\alpha'') = 0$. Using the surjectivity of a', pick $\alpha' \in A'$ that maps to α'' . Its image β' in B' is in the kernel of b', which is the image of b. Find $\beta \in B$ such that $b(\beta) = \beta'$, and let let $\gamma = v(\beta)$. The image of γ in C'is 0, because it's the image of β' , which is the image of α' under u'. Because cis injective, $\gamma = 0$. By the exactness of the top row, there is an $\alpha \in A$ such that $\beta = u(\alpha)$. If we can show that $\alpha' = a(\alpha)$, then we are done because the image of α in A'' will be both α'' and 0. Let $\theta = a(\alpha)$. Then the commutativity of the diagram shows that the image of θ in B' is β' , which is the same as the image of α' . But u' is injective, so $\theta = \alpha'$, as desired.