Professor Kenneth A. Ribet

- Show that every group of order 56 has a proper normal subgroup other than $\{e\}$. 6 pts
- 2 Let G be a finite group, and let S be a finite G-set. For each $q \in G$, let f(q) be the number of fixed points of q, i.e., the number of s such that qs = s.
- 3 pts
- a. For each $s \in S$, show that $\sum_{t \in \text{Orbit}(s)} \frac{1}{\#(\text{Orbit}(t))} = 1$. b. Show that the number of orbits of G in S is the quantity $\frac{1}{\#(G)} \sum_{g \in G} f(g)$.
- 3 Let A be a finite abelian group with the following property: for each $n \geq 1$, the group $\{a \in A \mid na = 0\}$ has at most n elements. Prove that A is cyclic. [Use the basic structure theorem for abelian groups, or argue directly.
- 4 Let V be a vector space over the field k. Let R = End V be the ring of k-linear transformations 10 pts. $V \to V$.
- a. Suppose that W is a k-vector space. Let M = Hom(W, V) be the space of k-linear transformations from W to V. Show that the operation $r: m \mapsto r \circ m$ makes M into a left R-module.
- b. If W is isomorphic to a direct sum of finitely many copies of V, show that M is free over R. 4 pts
- c. Give an example where M is simultaneously free of rank 1 over R and free of rank 2 over R.
- 5 Suppose that E is an algebraic extension of K.

12 pts

- a. Let f(x) be a non-zero polynomial with coefficients in E. Show that there is a non-zero polynomial $g(x) \in K[x]$ such that f(x) divides g(x) in E[x].
- b. Suppose that E contains a splitting field for each non-constant polynomial with coefficients 4 pts in K. Prove that E is algebraically closed.
- c. Suppose that K has characteristic 0. Assume that every non-constant polynomial over K 4 pts. has a root in E. Prove that E is algebraically closed. [Use the Primitive Element Theorem.]
- 6 Let R be a ring, and let M, P and Q be left R-modules. Suppose that $\alpha \colon P \to M$ and $\beta \colon Q \to M$ are each surjective R-module maps. Form

$$A = \{ (x, y) \in P \oplus Q \mid \alpha(x) = \beta(y) \}.$$

- a. Establish an exact sequence $0 \to \ker \beta \to A \to P \to 0$. 5 pts
- b. If P and Q are projective, prove that $P \oplus \ker \beta$ and $Q \oplus \ker \alpha$ are isomorphic. 4 pts